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Abstract

For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, 

and restore healthy functioning of nearly every physiological system of the human body. 

With advancing understanding of the complexity of human physiology, continually evolving 

methodological possibilities, and an increasingly dire public health situation, the study of 

exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more 

impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical 

Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially 

upon the existing understanding of the mechanisms underlying benefits associated with exercise. 

Thus, we present a comprehensive body of the knowledge detailing the current literature basis 

surrounding the molecular adaptations to exercise in humans to provide a view of the state of 

the field at this critical juncture, as well as a resource for scientists bringing external expertise to 

the field of exercise physiology. In reviewing current literature related to molecular and cellular 
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processes underlying exercise-induced benefits and adaptations, we also draw attention to existing 

knowledge gaps warranting continued research effort.

Introduction

To date, regular physical activity (bodily movement which results in energy expenditure) is 

one of the most efficacious methods of improving and maintaining human health. Physical 

activity impacts a wide variety of physiological systems and improves health and health-

related quality of life across a wide variety of clinical conditions. In particular, physical 

exercise [a subset of physical activity that is planned, structured, repetitive, and performed 

with the intent to improve health or fitness (301)] demonstrates the greatest benefits; these 

often present in a linear, dose-dependent fashion (1396). The health benefits of physical 

exercise are wide-ranging, impacting numerous physiological systems and influencing 

the progression of chronic conditions including (but not limited to) cardiovascular 

disease (CVD), neurocognitive decline, psychological disorders, musculoskeletal disorders, 

metabolic syndrome, type 2 diabetes (T2D), some forms of cancer, and all-cause mortality 

(968, 1342). Thus, it is well-established that exercise is a powerful intervention to improve 

various aspects of health throughout the lifespan.

Despite the tremendous health value of exercise, several challenges persist in harnessing 

the full potential of exercise as a therapeutic for the individual and in reducing healthcare-

related costs at the societal level. Unfortunately, only a minority of individuals meet 

minimum guidelines for exercise participation in the United States and in developed 

countries worldwide (1056, 1333). Compounding this problem, a significant portion of 

individuals do not even receive basic exercise/physical activity recommendations from their 

healthcare provider(s) (572, 940), despite increasing evidence that inactivity and physical 

deconditioning should be considered as a unique risk factor in medical decision making 

(657, 776). Given these issues, implementation of successes from exercise clinical trials into 

clinical practice and community programs has remained largely elusive.

In addition to focusing efforts on increasing adherence/implementation, a significant 

opportunity exists to understand how exercise improves health (74). While it is known 

that exercise impacts a vast array of physiological functions and pathobiological risks, many 

questions remain regarding the cellular and molecular mechanisms driving these effects. A 

pharmaceutical that fully mimics the wide-ranging benefits of exercise across physiological 

health and other domains of wellness is unlikely to exist (248, 483, 536, 1397). Still, because 

of its multipotent effects on the body’s organ systems, exercise has been proposed by several 

investigators as a “polypill” for improving health (406, 1006, 1442). As outlined previously 

(74), opportunities surrounding an enhanced understanding of the mechanisms underlying 

the health benefits of exercise may lead to improving exercise prescriptions based on 

individual characteristics that influence the extent of exercise adaptations (i.e., “exercise 

responsiveness”), optimization of exercise as a therapy, and development or repurposing 

of adjuvant pharmaceuticals to enhance exercise tolerance in the presence of a comorbid 

condition.
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In view of these expansive opportunities, the National Institutes of Health (NIH), via 

the NIH Director’s Common Fund, recently funded a landmark study known as the 

Molecular Transducers of Physical Activity Consortium (MoTrPAC) (1146). The stated 

aim of MoTrPAC is to: “catalogue the biological molecules affected by exercise in people, 

to assemble a comprehensive map of the molecular changes that occur in response to 

movement and, when possible, relate these changes to the benefits of physical activity. This 

molecular map will contain the many molecular signals that transmit the health effects of 

physical activity, and indicate how they are altered by age, sex, body composition, fitness 

level, and exposure to exercise. The program also aims to develop a user-friendly database 

that any researcher can access to develop hypotheses regarding the mechanisms whereby 

physical activity improves or preserves health, facilitating investigator-initiated studies and 

catalyzing the field of physical activity research (1146).” The MoTrPAC study is expected 

to generate an abundance of new data related to the fundamental molecular biology of 

human physiologic responses to exercise in several body tissues. Still, this endeavor is only 

getting underway; thus meaningful outputs of the study remain years away. The objectives 

of the present article are thus to assemble a compendium of the current state of knowledge 

surrounding the biological responses and adaptations to exercise in humans, to provide 

a comprehensive contextual resource for newcomers to the field, and to outline potential 

opportunities for advancing the field in the decades to come.

A Brief History of the Field

Exercise as ancient medicine

The history of exercise physiology overlaps considerably with that of human medicine. 

In a recent review of the contributions of ancient civilizations to the American College 

of Sports Medicine’s ongoing “Exercise is Medicine” initiative (1312), Charles Tipton 

(a recognized leader in the field of exercise physiology) stated that physicians in many 

early civilizations prescribed exercise, believing that it could promote health and avoid 

diseases. This belief is thought to date back nearly 3000 years BCE. Evidence suggests that 

“medical gymnastic” breathing exercises were often prescribed in China during this period 

(1312). In approximately 7th century BCE, ancient Indian physician Susruta declared that 

exercise “should be taken daily,” depending on the health and state of the individual (1313). 

Interestingly, even in these early days, excessive exercise was warned against, for fear of 

exhaustion or even death (1312). Nonetheless, the fact that bodily movement was touted as 

prevention for disease and promotion of healthy aging across geographies and ethnic groups 

demonstrates the fundamental human “drive to move.” Thus it is not surprising, as later 

philosophers famously noted, that disease follows when this drive is resisted or ignored.

Historians seem to agree that the ancient Greek and Roman civilizations contributed most 

significantly to the foundation of the field. Herodicus (ca. 500 BCE) is often called the 

“Father of Sports Medicine” for his approach to integrate physical fitness (e.g., Greek 

gymnasiums) with medicine (116, 455). Hippocrates (460–370 BCE), a contested student 

of Herodicus, continued this practice and is credited with composing a detailed exercise 

prescription to aid a diseased patient. Ultimately, Galen (130–210 CE), a Greek physician 

who lived in the Roman Empire, drew from the teachings of his forebears and created a 
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lasting impact on the world’s culture by imprinting exercise into prescription for numerous 

diseases (116). He described the “naturals” (healthy bodily processes), “nonnaturals” 

(external stimuli such as activity and diet that bring peace and health), and the “contra-

naturals” that disrupt them. Galen also distinguished exercise from movement in general by 

its vigorous nature requiring noticeable exertion, a critical distinction relevant to describing 

and prescribing exercise versus general physical activity guidelines. Galen’s influence is 

believed to have lasted at least 14 centuries (1312).

The Renaissance

Medical advancements throughout the Renaissance period (sometimes called the Scientific 

Revolution) greatly enhanced the understanding of human health. In 1543, Andreas Vesalius 

published the first human anatomy text, De Humani Corpus Fabrica. This text, along with 

Vesalius’ other contributions, is credited with revolutionizing the medical community’s 

understanding of cardiovascular, neural, and musculoskeletal anatomy (152, 887, 936). His 

unique approaches to dissection, comparative anatomy, and pedagogy (1196) earned him 

the moniker “Father of Modern Anatomy” and are believed to have been pivotal in surgical 

practice (1349). Shortly thereafter, Santorio Santorio (1561–1636), his name often written 

as variations on this theme, studied the basics of human metabolism (364). He famously 

constructed a life-size balance and tracked changes in his body mass with perturbations 

brought on by daily living (291). Through this work, Santorio laid the foundation for studies 

of metabolism, nutrition, and dietetics, and he further contributed to exercise physiology 

through his documentation of perspiration (291). The Scientific Revolution period also saw 

William Harvey publish insights into the mechanics of the human circulatory system in 

1628’s De Motu Cordis (1009, 1170) and Antonie van Leeuwenhoek’s invention of the 

microscope, allowing observation of fine microstructures [most pertinently to exercise, the 

sarcolemma and striations of whale skeletal muscle fibers (1087)]; thus new knowledge 

began to advance the teachings of Galen and the ancient world.

Enormous contributions to the field came from Antoine Lavoisier (1743–1794), a 

Frenchman recognized as the Father of Modern Chemistry and Combustion. Lavoisier is 

partially credited with the discovery of oxygen, an element he termed “oxigene,” along with 

his contemporaries Joseph Priestly and William Scheele (1182, 1183). He also designed 

the first proper calorimeter in 1784, which he put to good use the next decade in what is 

considered the first true exercise physiology experiment (672). Tracking consumption of 

oxygen, Lavoisier demonstrated a sizable (more than tripled) increase in resting respiration 

when a subject continually pressed a foot pedal (1416). His wife reportedly observed, 

sketched (Figure 1), and took notes on all experiments, aiding in Lavoisier’s rise to 

prominence as an innovative scientist (1416). Unfortunately, since his research violated 

(much less debunked) the prevailing phlogiston theory (based on a concept that toxic gas 

was expelled rather than life-giving oxygen inhaled), Lavoisier was executed as the French 

Revolution raged on in 1794.

The golden age of discovery

Spurred on by recently acquired knowledge, researchers in the 1800s continued to progress 

down the path toward establishing exercise physiology as a distinct discipline, then referred 
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to as physical education, hygiene, or bodily exercise. Physiologist Claude Bernard (1813–

1878) led the way, with his discoveries related to digestion, metabolism, circulation, and the 

nervous system engendering the concept of “le milieu intérieur,” or internal environment 

that all bodily systems strive to maintain despite constant fluctuations in the external 

environment (269). This idea eventually developed into the concept of homeostasis, now 

a central tenet of exercise physiology. Bernard called particular attention to the nervous 

system as the central regulator of the interior milieu.

Concurrently, knowledge of the workings of the cardiovascular system was improved with 

Adolph Fick’s application of physic principles to cardiac dynamics, enabling a better 

understanding of gas exchange and, eventually, the measurement of cardiac output (1186). 

Fick’s observation that, if the amount and concentration of a substance carried in blood 

are known, the volume of blood can be calculated (1346) is aptly applied to exercise 

physiology in an equation linking oxygen uptake to the product of cardiac output and the 

arteriovenous oxygen difference, that is, = oxygen consumption (Vo2) = cardiac output 

(Q) ÷ arteriovenous oxygen difference (a–vo2). Further insight came from studies in 

energy expenditure conducted by chemist Wilbur O. Atwater and physicist Edward B. 

Rosa. Through his career, Atwater (1844–1907) conducted hundreds of studies related to 

metabolism (some at rest, others during cycling exercise), famously running a calorimeter 

continuously for days with lab staff rotating through the role of test subject. Atwater’s work 

in combustion help determines the caloric value of macronutrients, with clear implications 

for exercise metabolism and sports nutrition (193). This series of breakthroughs highlight 

the integrative nature of exercise as an activity involving multiple body systems. Thus it is 

not surprising that, even today, we continue to identify mechanisms of cross talk between 

body tissues in response to exercise.

Work physiology in the early 20th century

The turn of the century brought on an era of interest in human performance and resilience, 

and several notable researchers rose to prominence during this time. For example, John 

Scott Haldane (1860–1936) examined conditions that challenge the limits of respiratory 

physiology (e.g., altitude, deep diving, air composition of sewers and mines) (1417). 

Haldane is likely best known for developing an apparatus to quantify gas exchange (513). 

Decades later, the device would be optimized by Per Scholander (1164) and others (1187), 

providing more efficient measurement, greater portability, and overall increased accuracy in 

assessing metabolic processes.

Great strides were made during this time in the Scandinavian region, with the charge led by 

August Krogh (1874–1949), sometimes considered the Father of Exercise Physiology (61). 

Trained in zoology and physics in Denmark, Krogh imbued his work in human physiology 

with this knowledge, which allowed him a unique perspective on existing and arising 

scientific problems. This, in combination with his skills in “visual thinking” (1093) enabled 

him to design and build innovative tools to facilitate research, including a microtonometer 

(806), a magnetically braked cycle ergometer, and a balance impressively precise enough 

to detect changes in body mass down to approximately 2 g (1093). During his training 

and later career, Krogh worked closely with his wife Marie in the study of respiration 
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and oxygen dynamics (605, 1163). Together they published a series of papers entitled the 

“Seven Little Devils,” so named because they refuted the mechanism of active gas exchange 

proposed by Krogh’s mentor, Christian Bohr (464). Namely, the Kroghs demonstrated that 

simple diffusion was responsible for gas exchange by optimizing the measurement of partial 

pressure of oxygen in the alveolar air and arterial blood. Marie went on to elaborate on the 

plasticity of this system during periods of high demand (e.g., muscular work and/or low 

oxygen availability) to earn her doctoral degree in 1914 (1163), while August continued 

to study the mechanics of oxygen delivery and earned 1920s Nobel Prize in Physiology 

or Medicine after elegantly demonstrating that muscle capillaries open and close based on 

tissue needs, that is, capillary recruitment (1093). Krogh himself trained a number of notable 

individuals that shaped the Scandinavian future of exercise physiology, including a trio of 

motivated individuals he nicknamed “The Three Musketeers” (1214), which included Erik 

Hohwü Christensen, Marius Nielsen, and Erling Asmussen. Krogh’s profound influence led 

to an Institute at the University of Copenhagen dedicated in his name in 1970 (1214).

Exercise physiology as a so-named discipline had still not yet taken shape, but textbooks 

such as the Physiology of Bodily Exercise and the Physiology of Muscular Work had 

begun to be published and would receive repeated revisions in their subsequent iterations. 

A notable contributor during this period was Archibald Vivian (A.V.) Hill (1886–1977), a 

so-called “giant” in the field of exercise physiology (94). Hill specialized in skeletal muscle 

thermodynamics, mechanics, and metabolism, laying the groundwork for understanding 

the various biochemical energy systems and setting into motion a “Revolution in Muscle 

Physiology” (565). Hill’s collaborative work in muscle heat production with biochemist Otto 

Meyerhof earned the Nobel Prize in 1922 (94). Hill is also credited with the concept of 

maximal oxygen consumption (Vo2max) as a plateau in oxygen uptake despite increased 

workload (95). This measurement went on to be not only a robust correlate of endurance 

performance but the most powerful independent predictor of frailty and mortality (954), 

further linking exercise capacity to human health.

Biographers of Hill consistently comment on his light-hearted nature and enjoyable 

approach to his work. He famously made bold conjectures (731) and even “challenges” 

to the field (567), appreciating that scientific hypotheses are made to be disproven to 

lead to breakthroughs (94). Hill himself conceded, when questioned why he bothered 

studying athletes, exercise, and muscles, that the work was “amusing” (94). Pursuing his 

amusement, Hill set into motion the field of applied exercise physiology. In this realm, Hill 

enjoyed studying athletes because he viewed them as exemplars of the limits of human 

performance and could repeat their performances with consistency. His conjecture that 

exercise physiology, due to its integrative, complex, and fascinating nature, might recruit 

bright minds from other disciplines (94, 409) has proven itself time and again as the field 

enters the era of interdisciplinary team science.

