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Background: Accurate myocardial infarction (AMI) is one of the leading causes of mortality worldwide. 
N6-methyladenosine (m6A) modification plays an important role in the development of cardiac remodeling 
and the cardiomyocyte contractile function. The aim of this study is to analyze the m6A-related molecular 
biological mechanisms of AMI in terms of accurate diagnosis and prognosis.
Methods: The platform data and probe data of the GSE66360 data set were downloaded. The differential 
analysis was conducted by combining the m6A-related gene expression. Thereafter, a diagnostic model 
was established using the random-forest method. The diagnostic accuracy of the diagnostic models was 
assessed by using the area under the receiver operating characteristic (ROC) curve (AUC). Next, the patients 
with AMI were clustered by unsupervised machine learning using the R software. Finally, an immune cell 
clustering analysis for each cluster was conducted to determine the correlations between m6A-related gene 
expression and the infiltration amount of the immune cells. The case and control groups were not matched 
in terms of demographics.
Results: The GSE6636 data set comprised 99 participants (49 patients with AMI and 50 without in 
control group). The differential analysis identified 10 m6A-related genes: 5 writers [Methyltransferase-
like 3 (METTL3), Methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP), Zinc 
Finger CCCH-Type Containing 13 (ZC3H13), and Casitas B-lineage proto-oncogene like 1 (CBLL1)],  
4 readers [YT521-B homology domain-containing family 3 (YTHDF3), Fragile X mental retardation type 
1 (FMR1), YT521-B homology-domain-containing protein 1 (YTHDC1), and insulin-like growth factor 
binding protein 3 (IGFBP3)] and 1 eraser [fat mass and obesity associated (FTO) gene]. The Mean Decrease 
Gini (MDG) values of these 10 genes were greater than 2. The FTO, WTAP, YTHDC1, IGFBP3, and CBLL1 
were included in the model with a C index of 0.842. METTL3, ZC3H13, WTAP, and CBLL1 were highly 
expressed in Type A, and YTHDF3 was highly expressed in Type B. 
Conclusions: A diagnostic model of AMI was established based on the genes of FTO, WTAP, YTHDC1, 
IGFBP3, and CBLL1. Additionally, 2 molecular subtypes were successfully identified from the above-
mentioned gene. Our findings could provide a novel method for the accurate diagnosis of AMI.
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Introduction

According to the World Health Organization, cardiovascular 
disease has one of the highest mortality rates worldwide, 
and accounts for about 45% of all deaths worldwide (1). It 
is ranked first in terms of mortality in developing countries, 
such as China, and developed countries, such as European 
countries and the United States. Acute myocardial 
infarction (AMI) has been reported to account for half of 
all cardiovascular deaths (2,3). AMI is characterized by the 
rupture, ulceration, fissure, or erosion of atherosclerotic 
plaque, resulting in 1 or more intracoronary thrombi, 
which causes reduced myocardial blood flow and/or distal 
embolism and subsequent myocardial necrosis (4). The 
timely and correct diagnosis and early reperfusion are 
major factors affecting the prognosis and clinical outcome 
of AMI patients (5); however, in some AMI patients, 
the clog of the coronary artery cannot be observed via 
electrocardiogram or coronary angiography, which can 
lead to delayed or failed myocardial reperfusion, heart 
failure, malignant arrhythmias, myocardial reinfarction, 
and other major adverse cardiovascular events (6,7). Thus, 
early identification plays an important role in reducing the 
morbidity and mortality of AMI patients. 

