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Abstract

Computer assisted or automated histological grading of tissue biopsies for clinical cancer care is a 

long-studied but challenging problem. It requires sophisticated algorithms for image segmentation, 

tissue architecture characterization, global texture feature extraction, and high-dimensional 

clustering and classification algorithms. Currently there are no automatic image-based grading 

systems for quantitative pathology of cancer tissues. We describe a novel approach for tissue 

segmentation using fuzzy spatial clustering, vector-based multiphase level set active contours and 

nuclei detection using an iterative kernel voting scheme that is robust even in the case of clumped 

touching nuclei. Early results show that we can reach a 91% detection rate compared to manual 

ground truth of cell nuclei centers across a range of prostate cancer grades.

1. Introduction

The availability of high resolution multispectral multimodal imaging of tissue biopsies 

provides a new opportunity to develop improved tissue segmentation algorithms for 

computer-aided diagnostic classification of histopathological images in a clinical setting. 

Typical histopathology imagery are RGB-color based on scanning hematoxylin and eosin 

stained (prostate) tissue and imaged at 40× optical magnification using a rapid whole 

slide scanner. Quantitative Gleason grading of prostate cancer tissue patches approaching 

expert levels can be achieved using a combination of low level image texture features 

and high level graph-based tissue architecture features [2]. A multiresolution approach 

using global texture features including first- and second-order statistics combined with a 

Gabor filter set was able to achieve over 90% overall accuracy in distinguishing between 

cancerous and benign tissue, and nearly 77% in distinguishing between two complex grades 

of cancer (Gleason grade 3 and 4 adenocarcinoma). However, the architectural features of 

gland structures including spatial distribution of cell nuclei and the arrangement of glands 

were manually determined [2]. Recently, semi-automated image segmentation algorithms 

requiring prior probability estimates for the lumen structures and pixel-wise classification 

was developed to facilitate the extraction of spatial arrangement information [5]. In this 

paper, we develop a fully automatic robust image segmentation algorithm for histopathology 

imagery using a three step process including fuzzy spatial clustering for class initialization, 

tissue class refinement using vector-based multiphase level sets to accurately extract lumen 
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area, epithelial cytoplasm and epithelial nuclei regions [5], followed by detection of nuclei 

centers even within merged groups using iterative voting and oriented kernels.

2. Fuzzy C-means with Spatial Constraint

A modified version of the fuzzy c-means (FCM) algorithm is used to initialize the level set 

segmentation refinement process. FCM minimizes the sum of similarity measures objective 

function J(U, V) given by

J(U, V ) = ∑
i = 1

C
∑
j = 1

N
uijm xj − vi

2
(1)

where X = {x1, x2, …, xN} denotes the set of data (pixel feature vectors), V = {v1, v2, 

…, vC} represents the prototypes, known as the clusters centers, U = [uij] is the partition 

matrix which satisfies the condition, ∑i
C uij = 1 ∀j, and m is a fuzzifier which indicates 

the fuzziness of membership for each point. The FCM algorithm is an iterative process for 

minimizing the membership distance between each point and the prototypes. However, the 

objective function Eq. 1 does not explicitly include any spatial information. Incorporating 

spatial information provides more robustness and efficiency to the fuzzy c-means algorithm 

by adding a second term to the FCM objective function [3],

JM(U, V ) = ∑
i = 1

C
∑
j = 1

N
uijm xj − vi

2 + α ∑
i = 1

C
∑
j = 1

N
uijme−∑k ∈ Ωuik

m
(2)

where Ω is a set of neighbors. The parameter α is a weight that controls the influence of 

the second term. The objective function (2) has two components. The first component is the 

same as FCM, the second is a penalty term. This component reaches a minimum when the 

membership value of neighbors in a particular cluster is large. The optimization of (2) with 

respect to U is solved by using Lagrange multipliers and the membership function update 

equation is,

uij = 1

∑p = 1
C xj − vi

2 + αe−∑k ∈ Ωuik
m

xj − vp
2 + αe−∑k ∈ Ωupk

m

1
m − 1 (3)

The neighboring membership values (upk) influence uij to follow the neighborhood behavior. 

For instance if a given point has a high membership value to a particular cluster and its 

spatial neighbors have a small membership values to this cluster, the penalty term plays the 

role to force the point to belong to the same cluster as its neighbors. The weight α controls 

the importance of the regularization term. The prototype update equation is the same as 

standard FCM. The spatial constraint FCM (SCFCM) algorithm consists in the same steps as 

the original fuzzy c-means algorithm.