The study of athletes was further expanded by the legendary Harvard Fatigue Laboratory 

(HFL), which set out to build a fundamental understanding of physiological stresses endured 

by industrial workers and army soldiers (409). During their two-decade tenure in the 

basement of Harvard University’s Business School, the HFL team generated over 300 

scientific publications (650, 1314), including series entitled “Blood as a Physicochemical 
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System” and “Studies in Muscular Activity”. The HFL was founded in 1927 by Lawrence 

J. Henderson and led by David Bruce Dill, who served as director of research. Initially 

assembled to elucidate the mechanisms underlying fatigue in the industrial worker, the HFL 

team quickly came to appreciate that no population better demonstrated fatigue exposure 

and resilience than athletes (1157). They took advantage of their location, studying blood 

gas composition and hemodynamics in Boston marathon runners, such as seven-time victor 

Clarence DeMar.

As American culture changed and World War II loomed, the HFL focus shifted from 

industry to military physiology, necessitating examination of various environmental 

challenges. The facilities enabled the research team to reproduce these with chambers 

designed to simulate high altitude and extreme cold and heat (409), supplemented by 

field research projects such as desert walks, altitude exposure, and artic simulations. HFL 

researchers established the precedent of subjecting themselves to many of their experiments 

(in fact, with relatively little effort, it is possible to discern which members of the HFL staff 

participated as subjects, since many publications include individual subject initials in data 

tables). The advantages of this practice were several (among them convenience of access 

and demonstration of feasibility/fairness of protocols), but, most importantly, this practice 

allowed the HFL to create a consistent and robust database for internal validation of repeated 

measurements and comparisons across conditions (650).

Upon its dissolution in 1947, the HFL propelled its staff into leadership positions across the 

United States, and they continued to be productive researchers and mentors. Some estimate 

that most American exercise physiology laboratories can “trace their lineage to the Fatigue 

Lab in only two or three academic generations” (650). Fittingly, the HFL’s reputation is held 

in high esteem, its scientific prowess bolstered by legends of treadmill-running laboratory 

dogs (650) and the infamous 40-40-40 Club, membership in which was reserved for those 

who could tolerate the extreme challenges of −40 °C, 40,000 ft, and walking 40 miles in 12 

h (107, 650).

The modern era

The 1950s brought Watson and Crick’s discovery of the chemical structure of DNA, the 

establishment of the American College of Sports Medicine, and Roger Bannister’s record-

setting mile under four minutes. The field was poised to take advantage of all three, with 

renewed interest in human health and performance and a scientific direction toward a 

Molecular Revolution that continues to advance. Skeletal muscle in particular began to 

receive notable attention (516). Hugh E. Huxley’s sliding filament theory, published in 1954 

(616), provided a mechanical perspective on the workings of contractile elements actin and 

myosin in skeletal muscle (1408). Not long after, Johannes Bergström introduced the muscle 

biopsy technique to extract muscle tissue from living individuals (112), enabling much of 

the field’s foundation in mechanisms of exercise adaptations. This contribution allowed 

our understanding to extend beyond more accessible tissues such as blood and has been 

optimized (279, 378) and enriched over time with the growing appreciation for the various 

roles of skeletal muscle in metabolism and signaling.
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A frontrunner in the studies of muscle biology was Bengt Saltin (1935–2014), a trainee 

of one of August Krogh’s Musketeers, Erik Hohwü-Christensen (1156). Throughout his 

career, Saltin examined human performance, adaptations to training, and maladaptations to 

unloading in the context of the cardiovascular and skeletal muscle systems. He was notably 

interested in the mechanisms underlying such phenomena (including, but not limited to, 

skeletal muscle fiber type composition and selective use of energy pathways), many of 

which remain relevant in today’s research landscape (658). Saltin served as head of the 

Copenhagen Muscle Research Center (CMRC), established with funds to encourage Danish 

leadership in international collaboration and aimed to understand mechanisms of skeletal 

muscle physiology. Due to funding restrictions in Denmark, it did not last more than a 

decade (1994–2004), but it has left a lasting impact on the field. Studies during its heyday 

and in the years that followed truly blended exercise physiology with medicine (660), 

realizing the ideals of early historians and physicians such as Susruta and Hippocrates. For 

instance, a team of CMRC alumni, led by Bente Pedersen, coined the term “myokines” after 

identifying that muscle-derived IL-6 was upregulated and secreted during contractile activity 

and had notable interactions with other tissues to influence glucose metabolism (1020).

Several visiting scholars from the U.S. collaborated with the CMRC, including David 

Costill and Phil Gollnick (78, 1156). Costill is credited with popularizing the Bergström 

muscle biopsy technique in the U.S., applying it to the investigation of metabolism during 

aerobic exercise (280). The lay articles that accompanied his scientific publications made 

performance- and health-related research accessible to nonacademicians and helped to 

endorse the American Running Boom of the early 1970s. Gollnick took a basic science 

approach to the mechanisms underlying exercise, supplementing human work (471) with 

research in animal models (48). Contemporary John Holloszy’s contributions to exercise 

and aging provided a basic understanding of metabolic pathways involved in training and 

detraining (509), enabling a more complete understanding of carbohydrate bioenergetics that 

support exercise (583). These researchers directed 20th century exercise physiology in the 

United States, and the current research landscape continues to be shaped by their direct 

academic descendants.

A major motivator for increased understanding of skeletal muscle exercise biology was the 

more widespread use of the muscle biopsy sampling technique in human subjects research. 

Key molecular mechanisms of muscle adaptation, often first revealed in preclinical studies, 

have proven instrumental in guiding human research in this direction. Notably, Frank Booth 

and colleagues investigated the influence of immobilization on muscle contractile protein 

balance in a rat model, highlighting the complex relationship between transcription and 

translation of actin (1401). This work in a prolific line of research led by Booth (928, 1304) 

laid the groundwork for a better understanding of the molecular regulation of synthesis of 

muscle proteins such as actin and cytochrome C during periods of loading and unloading. 

Others such as Williams and colleagues (1432) built on this, investigating transcriptional 

dynamics of muscle mitochondrial proteins.

These discoveries eventually led to the “Transient mRNA Hypothesis,” which states that 

long-term changes in protein abundance are the result of short-term exercise-induced 

increases in encoding messenger RNA (833, 986). Since early evidence generated by Neufer 
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and Dohm (970), subsequent studies in both animals and humans have supported this (358, 

732, 1033, 1049), forming the basic understanding of how acute responses beget stable 

adaptations to chronic exercise training. While these studies laid important groundwork for 

future research into muscle size and strength adaptations characteristic of resistance exercise 

(730), the dynamics of muscle gene transcription and translation influence all exercise 

outcomes reliant on production of new proteins, including key adaptations to aerobic 

exercise training. For example, transiently increased expression of genes encoding factors 

related to mitochondrial biogenesis (1033), lipoprotein lipase (1176), and other metabolic 

pathways (564) are critical molecular events in skeletal muscle that may form the basis of 

adaptations to long-term aerobic exercise.

The Human Genome Project and MoTrPAC

At the turn of the millennium, a battle between government- and industry-based efforts 

(1219, 1380) to sequence the full human genome resulted in an enormous amount of 

publicly available data that could be used to guide future hypotheses. In perspective 

allowed by our 20-year vantage point, this momentous event has become an inflection 

point in molecular biology research, subsequently leading to an explosion of knowledge 

based on transcriptomics, proteomics, and epigenetics that continues to grow steadily today. 

The application of these so-called ‘omics data sets to exercise and physical activity was 

spearheaded by leaders such as Claude Bouchard. Today, we continue to apply molecular 

mapping and data modeling to understand fitness (143), responsiveness to exercise training 

(1308), or genetic proclivity to be physically active (802).

Despite the growing volume of molecular data sets collected from exercise studies, the 

ability to carry out clinical trials directed toward developing exercise-based treatments for 

disease continued to be constrained by limited knowledge of its mechanisms of action 

based on data from appropriately sized human trials. Highlighting this critical information 

gap, a collaboration of leading researchers in the field, led by Dr. Darrell Neufer, came 

together to summarize current knowledge and the potential of exercise trials for discovery 

of actionable targets to promote human health (969). Perhaps motivated by this, Dr. Francis 

Collins, current NIH Director and a key scientist in the Human Genome Project, leveraged 

the NIH Invited Exercise Community gathering as a platform to address this need. Under 

Dr. Collins’ direction, the NIH eventually directed Common Fund resources toward the 

MoTrPAC initiative. Clearly, this level of support from a scientific giant highlights the 

need to develop this area of scientific inquiry, as well as its potential impact on public 

health. Ongoing initiatives such as MoTrPAC and the worldwide Athlome Project (1055) 

will bolster the available knowledge base in the context of exercise, leading to continued 

expansion of knowledge in healthy populations and providing a reference map to allow more 

mechanistic characterization of the influence of exercise training in chronic disease.

Section summary

Exercise physiology continues to permeate new avenues of human health, following 

our tendency to be fascinated by the infinitely large (e.g., the frontiers of space) and 

intricately small (e.g., regulation of gene expression by methylation or acetylation). In 

addition to emerging ‘omics platforms that survey the transducers of exercise, the field 
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is invigorated by examination of different physiological stressors such as unloading (in 

bedrest or spaceflight), aging, chronic disease, and the continual drive to test the limits of 

human performance (589). Throughout human history, exercise has always been viewed as 

medicine, and we continue to understand its mechanisms of action, optimize its prescription, 

and apply its power. At this prospective inflection point in the trajectory of the field, we 

acknowledge the historical figures on whose shoulders we stand and review the knowledge 

amassed in their wake.

Important Considerations in Exercise Research

To provide adequate context for an understanding of molecular adaptations to exercise, we 

first briefly overview key considerations for conducting and interpreting exercise research. 

While these may be common understanding for those in the field, we intend to include this 

information for all readers, regardless of familiarity with these tenets of exercise research. 

Through this objective, this article may guide new and talented investigators in other areas 

of expertise toward continuing to develop the breadth of knowledge related to exercise in 

humans.

Exercise and physical activity

Whereas physical activity (PA) is classically defined as energy expenditure from bodily 

movement (208), exercise is a subcategory of PA that is planned, structured, repetitive, 

intentional (208), and typically paired with a goal or desired outcome. Most commonly, 

exercise is divided into aerobic exercise (AE) and resistance exercise (RE). AE usually 

involves repeated movement cycles (e.g., running, swimming, cycling) and is defined based 

on the large contribution of oxidative phosphorylation to bioenergetic metabolism. RE is 

so named due to movements being performed against a load, ranging from body weight 

to external weighted equipment (e.g., bars, dumbbells, elastic bands). While the primary 

outcomes for AE and RE tend to involve cardiorespiratory fitness and muscle mass/strength, 

respectively, both modes have numerous benefits for multiple physiological systems due 

to a unique set of challenges imposed by each. While performance-focused individuals 

typically adopt a training regimen that specifically optimizes their goals (259), combined 

training in AE and RE provides a range of benefits to maximize overall health, that is, 

reducing morbidity and mortality risk throughout aging (699). Thus, exercise guidelines of 

most major public health organizations and governments emphasize combined AE and RE 

training. For example, the CDC/American College of Sports Medicine (ACSM) recommends 

150 min/week of moderate AE or 75 min/week of vigorous AE, combined with 2 days/week 

of RE. Soberingly, however, less than 5% of American adults actually meet these criteria 

(1048, 1333).

Regular exercise promotes maintained or enhanced cardiorespiratory fitness (CRF), a strong 

predictor of health and mortality in adults (954). CRF is measured as maximal or peak 

oxygen consumption (Vo2max or Vo2peak) and expressed as a rate (mL O2/kg/min or 

liters O2/min). Briefly, Vo2max refers to the concept introduced by A.V. Hill and reflects 

a true physiological ceiling in oxygen uptake, which may be attained by different means 

depending on the individual. Vo2peak refers to the highest measured rate of oxygen 
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consumption given the experimental parameters (e.g., mode of exercise, test protocol 

used) (495, 1060). In determining CRF, the most important factor is participant effort, 

which may be assessed based on classical criteria (356) including a true plateau in 

rate of oxygen uptake with increasing workload, maximum heart rate (HR) above age-

predicted target, respiratory exchange ratio >1.1, blood lactate >8 mmol/liter, and maximal 

perceived exertion. Notably, the appropriate thresholds for these test termination criteria are 

under continued consideration. Vo2max improvements of 4% to 13% have been reported 

following as little as two weeks of training (55, 539, 633, 1217, 1424). Remarkably, 

highly trained athletes may demonstrate Vo2max values 40% to 50% greater than their 

untrained counterparts (639, 1206). Even more dramatic benefits of continued exercise are 

apparent in advanced age (196, 499, 1323), as Vo2max undergoes age-related decreases in 

sedentary adults (197, 1282, 1283). However, Vo2max does not increase indefinitely with 

continued training, as some have revealed that adaptability in Vo2max is partially genetically 

constrained (136, 137, 1308).

Accelerometry

For many years, prior to the development of accelerometer technology, objective assessment 

of physical activity outside the laboratory in free-living settings remained a challenge for 

the field. Accelerometry aids in describing and quantifying PA in a relatively unbiased and 

reproducible manner, in terms of its type (e.g., leisure time, occupational), intensity (e.g., 

light, moderate, high), duration, frequency, and timing. Accelerometers are easy to use (for 

both researcher and participant) and have high sensitivity for detection of change (911). 

Despite these benefits, accelerometry data are not represented consistently in the literature. 

Montoye and colleagues recommend reporting 12 key elements for complete PA assessment 

(910): accelerometer brand, model, and placement on body, number of days worn, number 

distributed and mode of distribution, validity considerations such as minimum number of 

days and min/day necessary to declare validity, criteria for determining accelerometer was 

not worn, and determining noncompliance, and data metrics such as data epoch length 

and outcomes of interest derived from raw data. Researchers are encouraged to strive for 

completeness in data reporting, including how the specific limitations of the chosen device 

may influence study findings.

Exercise dose

Several variables contribute to the overall amount, or dose, of an exercise stimulus. Factors 

including intensity, duration, and frequency interact to determine the overall stress of 

exercise, leading to differential activation of molecular transducers across physiological 

systems. Chronic exposure to a given exercise dose facilitates long-term adaptation.

Intensity—Intensity is a metric of work or power necessitated by exercise such that higher 

intensity will require higher energy expenditure. In RE, intensity may be defined based 

on workload relative to maximum, which is usually measured as the maximum load lifted 

one time (as one-repetition maximum, or 1RM, Table 1). Intensity dictates the burden on 

skeletal muscle cells (myofibers). In humans, myofiber subtypes are defined based on the 

predominant isoform of the contractile protein myosin, including type I (smallest, slow, 

oxidative), type IIa (larger, faster, more glycolytic), and type IIx (fastest, most fatigable) 
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(1159). These fiber types are innervated by type-specific motor neurons, whereby a motor 

neuron and all the myofibers it innervates comprise a motor unit. The sequential firing of 

motor units based on the size of the motor unit (a concept termed the “size principle”) 

was introduced in the 1960s by Elwood Henneman (554). This enables incremental muscle 

contraction, with the smallest (type I) motor units possessing the lowest activation threshold 

and thus typically engaged before the larger, more powerful (type II) motor units. Due to this 

relationship, tissue-level adaptations are usually specific to the muscle under load or tension 

and the contraction intensity/demand that defines the proportion of motor units recruited up 

to maximum (i.e., all motor units activated).