The diagnosis of AMI is currently based on physical 
examination and ischemic symptoms, electrocardiographic 
examination (ECG), and circulating levels of cardiac 
troponins (cTns). However, the diagnostic value of cTns 
may be limited by modest increases in their levels in the 
first few hours from AMI onset, since slight rises may be 
associated with non-ischemic elevation due to concomitant 
conditions such as heart and kidney failure (8). One of 
the most promising novel diagnostic biomarkers for AMI 
is miRNA (9,10). Ribonucleic acid (RNA) methylation 
modifications account for >60% of all RNA modifications, 
and N6-methyladenosine (m6A), which was discovered in 
1974 (11), is the most prevalent modification of messenger 
RNAs (mRNAs) and long non-coding RNAs of higher 
organisms. Research has shown that m6A modifications 
occur in microRNAs, circular RNAs, ribosomal RNAs, 
transfer RNAs, and small nucleolar RNAs (12,13). M6A 
modifications mainly occur on adenines in  PRACH 
sequences (R=A or G, H=A, Cm or U) (14), and their 
dynamic reversible processes (15) affect the splicing, 
transcription, translation, and degradation of mRNAs, 
which in turn regulate mammalian cell differentiation, 
immunity and metabolism. The biological function of m6A 
modification is mainly regulated by a combination of m6A 

methyltransferases (writers), m6A demethylases (erasers), 
and methylation recognition proteins (readers) (16).

A previous study found that m6A methylation is 
widely involved in the development of various types 
of cardiovascular diseases and plays an important 
regulatory role in heart failure, myocardial hypertrophy, 
atherosclerosis, and ischemic cardiomyopathy (17). m6A 
modification, as a pivotal regulator of messenger RNA 
stability, protein expression, and cellular processes, exhibits 
important roles in the development of cardiac remodeling 
and cardiomyocyte contractile function (18). AMI leads 
to cell death, which promotes the immune inflammatory 
response. Immune cells play an important role in the 
occurrence and development of AMI (19,20). A study 
had been conducted on the mechanism and relationship 
between m6A and AMI (14); however, no previous study 
has examined molecular typing based on m6A-related 
gene expression. In this study, we established a model 
for the diagnosis of AMI with m6A-related genes using a 
machine-learning method, and also performed molecular 
typing based on m6A-related gene expression and immune 
cell differences between type A and type B AMI by using 
clustering analysis. Our findings could provide a basis for 
the timely diagnosis and personalized treatment of patients 
with AMI. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-22-569/rc).

Methods

Study design

This is a case-control study. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Participants 

The GSE66360 data set comprised a total of 99 patients 
(49 patients with AMI and 50 normal control subjects). 
The inclusion criteria of the study group included: 1) adult 
patients; and 2) diagnosed with AMI. 

Data source and preliminary processing

The platform data and probe data of the GSE66360 data 
set were downloaded from the Gene Expression Omnibus 
(GEO) database. The data were then organized by Perl 

https://jtd.amegroups.com/article/view/10.21037/jtd-22-569/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-22-569/rc
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software, and were subsequently analyzed by the R software 
with package “limma”. 

Differential analysis of m6A-related gene expression in the 
peripheral blood of the normal subjects and patients with 
AMI

Based on the literature, 26 m6A-related genes (comprising 
9 writers, 2 erasers, and 15 readers) were selected for this 
study (see Table 1). The expression data of the m6A-related 
genes were extracted by the R software limma package, 

and a differential gene expression analysis was conducted 
to compare the m6A-related genes in normal patients 
to those of patients with AMI. A |logFC| value >1, and 
a P<0.05 were considered statistically significant. The 
results were visualized by the pheat and ggplot2 packages. 
The chromosomal location of the m6A-related genes was 
depicted in circle diagram.

Establishment of a diagnostic model of AMI based on the 
expression of the m6A-related genes

Random forest and support vector machine (SVM) are 
two common machine-learning methods for screening 
key factors. Random forest is an algorithm that integrates 
multiple trees through the idea of integrated learning. 
The basic unit of integrated learning is decision tree. It 
belongs to a major branch of machine learning; that is, the 
ensemble-learning method (21), which is also a method 
that is often used for omics analyses and to screen c 
haracteristics (22). SVM is a generalized linear classifier 
that performs the binary classification of data according 
to supervised learning, and its decision boundary is the 
maximum-margin hyperplane that solves the learning 
sample (23). SVM was also an early machine-learning 
method used in feature screening.