Hafiane et al. Page 2

Proc IAPR Int Conf Pattern Recogn. Author manuscript; available in PMC 2022 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Multiphase Vector-based Active Contours

A single level set has two-phases and provides a binary partition of a scalar image 

by minimizing an energy functional composed of grayscale intensity variations and the 

interface length between boundaries [1]. Histopathology imagery are typically color which 

requires a vector-based level set formulation, and have four classes (lumen, cytoplasm, 

nuclei, other) which requires either multiple level sets (one per class) or multiple phases [8]. 

We propose combining both approaches to develop a multiphase vector-based active contour 

segmentation algorithm. Multiphase level sets usually minimize a reduced or weak, minimal 
partition Mumford-Shah functional [4],

Fn(c, Φ) = ∑
1 ≤ i ≤ n = 2m

λi∫
Ω

(u0 − ci)2χidx

Energy Term

+ ∑
1 ≤ i ≤ n = 2m

μi∫
Ω

∣ ∇χi ∣

Length Term

(4)

where, n is the total number of classes associated with m level set functions, u0 is the 

gray-level image being segmented, Φ is a vector of level set functions, c is a vector of mean 

gray-level values (i.e., ci = mean(u0) in the class i), χi is the characteristic function for each 

class i represented by the associated Heaviside functions H(φi), and (λi, μi) are constants 

associated with each energy and length term of the functional Fn(c, Φ). In order to simplify 

computation of the length term in the reduced Mumford-Shah energy functional, we replace 

the measure of the characteristic functions by the sum of the length of the zero-level sets 

of φi, Σ1≤i≤n μi ∫Ω |∇H(φi)|. Instead of an unweighted total length, this approximation 

weights some edges more than others, but is faster to compute and still leads to satisfactory 

segmentation results.

Using multiple phases the number of level sets grows only logarithmically with the number 

of classes instead of linearly and also has the advantage of avoiding vacuums and overlaps in 

the final multiclass segmentation. Usually two- or three-level set multiphase segmentations 

(four to eight classes) is often sufficient for histopathology imagery. Let us consider the two 

level set case (i.e., m = 2) that partitions a domain Ω into at most four classes as illustrated 

in Fig. 1. Let c = (c00, c01, c10, c11) represent a vector of average color-intensity values 

corresponding to each class/region with Φ = (φ1, φ2) being the two level set functions. The 

energy functional Fn(c, Φ) can thus be written as,

Fn(c, Φ) = λ1∫
Ω

∣ u0 − c00 ∣ 2(1 − H(φ1))(1 − H(φ2))dx

+ λ2∫
Ω

∣ u0 − c01 ∣ 2(1 − H(φ1))H(φ2)dx

+ λ3∫
Ω

∣ u0 − c10 ∣ 2H(φ1)(1 − H(φ2))dx + λ4∫
Ω

∣ u0 − c11 ∣ 2H(φ1)H(φ2)dx

+ μ1∫
Ω

∣ ∇H(φ1) ∣ dx + μ2∫
Ω

∣ ∇H(φ2) ∣ dx

(5)
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The Euler-Lagrange equations obtained by minimizing Eq. 5 is used to embed (c, Φ) in a 

dynamical system [8],

∂φ1
∂t = δ(φ1) μ1div( ∇φ1

∣ ∇φ1 ∣ ) − ({λ1 ∣ u0 − c11 ∣ 2 − λ3 ∣ u0 − c01 ∣ 2}H(φ2) + {λ2 ∣ u0 − c10 ∣ 2 − λ4 ∣ u0 − c00 ∣ 2}{1 − H(φ2)}) ,

∂φ2
∂t = δ(φ2) μ2div( ∇φ2

∣ ∇φ2 ∣ ) − ({λ1 ∣ u0 − c11 ∣ 2 − λ2 ∣ u0 − c10 ∣ 2}H(φ1) + {λ3 ∣ u0 − c01 ∣ 2 − λ4 ∣ u0 − c00 ∣ 2}{1 − H(φ1)})
(6)

where, cij are the mean regional color intensities for each corresponding phase and δ(φk) 

= H′(φk) is the Dirac delta function. For numerical stability of the delta function, Chan 

and Vese propose using a regularized Heaviside function, H2, ε(x) = 1
2 1 + 2

π tan−1(x
ε )  with 

δε(x) = 1
π

ε
π2 + ε2  The motivation for using a multiphase, rather than a two-phase, level set 

framework is to accurately detect adjacent regions that meet at a junction (i.e., the triple 

junction in [8]).

4. Nucleus Center Detection

The shape and organization of glandular and nuclear structures within a histological image 

is related to tissue type and can be used in classifying Gleason grades. Graphs describing 

the spatial arrangement of nuclei (i.e. Delaunay triangulation of nuclei centers) along with 

other spatial features can be used for Gleason grading [2]. The algorithm described in 

this section is based on a recent Hough transform-like approach for detecting centers of 

individual cell nuclei based on the segmented nucleus clusters (see previous section). We 

extend the iterative voting using oriented kernels method developed by Parvin, et al [6] and 

refined by Schmitt and Hasse [7] to incorporate an improved shaping function for more 

robust segmentation of touching nuclei in densely clustered regions.