For AE, using HR as a reference point for intensity assumes that demand on the 

cardiovascular system reflects the overall physiological stress. This metric can be easily 

and quickly collected, facilitating exercise prescription and periodization. In addition to 

representing intensity relative to maximum HR (HRmax), intensity is often expressed as a 

percentage of HR reserve (HRR, calculated as HRmax − HRresting), a robust reflection of 

cardiovascular reserve (1275, 1276). To define target exercise HR, a given HRR percentage 

is added to HRresting. Common training regimens based on intensity include moderate-

intensity continuous training and interval training [e.g., high-intensity interval training 

(HIIT), or sprint interval training] which typically involves short periods of high-intensity 

work followed by longer periods of low- to moderate-intensity recovery. Physiologically, 

moderate and HIIT elicit both central (i.e., cardiovascular) and peripheral benefits, and both 

regimens can lead to similar improvements in Vo2max (550, 931).

Intensity is the primary determinant of energy utilization throughout exercise (1115). 

Whereas carbohydrate-based stores such as muscle glycogen are preferentially used in high-

intensity activities, low- or moderate-intensity exercise permits sufficient time for utilization 

of fats, which are more energy-rich due to their high carbon bond composition. Elegant 

studies by Romijn and colleagues using a stable isotope infusion design demonstrated 

differential contributions to overall energy expenditure in men (1115) and later women 

(1116) at a range of exercise intensities. Interestingly, at all intensities, the absolute 

energy derived from plasma sources is identical, whereas the skeletal muscle component 

(glycogen and intramuscular triglycerides) changes depending on intensity. These and other 

works (123, 278) highlight the importance of skeletal muscle glycogen for maintenance of 

exercise intensity. Alternatively, increasing available carbohydrate exogenously (283) may 

supplement declining muscle glycogen stores in activities performed at a high intensity for a 

longer duration.

Duration—Duration is the other major determinant of energy utilization during and after 

exercise. The length of a single exercise session (i.e., duration) may last anywhere from 

several seconds (e.g., 100 m sprint) to ≥24 h (e.g., ultra-endurance running). When intensity 

is held constant (i.e., “steady-state” exercise), prolonged duration facilitates a shift toward 

fatty acid utilization. By manipulating intensity and duration, it is possible to control the 

total session work output and thus influence the mechanical and metabolic adaptations 

enforced by the training regimen. For example, by the end of a 2 h cycling bout at 65% 

of Vo2max, >60% of overall energy expenditure is derived from fat sources (1115). Thus, 
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adaptations in fatty acid cycling and fat oxidation enzymes are typically seen with moderate 

intensity AE training (238).

Frequency—In RE, frequency is generally described as the number of sessions per body 

part or per week within the shortest training cycle. Two recent systematic reviews and 

meta-analyses describe the impact of RE frequency on outcomes such as muscle strength 

(497) and hypertrophy (1169). Briefly, overall training volume is the primary driver of 

differential responses (187, 1169, 1303): the frequency of sessions over which this volume is 

accrued may be less important (985). Conversely, when volume is not matched, an increase 

in frequency increases overall exercise dose, leading to greater improvements with RE 

(1168). An important consideration of exercise frequency is recovery time (i.e., time elapsed 

between exercise sessions), which may differ based on muscle group exercised (497, 1246), 

biological characteristics [e.g., sex (610, 612), age (387)], and lifestyle factors such as sleep 

and diet patterns.

In general, patterns in AE frequency mirror RE such that adaptations (196, 489) and health 

benefits (361) are dependent on overall dose rather than frequency of sessions. Importantly, 

this dose-response relationship diminishes at very high volumes: thus, some evidence 

supports an ideal range of 2 to 3 sessions per week (1166). While there is some debate 

regarding whether higher lifetime AE load actually contributes to negative health outcomes, 

such as cardiac events [reviewed in (362)] and mortality (1166), these findings may be 

influenced by factors such as exercise intensity and eccentric loading component. In terms 

of performance, AE frequency and/or duration may be manipulated to peak for competition 

in a process known as “tapering” (1215). The taper period is typically designed such that 

overall intensity is maintained while dose is reduced by approximately 25% to 50% (824). 

In young healthy males, tapering results in increased type IIa myofiber size and power along 

with significantly improved performance (824, 947, 1319).

Effects of biological sex

Biological sex, defined by a given sex chromosome complement or sex hormone profile, 

plays an important role in adaptations or acute responses to exercise. To date, much research 

has focused on exclusively male populations (1051), whether because of availability of male 

participants as members of exercise laboratories or perceived complications introduced by 

hormonal fluctuations throughout the menstrual cycle (275, 655, 848, 1095, 1270, 1428). 

While these within- and between-sex differences do exist and are biologically meaningful, 

the general consensus is that it is necessary to continue to study both males and females 

to best characterize these differences and their potential impacts on performance, health, 

and disease. A feasible practice may be to recruit participants of both sexes and perform 

independent downstream statistical analyses. However, it remains important to reconcile 

any differences revealed to increase our understanding of relevant processes contributing to 

sex-specific patterns.

In the context of exercise, research has revealed some key differences in physiological 

properties between the sexes (Figure 2). Briefly, differences in skeletal muscle (611, 612, 

1105, 1113, 1413, 1455), cardiovascular (8, 326, 499, 667, 854, 1419), endocrine (218, 
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491, 713, 1105, 1242, 1415), and metabolic (202, 328, 1287, 1288) phenotypes have 

been observed. Importantly, many key adaptative outcomes to exercise training appear to 

be similar between the sexes (4, 103, 593, 612, 849, 1220, 1415, 1464), although the 

underlying mechanisms may be different (2, 507). Despite these interesting findings, the 

area of sex-specific responses to exercise generally remains poorly defined and is clearly an 

area warranting extensive future investigation.

Section summary

A rapidly progressing field has outlined numerous controllable factors that influence the 

magnitude, direction, and target system/tissue of adaptation to exercise training. It remains 

necessary to consider carefully the influence of these variables in study findings and to shift 

attention toward existing knowledge gaps. In particular, a focus on equalizing the imbalance 

between all-male and sex-matched research is of utmost importance as the field of exercise 

prescription research migrates toward a more individualized strategy. Furthermore, due 

to emerging evidence from genetics and genome-wide association studies (GWAS), the 

potential influences of race and/or ethnicity warrant significantly more attention. These 

factors should be viewed in light of potential for discovery. For instance, ongoing efforts 

such as the MoTrPAC initiative will leverage variability in human exercise biology to build a 

comprehensive and diverse molecular map of acute responses and adaptations to exercise.

Current Evidence of Exercise as Medicine

A continually growing body of evidence strongly supports that exercise has multiple 

long-term benefits across the entire lifespan, from the womb until late life (Figure 3). 

Exercise improves general health and fitness, psychological well-being, social interaction, 

etc., enhancing every dimension of quality of life while reducing the risk of chronic 

disease and mortality (1034, 1144) through a range of mechanisms. Yet in the midst of 

overwhelming evidence to suggest that exercise is essential to preserve health, most adults 

are still inactive (1400), a sobering statistic that costs an estimated $53.8 billion worldwide. 

Concerningly, prevalence of inactivity is higher among older adults, women, many racial 

and ethnic minority groups, and individuals with an underlying chronic disease (335, 1400). 

Regardless of age, sex, race, ethnicity, or fitness level, habitual exercise and an active 

lifestyle are cornerstones for maintenance of physical independence, health, and well-being 

(1034, 1048). Furthermore, exercise has shown promising results as a preventative and/or 

rehabilitative strategy for a wide range of diseases by improving the function of numerous 

body systems.

General health maintenance

Gestation and early life—In the absence of obstetric or medical contraindications, 

exercise is considered safe during pregnancy (303–305, 346, 858, 1027, 1070, 1143) and is 

recommended for its wide-ranging benefits in maternal and neonatal outcomes (1027, 1144). 

Exercise reduces the risk of pregnancy complications such as preeclampsia, gestational 

hypertension, and gestational diabetes (164, 305). Sustained maternal cardiorespiratory 

fitness and gestational weight management protect against risk of postpartum CVD, T2D 

(106, 506, 524, 717, 1027), and obesity (1028). In addition to controlling maternal 
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gestational weight (1301) and associated risks (82, 304, 859), exercise during pregnancy 

reduces the likelihood of high gestational weight (macrosomia) in infants (1388), an 

outcome associated with numerous health defects throughout life (242, 1388). Evidence 

is still insufficient regarding the benefits of exercise for cesarean section, labor duration, and 

high-birth weight fetus delivery (164, 858). Nevertheless, neonates whose mothers exercise 

during pregnancy demonstrate birth weight within normal range and attain higher scores 

on the Apgar scale [a gauge of responsivity in neonates (306, 858, 1071, 1143)] than 

counterparts of sedentary mothers. Furthermore, exercise may reduce the risk of postpartum 

depression (303, 1070), a common psychiatric disorder affecting approximately 10% to 15% 

of women during/after pregnancy (101, 167).

Childhood and adolescence—Multiple studies demonstrate exercise-induced 

improvements in cardiorespiratory fitness, muscle mass, and strength in children and 

adolescents (102, 245, 381, 488, 769, 770, 952, 1436). A potential countermeasure to 

combat the dramatic increase in childhood obesity prevalence in recent years (740), exercise 

is an effective weight management strategy (698, 771, 772, 1202, 1347). Concerningly, 

obese children have a doubled risk of becoming obese adults (740, 1151) and premature 

death (765). Exercise, however, can decrease the metabolic burden of obesity independent 

of weight loss (6, 310, 771, 772). Furthermore, regular exercise alleviates the severity of 

pulmonary deficits associated with childhood asthma, a common disorder limiting both 

maximal lung function and exercise tolerance (797, 800, 823, 898, 1036, 1395).

In children and adolescents, HIIT is a time-effective intervention to elicit cardiovascular 

health effects (189, 268, 353, 1083, 1121, 1418). Further, concurrent training in AE+RE 

(as encouraged by many organized sports) may have synergistic effects in children and 

adolescents, improving strength, power, CRF, and sports performance (445). Provided that it 

is properly designed, RE has positive effects on skeletal mass and bone development during 

childhood and youth (102, 488, 952), in addition to increasing muscle strength, power, 

endurance, and neuromuscular control (777). Further evidence suggests RE training may 

reduce the risk of sports-related injuries in youth (102, 381, 488, 777, 952). Remarkably, 

children and adolescents that undertake RE show greater gains in strength compared to 

adults in the initial stages of RE, benefits that are carried into adulthood (419).

A critical component of normal health, neurodevelopment during childhood and adolescence 

is commonly affected by disorders such as attention deficit/hyperactivity disorder (ADHD) 

[affecting 8% to 10% of children (972)] and autism spectrum disorder (ASD) [affecting 

approximately 2% of children (69)]. Notably, moderate-to-vigorous AE may alleviate the 

severity of characteristics associated with these disorders, for example, response inhibition, 

response time, cognitive control, attention allocation, cognitive flexibility, processing 

speed, and vigilance (322, 972). In children with ASD, exercise attenuates deficits in 

social skills, language and communication, cognition, and attention (393, 651, 1317), in 

addition to improvements in blood lipid profile, parent-perceived quality of life (1317), 

and motor control (146). Importantly, these studies demonstrate safety in addition to 

efficacy, highlighting the potential utility of exercise to treat and manage functioning in 

neurodevelopmental disorders (393, 1317). In these populations as well as neurotypical 

children and adolescents, exercise appears effective at improving domains of cognition, 
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metacognition, self-esteem, enhanced self-concept, and increased life skills (26, 322, 527, 

561, 592, 1029).

Adulthood—Exercise throughout the lifespan promotes optimal functioning of most (if 

not all) physiological systems. During adulthood, higher CRF is associated with lower risk 

of premature mortality and lower incidence of CVD, respiratory disease, and colorectal 

cancer (1247). Furthermore, a prospective cohort study of >500,000 adults aged 40 to 69 

years found that both CRF and grip strength (a physical performance measure of muscle 

strength) were negatively associated with mortality (699), indicating that both cardiovascular 

and skeletal muscle function are important indicators of general health in middle-aged adults 

(941). Certainly, other physiological systems play a role in determining overall health status. 

For instance, failure to reach peak bone mass is predictive of skeletal fragility and fracture 

risk in later life (1334), whereas exercise has positive effects on bone mass and morphology 

(323, 486).

Regularly assessed vital signs (e.g., blood pressure, heart rate variability) can serve as 

important biomarkers of health, and exercise appears to have a positive influence on these 

in adults (272, 619, 620, 700, 796, 944). Endocrine indicators of health are also easily 

accessible in circulation and provide valuable insight into system functioning. Due in part 

to drastic hormonal changes during perimenopause and eventual menopause, adult females 

are more likely to undergo a more precipitous rate of muscle and bone mass declines, 

contributing to heightened risk of falls and fractures (1211), in addition to an array of 

other chronic conditions. Exercise interventions may forestall the declines in muscle, bone, 

and metabolic health (211, 510, 1152), positively impacting physical capacity in mid-life. 

Furthermore, the combination of exercise with adjuvant hormone replacement therapy is 

under study.

Beyond maintenance of physical health, regular exercise promotes mental wellness in adults 

(229, 485, 528, 743, 1266). Mood and anxiety disorders are increasingly common in this 

age range (556). While the estimated prevalence of depression and anxiety are 4.4% and 

3.6%, respectively (425), many adults live with both disorders simultaneously (425), and it 

is estimated that approximately 50% of U.S. adults will experience a mental health disorder 

at some point during adulthood (689). In a large cross-sectional study of 1.2 million adults, 

exercise was associated with lower self-reported mental health burden, regardless of age, 

race, gender, household income, educational level, and exercise type (229). In contrast, 

cessation of regular exercise is associated with increased depressive symptoms in healthy 

adults (919). These effects are particularly pronounced in females, a subpopulation generally 

at higher risk for developing a mental health disorder during adulthood (77, 425, 556).

Healthy aging—Aging is a process shared by all living things and involves a complex 

series of biological changes that lead to a general decrease in physiological resilience (i.e., 

ability to tolerate and recover from stressors) and increased vulnerability to adverse events 

(380, 573). Even in the absence of chronic disease, the generally downward trajectory 

of aging varies across individuals, likely as an integrated result of genetic, epigenetic, 

environmental, behavioral, and other factors (39). Nevertheless, there is overwhelming 

evidence that regular engagement in exercise has potent antiaging effects (173, 1025), 
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protecting the function of most physiological systems, including cardiovascular, respiratory, 

immune, and musculoskeletal (70, 131, 140, 307, 408, 595, 615, 798, 915, 1293). In fact, 

skeletal muscle tends to be a tissue of aging and exercise research focus, due to its steady 

decline in mass and function with age, in combination with its critical roles in movement, 

metabolic homeostasis, and support of the immune system. Maintenance of skeletal muscle 

function with aging reduces the risk of falls, which often result in injury, onset of disability, 

and loss of independence in older adults (179, 336, 421, 442, 515). In a systematic review 

and meta-analysis in >20,000 older adults, exercise reduced the risk of falling by 21% 

(1192), a robust effect given the high fall risk with advancing age (49).