To obtain more accurate results, 2 models were calculated 
based on the m6A-related differentially expressed genes 
(DEGs). The superiority of the models was determined 
depending on the residual error, the reverse cumulative 
distribution of the residual error, and the area under the 
receiver operating characteristic (ROC) curve (AUC) (24). 
After the model was established, an importance distribution 
of the genes, a nomogram, a calibration plot, and a decision 
curve analysis (DCA) were visualized based on the results. 
The importance of the screened genes was evaluated, 
and the mean decrease in Mean Decrease Gini (MDG) 
was determined. The higher the value, the greater the 
importance of the gene in the model; a score >2 was used as 
the threshold for screening in this study.

Molecular typing based on the expression of m6A-related 
genes

“ConsensusClusterPlus”, which is usually used to determine 
the optimal number of K clusters for a data set, was used for 
the consensus clustering. The rationality of the consensus 
clustering was determined by a re-sampling–based approach 
for assessing the stability of the clusters (25). In this study, 

Table 1 The 26 m6A-related genes

Gene Type

METTL3 Writers

METTL14 Writers

METTL16 Writers

WTAP Writers

VIRMA Writers

ZC3H13 Writers

RBM15 Writers

RBM15B Writers

CBLL1 Writers

YTHDC1 Readers

YTHDC2 Readers

YTHDF1 Readers

YTHDF2 Readers

YTHDF3 Readers

HNRNPC Readers

FMR1 Readers

LRPPRC Readers

HNRNPA2B1 Readers

IGFBP1 Readers

IGFBP2 Readers

IGFBP3 Readers

RBMX Readers

ELAVL1 Readers

IGF2BP1 Readers

FTO Erasers

ALKBH5 Erasers
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the conditions for clustering were as follows: maxK =9, reps 
=50, pItem =0.8, pFeature =1, clusterAlg = “pam”, seed 
=123456, and distance = “Euclidean” The optimal number 
of clusters was selected according to the heatmap of the 
consistency matrix after typing, the cumulative distribution 
function (CDF) of agreement, and the Delta plot judgment, 
and the values of the consistency matrix were expressed 
from white to dark blue, and ranged from 0 (impossible to 
cluster together) to 1 (always clustered together).

The consistency matrix was arranged according to the 
consistency classification (the tree above the heat map). 
The long bar between the tree diagram and the heat map 
was the category. The consistency cumulative distribution 
function plot indicated the cumulative distribution function 
when K takes different values, which was used to determine 
what value K takes when the CDF reaches an approximate 
maximum, when the clustering analysis results are the most 
reliable. The relative change of the area under the CDF de-
line compared to k and k-1 is shown in the Delta area plot. 
The AUC increased slightly with the increase of K value 
of 1 score, and the value of K is the most appropriate (25). 
The DEGs associated with the diagnosis that had been 
obtained in the previous step were subjected to a principal 
component analysis (PCA) to construct the m6a-related 
gene markers. The m6a-related gene markers were also 
analyzed for each patient with AMI (i.e., a m6A score was 
calculated) (26).

Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were conducted for the 
DEGs of the two types to observe the functions or pathways 
in which the DEGs were enriched. The GO annotation 
included the cellular components (CCs), molecular 
functions (MFs), and biological processes (BPs). The 
condition for enrichment was a q value filter <0.05.

Correlation between m6A-related gene expression 
molecular typing and immune cells

A single-sample gene set enrichment analysis (ssGSEA) is a 
special type of analyses that combined the immune.gmt data 
set with the “single sample gene set enrichment analysis 
(ssGSEA)” method and “Gaussian Discriminant Analysis 
(GDA)” to calculate the score of each sample (27). Using 
this approach, the degree of immune cell infiltration in each 
sample was determined, and the correlations between m6A-
related gene expression and the infiltration amount of the 
immune cells were determined.

Statistical analysis

The diagnostic performance of the genes was assessed 
using area under the receiver operating characteristic 
(ROC) curve (AUC). The distribution of the differentially 
expressed genes was shown by heatmap and volcano map. 
A two-tailed P value <0.05 was considered as statistical 
significance. All the statistical analyses were performed by 
using R software (Version 4.1.1). 