The approach detects nuclei centers from incomplete or merged boundary information 

through voting and perceptual grouping. A series of cone-shaped kernels (Fig. 2) is applied 

that vote iteratively along the radial or tangential directions [6]. The iterative process refines 

the center of mass at each iteration and terminates after convergence to a focal response. 

At each iteration, for each location along the contour, the voting kernel is aligned along 

the maximum response in the voting space. The shape of the kernel is refined and focused 

within the iterative process, which we have improved for better noise immunity and to 

handle closely grouped nuclei. Fig. 3 shows evolution of the voting landscape V(i, j) and the 

resulting centers for a small group of nuclei.

5. Results and Discussion

We used 8 images for testing1, two per class: Benign Epithelium, Benign Stroma, Grade 

3 and Grade 4. Performance was evaluated by measuring the detection and localization 

accuracy of extracted nuclei centers compared to ground truth provided by histopathology 

experts. Fig. 4 shows a reduced resolution Grade 4 image, with initial regions from SCFCM 

1Histopathology imagery provided by Michael Feldman (Dept. of Surgical Pathology, Univ. of Pennsylvania) and ground truth from 
Anant Madabhushi (Rutgers).
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segmentation and the final four class segmentation using the multiphase vector Chan and 

Vese level-set algorithm. Once the cell nuclei regions are segmented their centers are 

estimated using the improved iterative voting scheme which also provides an accurate 

measure of tissue cell count. A number of more general nuclei or point matching statistics 

are measured to evaluate the quality of the automatically detected (DT) nuclei centers 

compared to the ground truth (GT). A one-to-one match is where each detected nucleus 

corresponds exactly to one ground truth point. A many-to-one match (ie fragmentation/

over-segmentation) means that multiple detected nuclei centers are close enough to be 

matched to one ground truth point (ie nuclei center). A one-to-many match (ie merge/under-

segmentation) is the opposite case where one detected center corresponds to multiple ground 

truth points often corresponding to a cluster. False negatives (FN) are missed nuclei. False 

detections or false positives (FP) are those detected centers which do not match to any 

nearby ground truth point. Table 1 shows the results for 8 images compared to the number 

and spatial distribution of nuclei in the ground truth (GT). The different error statistics are 

related as,

# (TP) = # (1 − to − 1) + # (Fragmented) + # (Merged clusters) (7)

# (GT) = # (1 − to − 1) + # (Many − to − 1) + # (1 − to − Many) + # (FN) (8)

Recall = # (TP)
# (GT) Precision = # (TP)

# (DT) (9)

Table 2 shows the overall performance using the quality measures Recall and Precision. 

Surprisingly, Grade 4 images have the best percentage of recall and precision even though 

they contain the largest number of epithelial nuclei compared to the other histological 

imagery.

6 Conclusions

We have developed a promising, fully automatic approach for segmenting and counting 

epithelial nuclei in histopathology imagery, one of the most difficult tasks for automated 

prostate gland cancer grading. It is interesting to note that the proposed algorithm performs 

best for the complex Grade 4 cases where the density and number of clustered nuclei 

in Grade 4 images is highest. This is likely due to the salient spectral color and distinct 

boundaries between epithelial nuclei and surrounding epithelial cytoplasm regions reflecting 

morphological changes in late stage cancer tissue. In future work we will incorporate an 

incremental learning process to achieve higher overall detection rates.
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Figure 1. 
A four-phase level set partitioning, with two level set functions φ1 and φ2, for segmenting 

a grey level image u0. c = (c00, c01, c10, c11) represents the average gray-level values for 

various phases. H(φ1) and H(φ2) are the Heaviside functions associated with the level set 

functions.
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Figure 2. 
Cone shaped kernel and the voting area A.
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Figure 3. 
Evolution of the voting landscape V(i, j) for a nucleus cluster image. (a) iteration=1, (b) 

iteration=5, (c) iteration=10, (d) nucleus contours (red) and centers (green) superimposed on 

the original image.
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Figure 4. 
Example of segmentation (a) original Grade 3 image (812 b s50 p1.tif) (b) initial 

segmentation with SCFCM (c) final segmentation using level sets.
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Table 2

Recall and precision rates for nuclei detection in different cancer grade images.

Category Recall Precision

Benign Epithelium 79% 91%

Benign Stroma 82% 61%

Grade 3 84% 77%

Grade 4 86% 90%
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