Those who age “successfully” enjoy a long health span, or lifespan free of chronic disease 

(1173); habitual exercise appears to be a critical component of successful aging (39, 129, 

416, 735, 1235, 1371). A recent study by Gries et al. in aging men and women who reported 

engaging in lifelong exercise demonstrated that individuals were biologically nearly 30 years 

“younger” than their calendar ages, based on a range of maximal CRF parameters (499). 

A rapidly expanding area of research sampling lifelong exercisers continues to demonstrate 

preserved cardiovascular health (196, 1193), mitochondrial health (499, 1323), skeletal 

muscle mass and performance (219, 498), and muscle endocrine function (327, 757) in the 

face of aging. At this time, much of the research is focused on AE-trained older adults, but 

continued research is necessary to examine the potential benefits of RE and/or concurrent 

training throughout the lifespan. Furthermore, the benefits of lifelong training for other 

domains of health (e.g., cognition, mental health) represent an emerging knowledge gap 

(447, 448).

Musculoskeletal diseases

Musculoskeletal diseases encompass a collective group of conditions that affect locomotor 

organs and tissues (muscles, bones, joints, tendons, ligaments, etc.). Musculoskeletal 

diseases affect 20% to 33% of people globally, and rates increase with advancing age 

(1444), accounting for approximately $213 billion in annual health care expenses in the US 

alone (1340). Clinical symptoms include pain and mobility limitations, together contributing 

to decreased engagement in physical activity and increased likelihood of disability (1340, 

1444). Exercise may be used as both primary and secondary prevention to prevent the onset 

or reduce the clinical burden of this class of diseases. Here, we focus on four prevalent 

musculoskeletal disorders: sarcopenia, osteoarthritis, rheumatoid arthritis, and osteoporosis.

Sarcopenia—Sarcopenia is a multifactorial neuromuscular disease clinically characterized 

by age-related declines in skeletal muscle mass and sometimes associated with decrements 

in strength and function (231, 287, 922, 1032, 1267). Multiple operational definitions of 

sarcopenia exist, leading to difficulty in accurately assessing its prevalence in the population 

(171, 288, 1105). After muscle mass peaks around age 30 to 40 years, it naturally declines 

with advancing age (~10% per decade) (287, 337, 726), and strength losses occur at a faster 

rate (~2%–4% per year). Lower limbs are usually more dramatically affected (337, 482, 

726, 805, 828). Consequences of low muscle mass may be exacerbated by complications 

including incomplete muscle mass recovery following illness, infection, or hospitalization 

(289).
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Exercise is one of the best-studied and most effective countermeasures for sarcopenia. 

Despite heterogeneity across studies in age range and exercise mode, consistent 

improvements are seen in total skeletal muscle mass, strength, and other functional 

outcomes in sarcopenia (821, 1377). RE, in particular, is a potent stimulus for reversal 

of sarcopenia, given its positive impact on muscle hypertrophy (163, 289, 337) and muscle 

protein synthesis (72). While the degree of hypertrophy is highly variable across individuals, 

all individuals garner multiple positive adaptive responses to training (249). On the other 

hand, AE can improve exercise tolerance and metabolic function through enhanced oxidative 

enzyme capacity and heightened insulin sensitivity (581, 749). These adaptations occur 

through increased mitochondrial biogenesis (1108, 1145), reduced low-grade inflammation 

(153, 337, 752, 857), and improved skeletal muscle plasticity (752).

Osteoarthritis—Osteoarthritis (OA) is characterized by structural changes in articular 

cartilage, subchondral bone, ligaments, capsule, synovial membranes, and periarticular 

muscles (53, 608, 926, 1022) that are often accompanied by chronic pain and mobility 

impairment. OA affects 10% to 13% of noninstitutionalized adults in the United States (252, 

1475) but the prevalence doubles to approximately 25% in individuals ≥65 years (1475). 

In addition to age, factors such as sex, race, ethnicity, bone density, obesity, joint structure 

and mechanics, nutritional factors, and genetic predisposition also influence the incidence 

of osteoarthritis (53, 816, 926, 1254, 1370, 1475). Due to their biomechanical roles as 

weight-bearing structures, the hip and knee joints are most commonly affected (53, 926). 

Many individuals with OA elect to undergo joint replacement surgery to alleviate pain, 

swelling, stiffness, and crepitus of the affected joint (926). OA contributes substantially to 

emergency hospital costs (1209) and affects >250 million people worldwide (609).

Regular exercise is recommended to prevent, manage, and “prehabilitate” OA (81, 750, 

966, 1343). Evidence from multiple systematic reviews suggests that, when exercise is 

properly prescribed, pain and stiffness are reduced without damage to cartilage or synovial 

tissue (91, 150, 844, 973, 1034) or accelerated OA progression (91, 844, 973, 1414). In 

addition to improving general functioning, flexibility, and muscle strength, exercise can 

enhance mood and quality of life (91, 92, 119, 206, 222, 325, 668, 795, 1307). Furthermore, 

exercise yields similar or large effect sizes in comparison to pharmacologic treatments 

such as nonsteroidal antiinflammatory drugs (81, 418). In a network meta-analysis of 9134 

patients with knee and hip OA in 103 randomized controlled trials, AE training was the 

most beneficial intervention for managing pain and improving performance (468), although 

a range of other modalities have been examined for their effects on muscle strength, walking 

speed, weight management, and quality of life. For instance, several systematic reviews and 

meta-analyses indicate that benefits are conferred from activities such as AE, RE (91, 1387), 

combined flexibility and strength programs (149, 468, 754, 795, 966, 1111, 1470), yoga 

(754, 1470), Tai Chi Chuan (222, 794), aquatics (90, 822), and proprioceptive training (646, 

1225). The optimal prescription likely varies based on an individual’s needs, preferences, 

and symptoms.

Rheumatoid arthritis—Rheumatoid arthritis (RA) is a chronic autoimmune disease that 

affects approximately 1% of the adult population and is characterized by degenerative 
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arthritis in synovial joints, including proximal (e.g., hands and wrists), intervertebral 

(cervical, lumbar), and other joints (e.g., hips, knees, ankles, toes, shoulders, etc.) 

(890, 1430). RA is clinically characterized by inflammation, deformation of the affected 

joint(s), pain, stiffness, and fatigue that lead to progressive deteriorations in mobility, 

functional ability, and quality of life (890, 1430), as well as hospitalization and disability 

in many individuals (227). Concerningly, RA-associated changes in lean and fat body 

mass are associated with increased CVD risk (57, 890, 892, 894, 1430). A range of 

pharmacologic and nonpharmacologic RA treatment options are available (1430), but 

the most intensive involve a combination of conventional synthetic and biological disease-

modifying antirheumatic drugs and are costly to patients and health care systems (227).

Exercise interventions have consistently been demonstrated as a cost-effective and 

sustainable treatment with multiple general systemic benefits and positive impacts on 

RA symptomology. These include aerobic fitness (540), strength (67, 613), functional 

ability (67, 613, 1430), cardiovascular health (286, 892), fatigue (298, 681, 1354), and 

inflammatory burden (60, 891). Furthermore, evidence from prospective observational and 

experimental studies demonstrates that exercise promotes positive effects on pain (68), 

cognition (1184) and quality of life in individuals with RA (68). Practically, higher fitness is 

inversely associated with number of hospital admissions and length of hospitalization (893), 

and higher physical activity level time is associated with lower 10-year CVD risk (391, 895) 

in individuals with RA.

Osteoporosis—Osteoporosis is a systemic skeletal disorder characterized by reduced 

bone mass and disruption of bone microarchitecture, increasing the susceptibility to bone 

fragility, osteoporotic fractures, and mortality (558, 670, 711, 1147, 1449). Osteoporosis is 

common among older adults, especially postmenopausal women (1001, 1449); its current 

prevalence is expected to increase with the growth of the aging population and the 

concerted action of multiple risk factors that contribute to osteoporosis pathophysiology 

(746). Existing pharmacotherapies have side effects and transient benefits at best; thus, 

adherence to pharmacologic regimens is poor (692, 874). Fortunately, exercise boosts bone 

health (874, 1152) across a range of individuals and exercise prescriptions (479, 1240, 

1472–1474).

RE is particularly well-studied as a high-impact, weight-bearing exercise modality to 

modulate adverse outcomes associated with osteoporosis. Whether performed independently, 

progressively, or as part of a multimodal intervention, RE improves bone health across 

a range of ages, including the high-risk postmenopausal female demographic (479, 1240, 

1472, 1473). Exercise interventions modulate osteoporosis adverse outcomes through 

improvements in bone mineral density (479, 1473), fall risk factors (e.g. sway velocity 

and anterior-posterior sway range)(1405), fear of falling (1240) and fall-related injuries 

(1472), while improving muscle strength, functional mobility, balance and quality of life 

(1177, 1240). Exercise volume is associated with positive and stable changes in bone 

density (479). Exercise may also be used as a primary prevention strategy: it has been 

suggested that achieving 10% higher peak bone mass in young adulthood can delay the 

onset of osteoporosis by 13 years and reduce subsequent risk of lifetime fracture risk by 
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50% (100, 1252). However, the appropriate exercise mode must be carefully considered: 

non-weight-bearing activities may provide little to no benefit on bone structure (100).

Cardiovascular diseases

CVDs are a class of conditions affecting the health of the heart and vasculature and are 

the global leading cause of death (1445). General risk factors for CVD include but are not 

limited to obesity, dyslipidemia, inflammation, and oxidative stress. Most premature deaths 

attributed to heart attack and stroke could theoretically be prevented with early detection 

and management and/or effective prevention via preservation of CRF. Conversely, increasing 

CRF through exercise reduces the risk of CVD and all-cause mortality (718, 845, 1255).

Hypertension—Hypertension, clinically defined by elevated blood pressure, is incredibly 

common, affecting >40% of the adult population worldwide (785, 916, 1097). 

Physiologically, high blood pressure is the end-product of disturbances in systemic vascular 

resistance and/or on cardiac output due to numerous circulating and vasoactive factors, many 

stemming from chronic hyperactivation of the sympathetic nervous system. Hypertension 

increases the load on not only the peripheral vasculature but also organs such as the 

heart, kidneys, and brain (172, 804, 1097). Hypertensive patients have an increased risk 

of cardiovascular and cerebrovascular morbidity and all-cause mortality (172, 192, 384, 392, 

511, 512, 641, 1047, 1097, 1180, 1260, 1420). Most patients use one or a combination 

of antihypertensive medications, but long-term use of pharmacotherapies increases the 

likelihood of side effects (502, 1298). In contrast, regular exercise has multiple acute and 

chronic benefits for management of high blood pressure.

Habitual exercise is associated with reduced side-effects, optimization of pharmacologic 

treatment, and prevention or postponement of development of hypertension (636, 916, 1047, 

1097, 1100, 1420). In addition, physical exercise positively impacts office and ambulatory 

blood pressure, a continuous measurement of blood pressure over hours (140, 194, 207, 

1097). A single bout of AE and RE consistently decreases 24 h ambulatory blood pressure 

(191, 272) as well as office blood pressure for up to 2 h postexercise, a phenomenon known 

as postexercise hypotension (194, 207). The magnitude of the blood pressure-lowering 

response varies with exercise dose, and the optimal strategy to maximize postexercise 

hypotension is still not identified (1097).

Coronary heart disease—Coronary heart disease (CHD) is a cardiovascular pathological 

condition characterized by ischemic cardiomyopathy via narrowing or blockage of the 

coronary arteries, commonly due to atherosclerotic plaque constriction (1022). CHD has a 

long asymptomatic development phase but frequently leads to major acute cardiovascular 

events (e.g., myocardial infarction, sudden cardiac death) (766). While prevalence of CHD 

is higher in males across age ranges, advancing age reduces this sex difference (294, 1185). 

Primary and secondary preventative strategies include lifestyle changes, optimal medical 

care, myocardial revascularization, use of antiplatelet agents (415), and regular exercise 

(417, 459).

The UK Biobank, a large, longitudinal cohort study, showed that strength and fitness 

were inversely associated with incident CHD and atrial fibrillation in adults genetically 
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predisposed to develop CVD (1306). Similarly, a study in U.S. veterans demonstrated a 

relationship between higher CRF and lower incidence of major cardiovascular events (718). 

Given the broad range of cardiovascular benefits across exercise modes, it appears that most 

types of activity exert a protective effect (417, 475, 580, 1010, 1356). Some have reported 

clinically relevant cardiovascular preconditioning benefits detectable immediately after a 

single exercise bout (1011, 1302).

Exercise-based cardiac rehabilitation after an acute ischemic event is the cornerstone for 

secondary prevention of CHD; this practice reduces cardiovascular (38) and all-cause 

mortality risks (853) by 26% and 13%, respectively. Despite remarkable benefits, only 62% 

of patients are referred to cardiac rehabilitation at the time of discharge after an acute event, 

and an even smaller fraction actually attend one or more sessions (339). Finally, evidence 

suggests that precaution should be taken when prescribing high-intensity interventions in 

high-risk CHD patients due to an acutely elevated risk of events (417, 580).

Heart failure—In heart failure (HF), cardiac muscle progressively weakens, resulting in 

compromised blood delivery throughout the body. HF may be further classified based on 

its etiology, potentially resulting from either pressure overload associated with hypertension 

(888) or volume overload associated with valvular defects (e.g., mitral valve regurgitation) 

(255, 902). Further discrimination includes the anatomical site (e.g., left or right HF) (723) 

and the discernment of whether ejection fraction is reduced (HF-REF) or preserved (HF-

PEF) (706). HF affects >5 million Americans (~12%) (939, 1352), is more common in 

individuals >70 years (1174, 1352), and requires vigilant monitoring to continually optimize 

treatments to its progression (1281). HF patients also have poor respiratory muscle strength 

and endurance, cardiopulmonary perfusion, and skeletal muscle function (255, 1022). 

Prognosis is grim in that most HF patients do not survive five years after diagnosis (1372), 

while others become reliant on ventricular assist device implantation or heart transplant 

(255, 1174, 1372).

Exercise, particularly aerobic, is an effective primary prevention strategy (210, 1433): 

stratification of high-risk individuals into fitness-based quintiles supports an incrementally 

protective effect of CRF (1022). In contrast, low fitness is a strong independent predictor 

of adverse outcomes (957). Additionally, lower CRF in young adulthood is associated 

with left ventricular dysfunction and higher prevalence of subclinical abnormalities and 

other complications in late life (115, 1003), suggesting that primary prevention is critical. 

Nonetheless, exercise-based cardiac rehabilitation has beneficial effects on prognosis, 

functional capacity, and quality of life in individuals with HF (255, 271, 1002). Even in 

patients with ventricular assist devices (7, 537, 673) and heart transplant (37), evidence 

supports that both short- and long-term training interventions are safe and effective.