Results

Comparison of the differential expression analysis of the 
m6A-related genes in the peripheral blood between the 
patients with AMI and control group

The GSE6636 data set, which comprised 99 study subjects 
(49 patients with AMI and 50 normal control subjects), was 
downloaded from the GEO database. A flow chart of the 
study is shown in Figure 1. The DEG analysis identified 
the following 10 m6A-related genes by comparing the 
peripheral blood of the patients with AMI to that of the 
normal control subjects: 5 writers [Methyltransferase-like 3 
(METTL3), Methyltransferase-like 14 (METTL14), Wilms 
tumor 1-associated protein (WTAP), Zinc Finger CCCH-
Type Containing 13 (ZC3H13), and Casitas B-lineage 
proto-oncogene like 1 (CBLL1)], 4 readers [YT521-B 
homology domain-containing family 3 (YTHDF3), Fragile 
X mental retardation type 1 (FMR1), YT521-B homology-
domain-containing protein 1 (YTHDC1), and insulin-like 
growth factor binding protein 3 (IGFBP3)] and 1 eraser [fat 
mass and obesity associated (FTO) gene]. The results are 
shown in Figure 2A,2B. As the circle diagram (see Figure 2C)  
shows, the m6A genes associated with AMI were mainly 
distributed on Chromosomes 4, 6, 13, 14, 16, 17, and X.

Establishment of the diagnostic model for AMI expressed 
by m6A-associated genes

The random-forest and SVM regression screening features 
were selected to build the model in this study. Based on 
the residual plot (see Figure 3A), the reverse cumulative 
distributions of the residuals (see Figure 3B), and the AUCs 
(the AUC of the model established by SVM was 0.918, and 
that of the model established by the random-forest method 
was 1.000) (see Figure 3C), the random-forest method was 
finally selected as the method for the establishment of the 
diagnostic model. In the random-forest model, which was 
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GEO databases (GSE66360) were downloaded 

Expression difference analysis

RF or SVM regression

Standardize and merged with R 
package “limma” and “Sva”

Development of diagnostic model Clustering with consensus cluster plus 
based on m6A related gene list 

Immune cell infiltration and 
ssGSEA analysis with 
CIBERSORT and immune. gmt

GO, KEGG enrichment 
analysis

Visualization of model results: 
nomogram, calibration, DCA curve

Figure 1 Flow chart of the study. GEO, Gene Expression Omnibus; RF, random forest; SVM, support vector machine; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DCA, Decision Curve Analysis.

established by selecting 135 trees with the MDG values of 
genes (see Figure 4A), 10 genes had MDG values >2. After 
considering many gene variables, the highest 5 genes (i.e., 
FTO, WTAP, YTHDC1, IGFBP3, and CBLL1) were selected 
for inclusion in the model. The model results are shown 
in Table 2. After the C-index was calculated as 0.842, the 
calibration (Figure 4B), nomogram (Figure 4C), and DCA 
curve (Figure 4D) showed the good fit of the model. The 
forest-tree diagram and clinical impact map are shown in 
Figure S1.

Results of molecular typing of patients with AMI based on 
m6A-related gene expression

C l u s t e r s  1 – 9  w e r e  a n a l y z e d  b y  t h e  R  p a c k a g e 
“ConsensusClusterPlus”. The patients with AMI were 
divided into two subtypes by clustered heatmap (see  
Figure S2), CDF plot, and Delta area plot (see Figure S2) 
selection; 29 patients had Type A AMI, and 20 patients had 
Type B AMI (see Figure 5A). The PCA analysis showed 
that Type A and Type B AMI were well differentiated (see  
Figure 5B). The m6A-related genes were expressed in Type 
A and Type B (see Figure 5C,5D). Specifically, METTL3, 
ZC3H13, WTAP, and CBLL1 were highly expressed in 
Type A AMI, and YTHDF3 was highly expressed in Type 
B AMI. The differential gene GO annotation and the 
KEGG pathway analyses of Type A and Type B AMI 
showed that the BPs mainly included heart morphogenesis, 
the regulation of neuron differentiation, the regulation 

of the receptor signaling pathway via Janus Kinase-signal 
transducer and activator of transcription (JAK-STAT), the 
CCs mainly included the endoplasmic reticulum lumen, 
the intrinsic component of postsynaptic specialization, and 
germ plasm, and the MFs mainly included the germ plasm, 
signaling receptor activator activity, and receptor ligand 
activity (see Figure 5E,5F). The pathway mainly included 
the Herpes simplex virus 1 infection.