Metabolic diseases—Metabolism, the cell-level process of converting nutrients into 

energy, is fundamentally disrupted in the cluster of conditions known as metabolic diseases, 

a leading cause of death worldwide (19). Lifestyle habits, such as meeting the recommended 

exercise levels (1048), have numerous effects on prevention and management of metabolic 

diseases, sometimes demonstrating a stronger impact on metabolic risk factors and mortality 

than achieved by pharmacotherapies (955).
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Obesity—Across the lifespan, overweight and obesity are common conditions, and 

prevalence across all age ranges has been steadily increasing throughout the last century 

(698, 771, 772, 1347, 1446). While its primary feature is excessive amount of body fat, 

obesity results from a range of etiologies including genetic, environmental, and endocrine 

factors. In both children (740) and adults (265), obesity contributes to a broad range of 

comorbidities, including (but not limited to) T2D, hypertension, nonalcoholic fatty liver 

disease, obstructive sleep apnea, and dyslipidemia. Obesity and its network of associated 

pathologies constitute a substantial economic burden (1446), in addition to impairing quality 

of life and increasing mortality.

Regardless of age, sex, race, and exercise type, regular physical exercise is an effective 

weight-loss and weight-management intervention (771, 772). Three months of AE or RE 

significantly reduces body fat percentage, waist circumference, and visceral, subcutaneous 

and intrahepatic adipose while simultaneously improving insulin sensitivity and skeletal 

muscle mass in obese adolescents (771, 772). Even independent of weight loss (310), 

exercise training promotes meaningful changes in body composition and a favorable 

metabolic profile. Illustrating this, a prospective study tracked the development of CVD 

risk factors in >100,000 adults across an approximately 6 year period (855). In comparison 

to those who decreased physical activity rates over time, the individuals that increased or 

maintained habitual exercise patterns demonstrated lower rates of hypertension, T2D, and 

hypercholesterolemia regardless of whether they lost, gained, or maintained weight (855). 

While weight loss may be a strong and visible motivator for individuals, it may be of clinical 

import to communicate that not all interventions result in a change in overall body weight 

to temper expectations appropriately. Changes in other easily measurable parameters (e.g., 

body fat percentage, waist-to-hip ratio) may be a better reflection of health and may provide 

incentive to continue an exercise regimen.

Diabetes—Currently, more than 13% of U.S. adults are affected by diabetes, and 

prevalence has been rising in children and adolescents as well (212). In 2017, diabetes 

was the seventh leading cause of death in the United States and demanded a total estimated 

cost of $327 billion (212). The majority of cases are diagnosed as T2D (175), a condition 

characterized by impaired function of insulin-producing pancreatic beta cells caused by a 

combination of insulin resistance, relative insulin deficiency, and abnormal fat and protein 

metabolism (30, 1022). On the other hand, type 1 diabetes results from autoimmune 

destruction of the beta cells. Both conditions manifest as hyperglycemia (high blood 

glucose); in T2D, development of hyperglycemia is progressive and insidious, which may 

cause classic diabetic symptoms to be overlooked before more severe complications arise 

(637). In comparison with nondiabetics, individuals with T1D or T2D have two to four 

times higher risk of co-morbidity (e.g., hypertension) and mortality (257, 466, 704, 1022). 

Furthermore, low CRF is a strong independent predictor of all-cause mortality in both T1D 

and T2D (138, 257, 803, 1411).

As part of lifestyle change therapy (637), exercise has been shown to improve insulin 

sensitivity, fasting insulin, and glycated hemoglobin (HbA1c), a classic marker of long-term 

blood glucose regulation, in children, adults, and older adults (257, 261, 347, 386, 637, 

1202). Impressively, metabolic benefits of exercise are brought about quickly (e.g., within 
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a week of vigorous AE training (705)), and a single bout may have effects on whole-body 

insulin sensitivity that persist for up to 96 h (704). Higher intensity or longer-duration 

training amplifies the stability of these positive changes (138, 704, 811, 1268, 1434). 

Meta-analyses including both AE and RE demonstrate positive effects of exercise on 

glucose sensitivity (704), glycemic control (811), and inflammation and oxidative stress 

(803). RE may also augment overall physical functioning through increased skeletal muscle 

mass and bone mineral density (257, 261, 637, 803, 811). Preclinical studies suggest that 

exercise may improve pancreatic beta cell mass and function (290). Exercise also exerts 

immunomodulatory benefits on pancreatic beta cells and systemic inflammation in T1D 

(256, 257).

Dyslipidemia—Dyslipidemia includes a number of lipoprotein metabolism disorders, 

primarily elevated blood levels of total cholesterol (hypercholesterolemia) and/or 

triglycerides (hypertriglyceridemia) which are major risk factors for atherosclerotic CVD 

(724, 1022). More than 13% of U.S. adults ≥20 year have high total cholesterol and 18% 

have low levels of protective HDL cholesterol (199), an inverse risk factor for metabolic 

and CVD (19, 785, 1022, 1047). High total cholesterol levels have been associated with 

obesity, breast cancer (178), diabetes-associated morbidities (984), Alzheimer’s disease 

(AD) (1457), stroke (882), and CHD (142). Through its influence on rates of cholesterol 

synthesis, transport, and clearance (351), regular exercise can reduce total cholesterol, 

triglycerides, and LDL cholesterol and increase protective HDL (724, 939, 1022, 1099, 

1258, 1420). These effects reduce reliance on pharmacological treatments: the National 

Health and Nutrition Estimation Survey estimates that a 15% reduction in LDL cholesterol 

can reduce the need for antidyslipidemic drugs in 5% to 14% of the population (199). 

Given that dyslipidemias are a risk factor for many cardiovascular and metabolic diseases, 

exercise-induced improvements in blood lipid profile positively affect a range of outcomes 

to reduce overall health risk.

Metabolic syndrome—Metabolic syndrome (MetS) is astoundingly prevalent, affecting 

one in every three U.S. adults ≥40 years (14). While international criteria differ (19, 

962), MetS is generally described as a multifactorial cluster of five key factors: central 

adiposity, dyslipidemia, insulin resistance, glucose intolerance, and hypertension. MetS is a 

major contributor to CVD risk (1191), a precursor for other metabolic chronic conditions 

(312), and an emerging epidemic of its own. Despite being at elevated risk for a coronary 

event, individuals with MetS do not exhibit symptoms of cardiovascular dysfunction. Thus, 

primary prevention via exercise is likely the most effective treatment option for MetS (331).

The benefits of exercise for each of the subcomponents of MetS are well-studied; thus it is 

logical that exercise reduces overall risk of MetS. As recently reviewed (953), increasing 

exercise and/or higher CRF positively impact MetS incidence and prevalence, while low 

fitness and/or physical activity is associated with higher incidence of MetS (350, 625, 679, 

953, 1262, 1469). Meeting at least the recommended exercise guidelines (1048) can help 

prevent the development of MetS in later life (71, 312, 953). Through its impact on MetS 

factors, habitual exercise can also reverse MetS: Katzmarzyk et al. (676) found that >30% 

participants diagnosed with MetS at baseline were no longer affected after a 20 week AE 
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intervention. The exercise intervention significantly decreased triglycerides, blood pressure, 

and waist circumference, while improving HDL cholesterol and fasting plasma glucose.

Cancer

Cancer is the second leading cause of mortality in the United States, with approximately 

1.8 million new cases and 600,000 deaths expected in 2020 alone (1200). The risk of 

developing an invasive cancer is dependent on intricate and compounded risk factors such 

as genetic predisposition, environmental exposure to DNA-damaging agents, and lifestyle 

factors. It has been estimated that 40% to 60% of cancers can be prevented by modifying 

factors such as obesity, smoking, and physical inactivity (1230). Given the prevalence and 

ambiguous, complex origins of cancer, the development and/or combination of effective 

therapeutic approaches to prevent, treat, and manage it are of great public health importance. 

The relatively young field of exercise oncology is targeted at leveraging exercise to offset 

treatment-related side effects and improve quality of life in cancer patients. Early trials 

focused on AE in breast cancer patients (438, 712, 1263), and promising results in this 

population spurred exercise interventions in other cancers. Collective evidence supports that 

AE and RE elicit improvements in symptom-related outcomes such as exercise tolerance, 

quality of life, fatigue, and overall function (9, 439, 1175).

Many cell survival pathways targeted by chemotherapy are also critical for protecting the 

heart (221). Exercise may alleviate the cardiotoxic burden of chemotherapy and other 

cancer drugs, as was first demonstrated in 2006 in a preclinical study using treadmill 

running in rats (239). In a subsequent breast cancer case study, AE prior to and throughout 

treatment resulted in reduced fatigue and improved functional capacity (324). In further 

support, adverse side-effects such as hemodynamic shifts, depression, soreness, and pain 

were significantly less prevalent in individuals performing vigorous AE before every 

chemotherapy session than those undergoing usual care (703). Furthermore, exercise may 

be associated with changes in the tumor microenvironment, including tumor treatment 

sensitivity, induction of antitumor immunity, reductions in inflammation, and increases 

in antioxidative capacity (52, 578). While poor vasculature and permeability of solid 

tumors often pose a challenge for treatment, exercise can expand vessel density and tumor 

perfusion, improving the efficacy of anticancer agents (52). Ongoing research is needed to 

consider the range of cancer types, chemotherapeutic agents, and exercise modalities (299).

Cancer patients, including pediatric patients, are now living longer after treatment (901). 

Unfortunately, long-term side effects of toxic treatments are a growing concern, contributing 

to a rising burden of cancer treatment-related disease (e.g., CVD, HF) even 30 years after 

treatment (299). Given its short-term cardioprotective effects in individuals undergoing 

chemotherapy, long-term exercise could have a role in reducing the risk of treatment-related 

adverse outcomes. In support, a prospective study in 2973 breast cancer patients found 

a dose-dependent protective effect of physical activity during recovery on CVD risk 

(654). Similar findings have been reported in testicular cancer (299). Finally, a recent 

meta-analysis by McTiernan et al. reported that physical activity was inversely related to 

both all-cause and cancer-specific mortality in survivors of breast, colorectal, and prostate 

cancers (878). Despite promising evidence that exercise is necessary before, during, and 
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after cancer treatment, greater insight into molecular mechanisms driving exercise-induced 

improvements in tumor biology, cardiotoxicity, and long-term survival is needed. This will 

continue to guide the field of exercise oncology toward developing and optimizing specific 

exercise prescriptions for individuals with cancer (965).

Neurodegenerative diseases

Neurodegenerative diseases are on the rise in the rapidly aging population (1453), with 

today’s prevalence rates expected to triple 2050 (158). Associated dementia is a major 

public health concern, projected to cost $2 trillion globally in the next decade (971). 

Dementia is highly debilitating, demolishing an individual’s independence and quality of 

life while placing immense emotional and financial strain on their family and caregivers. 

The current and projected economic burden of neurodegenerative disease and dementia 

prompted a call-to-action in 2015 (1453) for research directed at modifying progression 

of neurodegenerative diseases As there are currently no cures or specific biomarkers for 

these conditions, the impact of lifestyle factors such as exercise is of great research 

interest (367, 454, 873). While most exercise research focuses on the most common 

neurodegenerative disorders, dementia exists in numerous forms with wide variability in 

pathology, presentation, and progression.

Alzheimer’s disease—AD is the most common neurodegenerative disease: clinical 

AD affects approximately 4% of older adults worldwide (394) and preclinical AD or 

mild cognitive impairment (MCI) impacts significantly more at an earlier life stage 

(158). Postmortem AD brains show neurofibrillary tangles and plaques made of the 

peptide amyloid-β, but the current best biomarker is a single nucleotide polymorphism in 

apolipoprotein E4 (ApoE4), shared by over 50% of adults living with AD (1137). ApoE4 

genotype may be relevant to exercise adaptation: in a longitudinal study of 1646 older 

adults, habitual exercise is associated with lower risk of dementia in only noncarriers 

(389). Conversely, a study by DeMarco et al. (321) found that acute exercise heightened 

brain function in young female ApoE4 carriers but not in noncarriers, an area warranting 

further investigation in older populations. Nevertheless, physical activity reportedly reduces 

the incidence of AD by approximately 40% to 50% (168, 504) and higher levels of 

regular exercise may be associated with reduced amyloid-β burden (161, 162). In older 

adults with MCI, short-term RE (154) and AE (1295) training mitigate reductions in 

volume and plasticity of key brain regions impacted in dementia and AD. Furthermore, 

important changes are sustained up to one year following the cessation of training (154). 

In a sophisticated study examining the relationship between regular exercise (reported as 

step-count) and gene expression in the hippocampal brain region, Berchtold et al. (108) 

found that physical activity promoted transcriptional patterns of genes primarily associated 

with mitochondrial health, synaptic plasticity, and neuromuscular communication that were 

inversely related to cognitive impairment and AD. Thus, exercise may target critical 

signaling pathways that are dysregulated in AD and dementia, representing a potential 

mechanistic strategy for preservation of cognitive function.

Parkinson’s disease—The second most prevalent neurodegenerative disorder (affecting 

~1% of adults over age 65 year) is Parkinson’s disease (PD), which stems from death 
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of dopaminergic neurons in the substantia nigra of the midbrain. PD is considered a 

neurodegenerative movement disorder: the first symptoms of PD are not detectable until 

most of these neurons have died (122) but predominantly manifest as motor function 

abnormalities (tremor, bradykinesia) in addition to deficits in senses, sleep quality, 

mood, and cognition. Some cases of PD are accompanied by abnormal accumulation 

of α-synuclein into Lewy bodies in the brain. Lewy body dementia (LBD), a separate 

but overlapping type of dementia often manifests in so-called “Parkinsonian” symptoms 

(47, 1441). Perhaps due to this complexity, exercise training studies in populations with 

exclusively LBD are lacking (626), highlighting an existing knowledge gap.

A prevailing theory is that motor symptoms of PD take years to manifest because of a 

physiological tolerance threshold for loss of nigrostriatal dopamine, below which motor 

function is compromised (122). In a longitudinal study of nearly 200,000 cross-country 

skiers, Olsson et al. demonstrated that exercisers lived longer before onset of PD, suggesting 

that AE may fortify this “motor reserve” (991). In populations with moderately advanced 

PD, RE may restore skeletal muscle size and strength to levels found in healthy adults, in 

addition to reducing the severity of nonmotor symptoms (29, 682). Furthermore, relative 

motor unit activation (the degree of neuromuscular “effort” relative to maximal contraction 

that is required to perform a task) is improved with RE in PD (682, 683). Regular exercise 

also can improve balance and gait speed (1205), although the lasting effects of such 

interventions are not presently clear (1386, 1441). Large cohort studies suggest that an 

exercise regimen started in middle-age may reduce risk of PD (17). Mechanistically, this 

may be linked to higher insulin sensitivity (861), reduced neuroinflammation (873), or 

acutely elevated activity of the substantia nigra (685) in individuals who exercise regularly. 

Ongoing research is investigating whether beginning exercise shortly after diagnosis may 

delay PD progression or the need for dopaminergic medication (1158). Finally, limited data 

exist as to the effects of exercise on MCI and dementia in PD, which are highly common in 

its later stages (552).

Section summary

Overall, strong evidence supports that exercise has beneficial effects for organ function 

in both health and disease, reducing overall risk of morbidity and mortality. A range of 

disorders and diseases are becoming increasingly prevalent as our population grows steadily 

more sedentary (213, 1447). Physical activity, whether recreational or structured exercise, 

promotes the preservation of multiple physiological systems, including musculoskeletal, 

cardiovascular, neurological, and metabolic function. Some have referred to exercise as a 

“polypill,” that can not only mimic but outperform pharmaceutical interventions (955) with 

little to no side effects and at lower cost. Nevertheless, there is a tendency of clinicians to 

prioritize pharmacologic treatments over exercise (953). Thus, research efforts should be 

directed at understanding the molecular mechanisms driving exercise-induced improvements 

in physiological function to provide evidence-based guidance for clinicians (1146). In the 

general public, behavioral interventions targeting individuals, groups, and/or communities 

are absolutely necessary to build exercise habits and facilitate a society in which a physically 

active lifestyle is commonplace.
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Current and Emerging Methodologies for Biospecimen Assessment

Much of our current knowledge surrounding the molecular mechanisms mediating the 

effects of exercise in humans comes from analysis of biospecimens collected at various time 

points before, during, and after chronic training (i.e., adaptation) or a single acute bout of 

exercise (i.e., short-term response/transient effect). While exercise is a robust physiological 

stimulus affecting nearly every system, this article and MoTrPAC clinical studies focus 

on tissues most accessible in humans: skeletal muscle, blood, and adipose. MoTrPAC and 

countless independent investigations utilize animal models to capture molecular activity in 

inaccessible human tissues such as brain, liver, heart, and so on; these preclinical studies 

continue to provide mechanistic clarity regarding important pathways underlying exercise 

adaptation.

Skeletal muscle

Skeletal muscle biopsy considerations—The first percutaneous needle was created 

by Guillaume-Benjamin Duchenne in 1865 allowing the sampling of skeletal muscle, which 

resulted in the discovery of Duchenne Muscular Dystrophy (226). This sampling method 

was further adapted by Jonas Bergström, (112) and further modified by Evans et al. in 1982 

with the application of suction through the trocar, increasing the yield of biopsy specimens 

by approximately four-fold (378, 1289). Since then, the Bergström needle has been used to 

sample primarily the vastus lateralis due to its large size, subcutaneous location, and distance 

from major neurovascular structures. In addition to the vastus lateralis, the deltoid, anterior 

tibialis, soleus, gastrocnemius, trapezius, biceps, and triceps have also been sampled (109, 

281, 446, 473, 825, 837). While it is advantageous to sample the vastus lateralis muscle, 

some technical controls should be implemented whenever possible, as the distribution of 

type I and II myofibers (and thus the molecular characteristics of the sample) may differ 

depending on participant demographics (sex, age), dominant leg (right or left), location 

along the muscle, and depth sampled (788–792).

In addition to the widely used Bergström needle, other sampling needles such as the 

microbiopsy needle, the Well-Blakesley conchotome, the myotome, the Polly-Bickel needle, 

and others have been introduced (555, 995). The microbiopsy needle has been reported 

to reduce the invasiveness of the muscle sampling procedure due to its smaller diameter, 

while negating the need for skin and fascial incisions to gain access to the muscle (538, 

606). Anecdotal reflection from a participant perspective indicates a preference for the 

microbiopsy procedure (606). The microbiopsy needle typically yields a short and wide 

muscle specimen (~70–90 mg), compared to approximately 50 to 400 mg of long and thin 

muscle tissue obtained from a standard Bergström needle biopsy. As such, the optimal 

approach should be carefully considered in light of downstream research objectives that may 

be particularly reliant on a given arrangement of myofibers within the bundle and total tissue 

yield required.

Regardless of the instrument chosen for extraction of the biospecimen, tissue processing 

should be performed according to research objectives. First, it is necessary to remove any 

blood, fat, fascia, and connective tissue from the biospecimen, as these may contaminate the 

sample and influence downstream results. Timing is of the utmost importance: dynamic, 
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transient effects such as phosphorylation (182, 451), methylation (89), etc. necessitate 

preferential allocation of tissue for proteomics and metabolomics (1125). Homogenate 

analyses (such as these and other ‘omics) actually capture a variety of cell types in addition 

to skeletal myofibers (1127). In contrast, single-fiber analyses reveal enriched biological 

signatures that may be diluted by a homogenate approach (1091). In terms of tissue 

allocation, a longer bundle may be better suited for teasing apart and clipping individual 

myofibers for fiber type-specific analyses, whereas a wider bundle may provide extensive 

surface area better suited for histological analyses. Most commonly, fibers are oriented 

transversely, such that slicing the mounted specimen with a cryostat yields a cross-sectional 

view of the myofibers within the bundle (945). Alternatively, longitudinal muscle sections 

may be preferable for visualization of certain subcellular structures at high resolution, such 

as sarcomeric structures and mitochondria.

Histological staining and imaging—Tissues designated for histology can be preserved 

immediately by submersion into a fixative such as glutaraldehyde or formaldehyde and 

subsequently used for methodologies including transmission electron microscopy (TEM) 

(453). TEM is considered to be a gold standard methodology for skeletal muscle 

imaging, allowing the detection of changes in microstructures such as mitochondria, 

including volume, density, number, and morphology (1190). Imaging techniques continue 

to evolve. Focused ion beam-scanning electron microscopy (FIB-SEM) has allowed 

detection of myofiber-type specific differences in mitochondrial morphology following 3D 

reconstruction of human vastus lateralis single myofibers and muscle sections (180, 293).

Obtaining TEM and FIB-SEM images in combination with the analysis process can be 

very time consuming and costly. The more widely used alternatives include confocal, light, 

or fluorescence microscopy. Biopsy samples are preserved through a controlled freezing 

technique to limit the expansion of intracellular water and prevent freeze-fracture artifacts 

in the tissue (739). Briefly, samples are mounted in a water-soluble embedding medium 

such as optimal cutting temperature compound mixed with tragacanth gum, submerged in 

isopentane cooled with either liquid nitrogen or dry ice, and frozen for long-term storage at 

−80 °C or below.

These commonly used methods can prepare muscle for staining ranging from hematoxylin 

and eosin to more complex co-staining procedures (e.g., neutral lipid stain, oil red O, 

and immunohistochemical co-stains) (834, 945, 1190). These techniques can be applied to 

detect myofiber type-specific phenomena, such as changes in oxidative capacity measured 

through cytochrome C oxidase expression, and changes in lipid droplet associated proteins 

before and after sprint interval training (1190). Confocal images of sectioned or single 

muscle fibers enable in-depth analysis of mitochondrial morphological changes in relation to 

skeletal muscle intramyocellular lipid stores (733).

Finally, laser capture microdissection (LCM) is an advanced method in which specific 

myofiber populations are physically excised. While technical barriers exist, a major strength 

of LCM is the ability to perform both targeted and high-throughput ‘omics analyses 

on a relatively smaller amount of muscle tissue than required by other applications. 

Illustrating the efficiency of data collection, Murgia and colleagues reported the detection 
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of >2000 proteins in approximately 2 h of measurement time (949). Combining LCM with 

downstream gene and protein analysis has enormous potential for characterizing differences 

between myofiber populations, for example, based on myosin heavy chain isoform (1265) or 

abundance of another target of interest (949).

Single myofiber physiology—Skeletal muscle fibers may be assessed for parameters 

such as contractile force, shortening velocity, and power in the absence of nervous system 

input and physiological fluctuations in calcium availability. Briefly, for this approach, 

myofiber bundles are permeabilized in a skinning solution, and then individual myofibers 

are teased out and tied between a force transducer and motor arm. To determine maximal 

shortening velocity, the myofiber is submitted to a slack test (355): the myofiber is slackened 

by moving the motor arm, and time to redevelop force (whereby the slack is alleviated) 

is calculated and averaged at four settings along the length of the myofiber. Another 

commonly performed assay relies on measurement of the relationship between force and 

shortening velocity at a series of fiber lengths to calculate theoretical maximal velocity and 

power (405). Single myofiber physiology experiments have aided in illustrating fundamental 

differences in contractile properties between myofiber types, such as approximately five-fold 

higher power in pure type IIa than type I myofibers (437, 1321). These techniques have also 

enabled detection of intricate changes in the myofiber contractile apparatus that arise from 

exercise training (405, 1320, 1325, 1328), aging (498, 1321), and unloading (1425, 1426).

Muscle satellite cell culture—Mature skeletal muscle contains satellite cells, a pool of 

stem-like cells that facilitate remodeling and regeneration in response to stress (534, 1039). 

This regenerative potential and the mechanistic impact of biochemical and mechanical 

perturbations on muscle satellite cells can be assessed in vitro using cell culture models. In 

isolating satellite cells from human skeletal muscle biopsies, the surface marker cluster of 

differentiation (CD)56 (also known as neural cell adhesion molecule, or NCAM) is often 

used to differentiate satellite cells from fibroblasts and other cell types in the specimen 

(12). Alternatively, animal-derived cell lines such as C2C12 (mouse) or L6 (rat) cell lines 

may be employed. Some evidence suggests variation in the basal expression of metabolic, 

proliferative, and developmental genes across species (3), potentially complicating the 

translatability of cell culture experiments.

Throughout a controlled period of growth in a cultured environment, muscle satellite 

cells differentiate into myoblasts and eventually fuse into multinucleated myotubes 

(1244). Notably, myotubes can be stimulated to contract, mimicking exercise in the 

absence of systemic or neural influences with the use of methodologies such as 

electrical pulse stimulation (EPS) (148, 375), pulsed forskolin and ionomycin (276, 

1232), 5-aminoimidazole-4-carboxamide-1-β–ribofuranoside (AICAR), and caffeine (203). 

These stressors allow recapitulation of some of the intermyofibrillar adaptations to an 

exercise-like stress, such as accretion of contractile protein (148), bioenergetic adaptations 

underlying metabolic flexibility (1232), and myokine production and release (435). While 

administration of these biochemical stressors provides mechanistic insight into key pathways 

underlying myocellular adaptations, it is important to note that they are only able to 
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partially capture the impact of exercise exposure and often cannot mimic the characteristic 

multisystem elevation in cellular energy demand.

Blood

Many of the beneficial effects of exercise are the integrated result of multiple physiological 

systems engaging in cross-tissue communication. In this regard, the circulatory system 

is important facilitator of tissue cross talk via delivery of signaling molecules, cells, 

and other structures between tissues. A primarily relevant example of this is myokines 

such as IL-6, which is secreted from glycogen-depleted skeletal muscle and acts in 

a paracrine fashion on the liver to stimulate glucose release in support of continued 

muscle contraction (1026, 1249). Exercise-induced myokine secretion facilitates adaptations 

including hypertrophy (myostatin, IL-4, -6, -7, and -15), and osteogenesis (IGF-1, FGF-2), 

fat oxidation, insulin sensitivity, and anti-inflammation (IL-6) (1018). In addition, lipids 

(e.g., 12,13-dihydroxy-9Z-octadecenoic acid, or 12,13-diHOME) and metabolites (e.g., 

succinate) can also serve as circulating signaling molecules during and after exercise. 

Arteriovenous balance studies of the forearm, leg, and splanchnic bed [classically been 

used to examine fuel metabolism during exercise (15)] allowed the characterization of the 

temporal release of IL-6 from the leg following acute exercise (1250) and can be a powerful 

approach to identify other novel factors released from tissues of interest.

A developing area in the context of exercise biology is the production, release, and 

packaging of proteins and microRNAs (miRNA) into secretory vesicles such as extracellular 

vesicles (EVs), microvesicles (1018), and exosomes (444, 594, 793, 959). These signaling 

factors are thought to convey molecular factors underlying a range of systemic adaptations 

to exercise; thus, much remains to be learned by characterizing their contents and 

identifying the tissue of origin (751). Many of the standard biochemical workflows used 

to analyze tissue homogenate and single myofibers (e.g., protein immunoassay, targeted 

gene expression, other ‘omics) can also be applied to secretory vesicles. For instance, 

combining EV isolation with mass-spectrometry, Whitham et al. identified 322 proteins that 

were significantly increased immediately after exercise and 3 at 4 h postexercise time point 

(1423). Continued research into EVs and related species released in response to exercise 

may prove to be a powerful resource in designing integrative disease therapies.

Leukocytes, the circulating cells of the immune system, are also involved in mediating the 

beneficial effects of acute and chronic exercise. Acute exercise induces a temporal shift 

toward increased circulating natural killer cells and neutrophils (1479). Leukocyte (e.g., 

neutrophil and monocyte) infiltration into peripheral tissues such as skeletal muscle plays a 

critical role in repair and regeneration following exercise (843) and long-term hypertrophy 

(422). Beyond a standard complete blood count with differential, flow cytometry can be 

used to study leukocyte redistribution, alterations in expression of cell surface markers, 

and changes in leukocyte function with exercise (1082). Leukocytes can be sorted into 

specific populations for follow-up analyses using flow cytometry or via incubation and 

centrifugation in specific collection tubes coated with preservative chemicals.
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Adipose

Adipose tissue was classically perceived as a relatively inert organ for storage of 

triglycerides; however, it is now recognized as an endocrine organ (687) displaying 

phenotypic diversity across adipocyte subpopulations (e.g., white, beige, brown) with 

distinct metabolic and functional roles (463). As the body’s major energy reservoir, 

adipose tissue plays a key part in whole-body metabolism, with dysfunction contributing to 

pathologies such as obesity, T2D, dyslipidemia, and insulin resistance. Excess accumulation 

of upper body adipose in particular is linked to increased risk for CVD (413, 481). 

Dysfunction in adipose tissue is characterized by larger, metabolically inflexible adipocytes, 

immune cell infiltration and activation, senescence, impaired lipid turnover, and secretion 

of deleterious factors (315). In turn, exercise plays a key role in maintaining a healthy 

metabolic phenotype in adipose tissue (314).

Subcutaneous adipose tissue specimens can be extracted from the abdomen or gluteal 

prominence using a punch biopsy, aspiration with a Bergström or Mercedes liposuction 

needle, or surgical removal (20, 185, 302, 1008). Depending on the technique, 

approximately 100 mg to several grams of tissue can be obtained. The sample should be 

washed with ice cold phosphate-buffered saline and then flash-frozen in liquid nitrogen or 

prepared for histology by embedding in parafilm. A number of histomorphological methods 

have been developed to image and quantify adipocyte size and number (121, 230, 852). 

Furthermore, collagenase digestion of the adipose specimen allows the separation of stromal 

vascular cells (T-regulatory cells, macrophages, smooth muscle cells, and mesenchymal 

stem cells) from mature adipocytes, which can then be analyzed via flow cytometry or 

single-cell ‘omics approaches (54, 130).