Results of the immune cell infiltration analysis based on 
molecular typing

The results of the ssGEEA analysis demonstrated that 
activated B cells, activated CD8+Tcells, CD56dim natural 
killer cells, immature B cells, myeloid-derived suppressor 
cells (MDSCs), Type 1 T helper cells, and Type 17 T helper 
cells had a higher proportion of infiltration in Type A AMI 
than in Type B (see Figure 6A). Further, METTL3, CBLL1, 
and YTHDF3 were positively correlated with immune cell 
infiltration (see Figure 6B), and the correlation was >0.4. 
A further analysis of the 3 genes of METTL3, CBLL1, and 
YTHDF3 in the high- and low-expression groups of the 
infiltration of immune cells (see Figure 6C-6E) showed that 
activated dendritic cells, eosinophils, gamma delta T cells, 
immature B cells, MDSCs, macrophages, plasmacytoid 
dendritic cells, and regulatory T cells were highly infiltrated 
in the YTHDF3 high-expression group. Additionally, 
activated B cells, activated CD4 T cells, activated CD8 T 
cells, CD56dim natural killer cells, immature B cells, Type 

https://cdn.amegroups.cn/static/public/JTD-22-569-supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-22-569-supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-22-569-supplementary.pdf
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Figure 2 Difference of m6A-related gene expression in the peripheral blood of normal subjects and patients with AMI. (A) Expression of 
m6A-related genes in the two groups; (B) Heatmap of differentially expressed genes; (C) Circle diagram of m6A-related genes. *, P<0.05; **, 
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1 T helper cells, and Type 17 T helper cells were highly 
infiltrated in the CBLL1 high-expression group, while 
activated B cells, activated CD8 T cells, CD56dim natural 
killer cells, B cells, immature dendritic cells, MDSCs, Type 
1 T helper cells, and Type 17 T helper cells were highly 
infiltrated in the METTL3 high-expression group.

Discussion

In this study, the m6A-related genes were analyzed using 
a random-forest approach to establish a model for the 
diagnosis of AMI, for which the C index was 0.842. The 
calibration and DCA plots also showed the very good fit of 
the model. Similar to previous findings (18,28), the model 
showed that methylation was an important molecular 

change in the development of AMI. Under the model, 
the 5 most important genes were FTO, WTAP, YTHDC1, 
IGFBP3, and CBLL1. Further, we found that under a 
hypoxic environment, the decreased expression of FTO and 
demethylation activity led to increased m6A in RNA, and 
reduced the contraction of hypoxic cardiomyocytes, which 
in turn caused heart failure (29). WTAP (30), a component 
of methyltransferase, promoted endoplasmic reticulum 
stress and apoptosis by regulating the m6A modification of 
ATF4 mRNA, which in turn promoted myocardial injury. 
The YTHDC1YTH domain can recognize and bind to the 
m6A site in RNA, accelerate mRNA nuclear export, and 
promote the decay of specific transcripts (31). Long-term 
hypoxia enhanced IGFBP3 protein synthesis and induced 
its secretion. The accumulated IGFBP3 sequestered Insulin 
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growth factor 1 (IGF-1) away from the type I IGF receptor 
(IGF-1 R), which blocked the IGF1R/PI3K/Akt survival 
signaling pathway, resulting in cell apoptosis (32).

In the clustering analysis, 49 patients with AMI were 
successfully divided into two subtypes. The m6A-related 
gene expression and immune cell infiltration differed 
significantly between the two subtypes. Notably, the m6A-
related genes were generally more highly expressed in Type 
A AMI than Type B AMI, and immune cell infiltration 
was also more frequent in Type A AMI. The correlation 
between m6A modification and immune cell infiltration 
has also been studied in tumors (33,34). The present study 
showed that m6A modification was related to high immune 

cell infiltration and a poor prognosis. In a study by Yi  
et al. (35), the degree of infiltration of B cells, CD4+ T cells, 
and CD8+ T cells was negatively correlated with the risk 
score and positively correlated with the level of neutrophil, 
macrophage, and dendritic cell infiltration (P<0.001), which 
were in accordance with the results of our present study. 