High-throughput ‘omics approaches

Transcriptomics—Relatively recent advancements in high-throughput data collection, 

analysis, and computation have greatly accelerated the discovery of the molecular 

transducers of biological phenomena in health, disease, and exercise. Prior to the advent 

of next-generation sequencing tools, studies employed microarray technology to examine 

transcriptome-wide changes in gene expression as a result of AE (253, 839, 1296, 1308) and 

RE (253, 1040, 1051, 1299, 1300). Since this time, newer direct sequencing technologies 

designed to more precisely and deeply define tissue- and cell-level transcriptomes have 

been applied to the study of exercise (264, 332, 1051, 1053, 1062). RNA-sequencing 

(RNA-seq) directly sequences cellular RNA and maps reads to a reference genome through 

bioinformatic analysis to quantify levels of individual transcripts (929). RNA-seq can be 

applied to measurement of all available forms of RNA or limited to messenger RNA 

(via pulldown of all polyadenylated RNA species). True to its nature as a discovery tool, 

RNA-seq can reveal nonprotein coding transcripts (e.g., long noncoding, circular, small, and 

miRNAs), which are receiving increased attention as regulatory factors in exercise biology 

(813, 1203).

A comprehensive and powerful approach is to integrate RNA-seq with other ‘omics (264, 

532), linking gene expression to variation in the genomic architecture, epigenetic regulation, 

and other molecular phenotypes. For example, chromatin immunoprecipitation sequencing 

Lavin et al. Page 31

Compr Physiol. Author manuscript; available in PMC 2023 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(ChIP-seq) involves immunoprecipitation of DNA-interacting proteins and subsequent direct 

sequencing of associated DNA fragments (652). Using antibodies to specific histone 

modifications, the epigenetic landscape of the sample can be determined. A recent elegant 

study used epigenetic markers of transcriptional enhancers (demethylation of histone 3 

lysine 4 and acetylated histone 3 lysine 27) in combination with RNA-seq in a mouse 

wheel running model (1088). Integration of the gene expression and epigenetic data revealed 

activation of transcription factors myocyte enhancer factor 2 (MEF-2) and estrogen-related 

receptor (ERR) upstream of heightened expression of oxidative metabolism genes (1088). 

Integrated multi-omics designs such as this, along with ever-evolving molecular mapping 

technologies (532) may provide mechanistic insight into observed biological relationships 

(440).

Bulk tissue RNA-seq and related techniques, while powerful, represent composite gene 

expression in an entire sample. In contrast, recent advancements in cDNA synthesis from 

single cells allow interrogation of single-cell transcriptomes by RNA-seq (929), providing 

the ability to profile gene expression in individual cell populations before and after a given 

intervention. Studies investigating the cellular composition of skeletal muscle tissue samples 

(319, 461, 1127) have revealed a number of resident cell types (e.g., immune, endothelial, 

satellite, and fibro-adipogenic progenitor cells), each displaying a unique transcriptomic 

signature. Due to size limitations of the single-cell isolation, these studies typically filter 

myofibers out of analysis. Other technologies such as single-nuclei RNA-seq should 

theoretically enable assessment of all cell types including myofibers (500, 597); however, 

the multinucleated nature of mature skeletal myofibers may introduce complexity in this 

approach. The emerging spatial transcriptomic technology, which enables measurement 

of gene expression on intact histological specimens (913, 1243), may become a viable 

technique for assessing gene expression in specific regions of muscle tissue.

Proteomics—Our understanding of molecular interactions governing adaptations to 

exercise is more deeply enriched by evaluation of multiple levels of omics data (899). 

Similar to high-throughput sequencing technologies, advances in mass spectrometry allow 

broad and unbiased survey of the proteome (478). Using this approach, several studies 

have reported training-induced changes in skeletal muscle metabolic proteins encoded by 

mitochondrial and genetic DNA, a finding consistent with transcriptomic datasets (357, 

586, 1109, 1160). The circulating plasma proteome also reflects a positive influence 

of activity status on mitochondrial proteins, in addition to reductions in inflammatory, 

immune, and stress response proteins (1149). Single myofiber proteomics has also been 

developed (948). When applied to humans, this technique reveals differences in glycolytic 

as well as sarcomere chaperone pathways in slow and fast fibers (950). These approaches 

will undoubtedly be useful in assessing myofiber type-specific proteomic changes and 

adaptations to exercise. Furthermore, agnostic bioinformatics pipelines originally developed 

for gene expression datasets (e.g., Weighted Gene Correlation Network Analysis) can be 

applied to proteomics and other high-throughput datasets with relative ease (1149).

Measurements of posttranslational modifications such as phosphorylation and acetylation 

provide an additional layer of information and biological complexity. Phosphorylation is 

typically reversible and regulates multiple aspects of protein function (e.g., conformational 
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change, enzyme activation, subcellular localization, degradation, stability). A small but 

seminal study by Hoffman et al. identified changes in the human skeletal muscle 

phosphoproteome following a high-intensity exercise bout (576): this work outlined a 

complex network of phosphorylation events mediated by multiple kinase pathways. A 

follow-up study combined this dataset with phosphoproteomics in mice and rats to identify 

exercise responsive adenosine monophosphate-activated protein kinase (AMPK)-dependent 

regulation of store-operated calcium entry (967). Unlike phosphorylation events catalyzed 

by kinases, acetylation of lysine residues on nonhistone proteins is thought to be mediated 

by nonenzymatic mass action (1381). Affinity purification of acetylated lysine residues 

followed by mass spectrometry allows for an unbiased survey of the acetylome (543). 

Given the role of acetylation in mitochondrial dynamics and metabolism (338, 1264, 1429), 

assessment of the acetylome will likely be a valuable tool in exercise biology.

Finally, proteins are susceptible to modification by reactive oxygen species and reactive 

nitrogen species, collectively termed redox modifications. These processes are known 

to contribute to age-related muscle loss and atrophy (1139). Mass spectrometry-based 

techniques utilizing differential labeling of free thiol groups on cysteine residues have 

now been developed, with studies focusing on redox modifications in aging mouse skeletal 

muscle (867, 1221). Future application of this and other proteomic techniques to human 

exercise is likely to reveal transducers of acute responses and long-term adaptation.

Metabolomics—Both acute and chronic exercise-induced flux in energy substrate 

utilization (584) may be reflected in the metabolite pool of systemic circulation or specific 

tissues. Like proteomics, advances in mass spectrometry allow for both supervised (targeted) 

and unsupervised (unbiased) surveys of metabolites influenced by exercise. For instance, 

Lewis et al. observed acute increases in circulating lactate, adenine nucleotide catabolites, 

and tricarboxylic acid cycle intermediates (e.g., succinate, pyruvate, malate) following a 

Vo2max test, as well as reductions in gluconeogenic amino acids following marathon 

running (786). Following long-term (~6 month) AE training, changes in circulating 

metabolites have been associated with changes in cardiorespiratory fitness (147) and insulin 

sensitivity (604). Thus, the circulating metabolome may represent an accessible method for 

assessment of the influence of exercise on health and disease. Naturally, metabolomics may 

also be applied to tissues of interest, such as skeletal muscle (603).

Lipidomics—Mass spectrometry may also be applied to measurement of lipid species 

(519), including both structural (phospholipids, sphingolipids, etc.) and signaling 

(prostaglandins, leukotrienes, etc.) molecules. Most commonly, the technique involves 

an organic extraction followed by a liquid chromatography (LC) step prior to mass 

spectrometry. This approach has been used to characterize exercise-induced changes in 

skeletal muscle lipids in both preclinical models and humans (768, 850, 885, 1178, 1239). 

Prominently, changes in levels of the mitochondrial structural lipid cardiolipin have been 

shown to relate to mitochondrial capacity following weight loss and moderate AE training 

(258, 885). Others have shown an acute rise in the signaling lipid 12,13-diHOME following 

a single bout of AE (1239). Recently, a more comprehensive lipidomics approach has been 

developed: removal of the LC step has the potential to identify a range of lipid species 
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missed by traditional methods (520). This method has recently been used to measure lipids 

in skeletal muscle, including after exercise (1053, 1331).

Section summary

A range of complex approaches to collect, process, and comprehensively profile 

biospecimens have been developed over the past 50 years (Figure 4). In addition to 

molecular mapping with transcriptomics, methylomics, proteomics, etc., the influence 

of internal [e.g., gut microbiome, (1421)] and external environmental factors [e.g., the 

“exposome” (88)] has yet to be explored as a mediator of inter-individual response to 

exercise. At this point, our capacity for generating data exceeds our ability to interpret 

findings. Like genetic data, metabolomic and lipidomic data sets may be limited by the 

reference against which identified species are matched; thus, continued efforts to expand 

these resources will be fruitful. As such, continued development of both data and knowledge 

driven bioinformatics analysis tools will aid in expansion, integration, and interpretation of 

multi-omics data sets from exercise studies (532).

Skeletal Muscle Adaptations to Exercise

For obvious reasons, skeletal muscle has been a tissue of interest for insight into adaptation 

to exercise. Early studies led by pioneers such as Bengt Saltin, John Holloszy, David 

Costill, and others provided insight into key histological and cellular phenotypes affected by 

long-term training and acute exercise. Since these early works, collective knowledge of the 

molecular biology of skeletal muscle has been broadly amplified. The plasticity of skeletal 

muscle to perturbations such as training, overtraining, detraining, bed rest, unloading, and 

microgravity is astounding. Beyond this, skeletal muscle is no longer seen as merely a 

machine for movement, but an endocrine organ, an immune reservoir, and an indicator of 

physiological wellness.

Structure and function of skeletal muscle

Muscle comprises 40% to 50% of total body mass (428). At the system level, muscle is a 

hierarchically arranged structure divided into fascicles by the presence of connective tissue 

called perimysium. Fascicles are comprised of myofibers, and myofibers are composed of 

myofibrils, which house a contractile unit referred to as the sarcomere. At this structure, 

receipt of an action potential from an innervating neuron is translated into the release of 

calcium from the sarcoplasmic reticulum, which enables interaction between the primary 

filaments of the contractile apparatus (24, 484). To summarize an exquisitely described 

concept introduced by Huxley and Hanson (616), myosin filaments slide over interlocking 

actin, a process by which the sarcomere is shortened and the muscle “contracts.” During 

a contraction, the physical interaction between actin and myosin is continually broken and 

renewed in a process known as cross-bridge cycling. This process requires energy, and the 

energy system by which a given myosin isoform generates the necessary ATP dictates its 

metabolic profile (753). For instance, myosin heavy chain (MHC) I preferentially utilizes 

oxidative phosphorylation, whereas MHC II has greater glycolytic ATPase activity.
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In addition to a well-engineered mechanism for contraction and movement, skeletal muscle 

tissue houses a range of other cell types such as satellite cells, macrophages, endothelial 

cells, pericytes, and others (1127). Muscle itself is considered a syncytium: each myofiber 

is multinucleated. As such, muscle nuclei may be able to orchestrate a wide-ranging 

yet integrated response to a given stimulus, such as exercise or loading. The degree 

to which muscle secretions, such as myokines (1020) and exosome-like vesicles (1423), 

influence adaptation continues to be elucidated. Finally, muscle’s extensive protein content 

makes it a primary amino acid reservoir for an organism (428, 1438); thus, muscle is a 

common casualty in conditions requiring a substantial, sustained immune response. While 

the complexity of muscle has presented unique methodological challenges, its relevance 

for exercise, performance and health, relative ease of access, and rich history of its study 

have led the field to an appreciation for its adaptability to AE and RE (Figure 5) and an 

enthusiasm to continue to explore the unknown.

Skeletal muscle adaptations to aerobic exercise

The molecular and histological adaptations to an AE training stimulus have been classically 

examined in skeletal muscle. AE performance is contingent on both high oxidative capacity 

and fuel economy, and muscle-level adaptations contribute to both factors. Importantly, the 

maximal metabolic capacity (33) and blood flow (756) of skeletal muscle exceed what can 

be physiologically achieved by cardiac output, indicating that the physiological ceiling exists 

outside of muscle itself in most environments (the obvious exception being low oxygen 

tension at altitude). Nevertheless, whole-body oxygen consumption is highly correlated 

with molecular indices of muscle oxidative capacity, including activity of enzymes such 

as succinate dehydrogenase (277) and citrate synthase (1368), both involved in oxidative 

phosphorylation. Despite the directional correlation, the magnitude of plasticity in these 

outcomes varies considerably: Gollnick et al. found that five months of AE training induced 

a 25% increase in Vo2max but a 95% increase in succinate dehydrogenase activity and 

a 116% increase in phosphofructokinase activity (469). These adaptations are likely to 

facilitate submaximal activity common in long-duration AE, improving the efficiency of 

energy production and utilization.

Myofiber adaptations—In addition to being characteristically smaller (~10%–20% vs. 

type IIa) and less powerful (~5-fold lower power vs. type IIa), type I myofibers are 

less fatigable than their fast-twitch counterparts (404). In humans, AE training does not 

usually induce a II-to-I shift (1322), although this has occasionally been reported (708). 

Also, hybrid (e.g., IIa/IIx or I/IIa) fibers may transition toward a pure type I myofiber 

phenotype (1322). Cross-sectional studies that report higher type I myofiber distribution in 

AE-trained individuals (470) cannot definitively rule out that individuals with differential 

proportions of slow-versus-fast myofibers self-select for a given exercise mode. In fact, 

genetic predisposition to athletic success has been an area of academic interest (623). 

It is unlikely that the observed differences are the effects of long-term training, since 

lifelong AE-trained older adults do not demonstrate a significantly higher proportion of 

type I myofibers than age-matched counterparts (498). The phenomenon by which type 

II myofibers undergo preferential age-related atrophy and apoptosis adds an additional 

complexity to this comparison (979, 1105). While preclinical studies have identified some 
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of the molecular determinants that lead to an oxidative myofiber phenotype (e.g., MEF-2) 

(1063, 1452), it is unclear whether these factors play similar roles in adult human muscle 

adaptations to exercise. Illustrating a potential connection, muscle unloading, a stimulus 

that induces a slow-to-fast myofiber shift in humans (133, 1324), has been associated with 

inhibition of MEF-2 (1130).

At the cellular level, AE training induces important adaptations in the structure and function 

of type I myofibers. Some evidence suggests a reduction in type I myofiber diameter 

(1322, 1427), which is thought to be beneficial for reducing diffusion distance between 

oxygen-supplying capillaries and the center of the myofiber. However, this is not a universal 

finding (469, 522, 1075). Furthermore, the addition of muscle capillaries with AE training is 

likely to keep pace with or exceed myofiber hypertrophy, such that unavailability of blood 

supply is unlikely to impose a size limitation (708). Myofiber functions such as shortening 

velocity (405, 522), power (498), and oxidative capacity (544) are commonly improved or 

preserved with AE, with the strongest effects usually reported in type I myofibers. The 

common AE practice of tapering appears to have additional effects in type IIa myofibers 

that may contribute to athletic performance (523, 824, 1319). Thus, despite the classically 

overengineered architecture of skeletal muscle (35, 139), long-term training elicits beneficial 

effects at the level of the muscle cell.

Mitochondrial biogenesis—As the site of ATP production, muscle mitochondria form 

a dense and active network that supports the bioenergetic needs of skeletal muscle (535). 