The correlation between the immune cell infiltration 
and 3 genes (i.e., METTL3, CBLL1, and YTHDF3) was 
around 0.6. However, few studies have been conducted 
on non-neoplastic diseases, and AMI have only recently 
received attention. For example, a study by Dubey et al. (36)  
reported that lipopolysaccharide leads to an increase in 
m6A RNA methylation and a corresponding decrease in 
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Figure 4 Visualization of the diagnostic model of AMI established by the random-forest method. (A) Genes with a MDG value >2; (B) the 
calibration curve of the model; (C) the nomogram of the model; (D) DCA of the model. AMI, acute myocardial infarction; MDG, Mean 
Decrease Gini; DCA, Decision Curve Analysis.

Table 2 Results of a diagnostic model for random forests

Genes Coefficient 95% confidence interval of coefficient P

Intercept –28.48 –44.16 to –12.81 0.0004

FTO –0.69 –1.27 to –0.11 0.0204

WTAP 1.78 0.54 to 3.02 0.0049

YTHDC1 1.69 0.34 to 3.05 0.0142

IGFBP3 0.95 0.32 to 1.59 0.0033

CBLL1 –0.04 –0.49 to 0.42 0.8754
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Figure 5 The results of 2 clusters of patients with AMI. (A) PCA analysis of the 2 clusters (the number 1–2 in the figure represent cluster 1–2); 
(B) expression of m6A-related genes in the 2 clusters; (C) comparison of m6A-related gene expression in the 2 clusters; (D) GO annotation 
of differential genes between the 2 clusters; (E) KEGG analysis of the differential genes between the 2 clusters (the number 0–40 represent 
the number of genes); (F) KEGG analysis of differential genes between the two clusters (the number 0–60 in the figure represent the 
number of genes). *, P<0.05; **, P<0.01; ***, P<0.001. AMI, acute myocardial infarction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia 
of Genes and Genomes; PCA, principal component analysis. 
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Figure 6 Analysis of immune cell infiltration in the 2 clusters of patients with AMI. (A) Comparison of immunocyte abundance in the  
2 clusters; (B) the relationship between immunocyte abundance and the m6A-related genes; (C) comparison of immunocyte abundance in 
the YTHDF3 high- and low-expression groups; (D) comparison of immunocyte abundance in the CBLL1 high- and low-expression groups; 
(E) comparison of immunocyte abundance in the METTL3 high- and low-expression groups. *, P<0.05; **, P<0.01; ***, P<0.001. AMI, 
acute myocardial infarction.
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FTO expression in mouse myocardium, which may promote 
myocardial inflammatory cytokine and immune system 
responses (37). Immune cells play an important role in 
the pathogenesis of myocardial infarction; for example, 
MDSCs (38) may play a beneficial and protective role 
in the process of ventricular remodeling after AMI by 
inhibiting the local inflammatory response and apoptosis 
mediated by inflammation. T cells are key regulators of the 
immune response in the development of many diseases (39),  
and T cell-mediated pathogenic immune responses play an 
important role in the inflammatory process of atherogenesis, 
which may contribute to plaque instability in patients with 
acute coronary syndromes (40).

The study was limited by the small number of cases in 
the selected data set. We had retrieved potential relevant 
data with larger sample size in the GEO database, but 
could not find eligible data regarding molecular types. In 
the development of bioinformatics, abundant bioinformatic 
analyses on tumors have been conducted. However, the 
relationship between m6A and common non-tumor 
diseases with very high mortality pathways and myocardial 
infarction diseases was established and satisfactory results 
were obtained.

In conclusion, a diagnostic model of AMI was established 
based on m6A-related gene expression. Additionally, 2 
molecular subtypes were successfully identified, and the 
immune cell infiltration of each type was analyzed in this 
study. Our findings identified a novel biomarker for the 
accurate diagnosis of AMI and provide a theoretical basis 
for the personalized treatment of patients.
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