Animal-based research as early as the 1950’s demonstrated a relationship between aerobic 

capacity and respiratory enzyme content (760, 1012), leading to a host of studies examining 

the influence of AE on mitochondrial biogenesis in a range of tissues and populations (344, 

472, 809, 1132). Increased mitochondrial biogenesis in response to AE may be reflected by 

changes in copy number of mitochondrial DNA (mtDNA) (884, 1431). Similarly, membrane 

phospholipid cardiolipin may be used as a marker for mitochondrial content (883). Copy 

number is elevated by >50% in AE-trained versus untrained individuals (1079) and may 

increase following short-term training in older adults (883). These effects are thought to be a 

result of acute “bursts” in transcription of mtDNA following exercise (426, 1033).

Mitochondrial proteins are encoded on both the nuclear and mitochondrial genomes (424). 

Mechanistically, much regarding the transcription and regulation of these factors have 

been discovered using animal models and later translated to humans in targeted studies. 

Transcription factor families such as nuclear respiratory factors (NRF) and estrogen-related 

receptors (ERRs) are key regulators of transcription of nuclear-encoded mitochondrial genes 

(465, 1154). Both NRF and ERR have been shown to be increased in response to AE 

(204, 398). Transcription of the mitochondrially encoded genes is largely regulated by 

Transcription factor A mitochondrial (Tfam) (465, 1373). Tfam is more highly expressed in 

skeletal muscle of highly AE-trained adults (1323), but acute AE does not consistently lead 

to upregulation of Tfam at the mRNA (260, 1061) or protein (490) level.

Co-activators such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) 

interact with these transcription factors to promote increased mitochondrial number, size, 

and protein content in response to AE (62, 273). Both acute (521, 1050) and chronic (490, 
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1131, 1323) AE stimulate expression of PGC-1α in human skeletal muscle. PGC-1α may 

be processed via alternative splicing mechanisms into any of four transcripts (PGC-1α1–

4) with distinct but overlapping biological roles (856): PGC-1α1 appears most important 

for adaptations in aerobic metabolism (273, 801), while PGC-1α4 is believed to play a 

role in muscle hypertrophy (1126). The family of PGC-1α isoforms also partially controls 

key metabolic processes in skeletal muscle, including lipid oxidation (600), mitochondrial 

autophagy (1344), and angiogenesis (43, 240) via upregulation of VEGF.

Mitochondrial dynamics—Along with increased mitochondrial biogenesis, dynamic 

changes in mitochondrial volume and connectivity accompany muscle adaptations to 

AE (50, 59, 914). In key processes involving inner and outer mitochondrial membrane 

proteins, mitochondria can either be joined together (fusion) or cleaved apart (fission), 

based on cellular energy state (45, 366, 410). In a balanced process, fusion and fission 

maintain overall mitochondrial function as the cellular mechanism of cycling newly formed 

mitochondria into the mitochondrial pool while damaged/dysfunctional mitochondria 

undergo autophagy (45).

Fission is promoted through phosphorylation of dynamin-related protein-1 (DRP1), which 

then binds to an outer membrane receptor such as mitochondrial fission 1 protein (FIS1) 

or mitochondrial fission factor (MFF) (998). DRP1 activity is increased in response to 

acute and chronic AE in human muscle (734). Mitochondrial fusion occurs when the outer 

membrane GTPases mitofusin 1 and 2 (MFN1 and 2) dimerize and pull two mitochondria 

together (410). The inner membrane compartments are then joined by optic atrophy-1 

(OPA1) (836). Markers of both fission and fusion have been shown to be elevated after 

AE training (721, 1033). Studies in older adults suggest that long-term AE training appears 

to promote fusion as the ratio of fusion-to-fission proteins increases. These changes are 

associated with improved metabolic functions including insulin sensitivity and glucose 

handling (50, 59, 385, 1456). While these and other (1212, 1213, 1273) mechanistic 

factors underlying improved oxidative capacity have been identified in animal skeletal 

muscle, continued research is necessary to fully elucidate how mitochondrial biogenesis and 

dynamics impact exercise training adaptations in health and disease.

Subcellular adaptations—As a regulator of crossbridge formation, calcium plays a 

key role in skeletal muscle intracellular signaling. During exercise, action potentials travel 

along the transverse tubules of skeletal muscle to activate dihydropyridine receptors. This 

promotes opening of the sarcoplasmic reticulum channel ryanodine receptor 1 (RYR1), 

leading to an increase in cytosolic calcium (24, 484). Naturally, calcium release, muscle 

contraction, and re-sequestering of calcium are energetically costly. Thus, improved capacity 

for oxidative phosphorylation is essential for skeletal muscle to support long periods 

of repetitive contractions during AE (233, 582, 585). The CaMK family plays roles in 

calcium-sensing, with downstream effects relevant to AE. In mice, CaMK IV activates 

PGC-1α and associated downstream pathways leading to mitochondrial biogenesis (1451), 

whereas CaMK II has been associated with structural and contractile adaptations (363). 

CaMK II is the primary isoform expressed in human muscle (1119, 1120). Basal CaMK II 
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phosphorylation is elevated following AE training (1061, 1118) in a muscle-specific fashion 

(1118); acute AE also leads to increased activity of CaMK II (1119).

In 1982, Davies et al. reported a molecular signature associated with tissue-damaging 

exercise (308). Since this time, reactive oxidative species (ROS) and reactive nitrogen 

species have received attention for their roles in communication and signal transduction 

in response to exercise (1067, 1068). For instance, superoxide (O2
−) is produced in a 

variety of skeletal muscle structures such as the sarcoplasmic reticulum, transverse tubules, 

sarcolemma, and (most often) complexes I and III of the mitochondrial electron transport 

chain (85). Active superoxide can undergo dismutation into hydrogen peroxide (H2O2) 

either spontaneously or via enzymatic reaction. In animals, mechanisms that facilitate 

dismutation are more abundant in type II myofibers (36). Notably, H2O2 is a weak oxidant 

and may react with many signaling pathways to promote mitochondrial health (383, 628, 

629, 1067, 1364). In humans, emission of H2O2 is elevated during inactivity and reduced 

by AE training (487). Another key signaling molecule is NO, which is converted from the 

amino acid L-arginine by one of four nitric oxide synthase (NOS) isoforms; NOS1 and 

NOS3 are the most prevalent isoforms produced in skeletal muscle (457, 938). When NO is 

increased in skeletal muscle in response to aerobic exercise, it may promote mitochondrial 

biogenesis through PGC-1α (807). Alternatively, NO may react with molecular oxygen 

to form the oxidizing agent peroxynitrite, which may result in inflammatory (1272) or 

cytotoxic (938) stress.

While these factors are known to contribute to mitochondrial turnover and exercise 

adaptation (1067), the full range of their function in skeletal muscle adaptation is a 

complex and hotly debated research area (200). Some evidence suggests that skeletal muscle 

increases endogenous ROS scavenging in response to the heightened oxidative stress of 

training, indicated by increased expression of superoxide dismutase (SOD), glutathione 

peroxidase (GPX), and markers of mitochondrial biogenesis (1102). However, it remains 

incompletely clear whether supplementation with exogenous antioxidants (e.g., vitamins C 

& E) is detrimental during this early adaptation window. Ristow et al. found that, while 

four weeks of AE training-induced improvements in glucose and fatty acid metabolism, 

insulin sensitivity, and antioxidant defense in both trained and untrained men, vitamins 

C and E blocked these favorable metabolic adaptations (1102). Although several of these 

factors appear to be more highly expressed at baseline in muscle of trained individuals 

(Vo2max ~20% higher vs. untrained), this was not statistically evaluated. In conflict, Bente 

Pedersen and colleagues have performed a series of studies that collectively demonstrate 

that vitamin C & E supplementation has no effect on training-induced increases in aerobic 

capacity, mitochondrial adaptations, superoxide dismutase activity, and insulin sensitivity 

in healthy young men (1460, 1462), although it does alter muscle inflammatory signaling 

(400, 401, 1461). More recently, it was shown that antioxidants blunt long-term increases in 

several other cellular adaptations, independently of any negative effects on whole-body or 

mitochondrial aerobic capacity (927, 1013). Notably, however, many of these studies assess 

performance based only on Vo2max, whereas metabolic efficiency (i.e., running economy) is 

an equally important determinant of AE performance (96). Given the unique metabolic stress 

associated with longer-duration AE (529, 975, 1357), the subcellular effects of exogenous 

antioxidant supplementation may be differentially manifested in longer events. This area 
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clearly warrants further investigation, particularly given the apparent influence of sex, age, 

and/or training status (141, 329).

Myokines—The role of skeletal muscle in intracellular communication is illustrated by a 

class of factors known as myokines, a muscle-specific subcategory of signaling molecules 

called cytokines (1023). These factors were originally characterized for their roles in 

coordinating immune cell motility, activation, and function (1385), but knowledge of their 

wide-ranging behavior has increased exponentially. Furthermore, the cytokine nomenclature 

has been amended as necessary for application to signaling molecules exchanged by other 

tissue types (e.g., adipokines, hepatokines), while myokine has since been expanded to 

include all factors produced and released by muscle, including lipid-derived molecules and 

other metabolites. IL-6 was the first signaling factor identified as a myokine (997): it is now 

known to serve a range of functions relevant to skeletal muscle, including promotion and 

resolution of exercise-induced inflammation (1019), protein balance (508, 1348), and energy 

metabolism (549, 1440). Acute AE activates skeletal muscle transcription and secretion of 

IL-6, along with other myokines, including (but certainly not limited to) IL-10, IL-4, and 

IL-8 (220, 820, 977, 978, 1241).

The time point at which peak myokine activity occurs postexercise appears to vary widely 

based on the intensity and duration of the stimulus. For example, using a time course series 

of muscle biopsies, Louis et al. found that muscle IL-6 gene expression was elevated up 

to 24 h after a 30-min AE bout but peaked at the 8 h time point (820). Steensberg et al. 

demonstrated that muscle IL-6 increased 30 min into a 3 h knee extension exercise bout 

and remained significantly elevated at the cessation of exercise (1248). It is also likely that 

training status plays a role in the myokine response to acute exercise (402). As little as one 

previous exposure to an identical exercise bout may influence myokine production (330, 

602) and release (571, 881), even when spaced up to 4 weeks apart. At the other extreme, 

males with a lifelong history of AE exhibit a less robust inflammatory response to an 

unaccustomed loading stimulus than age-matched nonexercisers (757). Continued research 

is necessary to elucidate what impact this effect has on immune health and/or muscle 

adaptation.

Research using ‘omics approaches has expanded knowledge of the full range of myokines 

produced and secreted by skeletal muscle. For example, Pourteymour et al. applied RNA-

sequencing to the discovery of the muscle “secretome” (1064) and revealed an important 

role for macrophage colony-stimulating factor-1 in response to combined AE+RE training. 

This and other molecules that elicit communication with immune cells (904, 1259) are 

likely to play a role in muscle adaptations to exercise, given the role of macrophage biology 

in resolution of inflammation and skeletal muscle regeneration (228, 691). The complex 

interplay of myokine dynamics, biology of target cells, and phenotypic influences (e.g., age, 

training status) clearly warrants continued investigation via integrated application of ‘omics 

platforms.
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Skeletal muscle adaptations to resistance exercise

The inherently high degree of plasticity in skeletal muscle tissue is perhaps most apparent 

in its adaptation to RE, in which muscle contracts against a load. Classically, RE 

involves progressive overload of the muscle to challenge homeostasis and trigger numerous 

molecular pathways resulting in structural and physiological adaptations (76, 647, 758, 

1107). One of the hallmark adaptations to RE is increased skeletal muscle mass, or 

hypertrophy (76, 531, 647, 758, 1107). Provided that the amount of skeletal muscle 

mass is associated with increased healthspan, protection against various diseases (97, 758, 

1309), and better survival outcomes following infection, hospitalization, and surgery (274, 

666, 773, 1353), research focus has been directed toward identifying and understanding 

mechanisms of RE-induced muscle hypertrophy. However, other dimensions of skeletal 

muscle health (e.g., strength, fatigability, fuel economy) are also common RE outcomes.

Histological and cellular adaptations—In addition to increased whole muscle size, 

myofiber cross-sectional area commonly increases with RE training (1016). Some studies 

report that this is most notable in type IIa myofibers (1244, 1246). Application of the 

size principle for motor neuron firing would dictate that higher RE loads necessitate the 

recruitment of myofibers with a higher firing threshold, that is, type II myofibers (880). 

Indeed, most studies support that higher loads elicit a higher contribution of energy from 

type II myofibers (471, 496), yielding a more pronounced molecular response (1091). 

Emerging research is investigating whether similar effects can be achieved at lower 

intensities performed to failure (933) or with blood flow restriction (1167, 1201). While 

a complete slow-to-fast shift is uncommon, RE training induces an increase in type IIa 

myofiber distribution, often at the expense of hybrid or type IIx myofibers (1244, 1246). 

Beyond this, RE training enables myofibers to contract in synchronicity due to underlying 

neural adaptations to improve efficiency of movement (1, 1140). Within the myofiber, 

physiological parameters such as unloaded shortening velocity and power are increased 

following RE training in both fiber types (1325, 1328), although these patterns are not 

well-sustained into the ninth decade of life (1090, 1216), suggesting a potential age-related 

impairment in muscle plasticity. Thus, while RE training is important for maintenance of 

muscle mass and function throughout aging (758), there is evidence to suggest that an RE 

regimen must be initiated at least in middle-age and continued through later life. Future 

investigation of muscle and other health phenotypes in lifelong RE-trained individuals may 

shed light on the optimal strategy to preserve lifetime peak muscle mass throughout aging.

Muscle protein balance—Skeletal muscle mass is regulated by the equilibrium between 

muscle protein synthesis and breakdown. Naturally, a positive muscle protein balance, in 

which synthesis rates exceed breakdown, yields increased overall muscle protein accretion 

(297, 309, 872, 1043, 1256). In healthy, disease-free, normal conditions, RE has a more 

pronounced effect on muscle protein synthesis than on protein breakdown (56, 467, 741). 

In fact, an acute bout of RE is a potent enough stimulus to increase protein synthesis 

for up to 48 h (297), favoring a positive net protein balance. Transiently elevated muscle 

protein synthesis eventually returns to basal levels after acute RE. Thus, to facilitate 

long-term hypertrophy, it is necessary to perform repeated bouts (i.e., training). Previous 

studies have corroborated that the magnitude of the hypertrophic response is predicted by 
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changes in acute muscle protein synthesis (157, 296), but others have found otherwise 

(905). These discrepancies may be related to the method used to quantify protein synthesis 

(infusion protocols vs. deuterium-enriched water), selected sampling time frame, participant 

demographics (age, sex, training status) (296), and a mixture of other intrinsic factors 

(e.g., individual genotype, epigenetic effects, etc.). Despite the wide range of hypertrophic 

responses to RE, there is a consensus that markers of protein synthesis are at least 

qualitatively predictive of long-term muscle hypertrophy (157, 296, 297, 905). Therefore, 

complementing measurement of muscle protein balance with abundance of molecular factors 

known to influence synthesis and/or breakdown may provide the clearest picture of the 

effects of RE.

Protein translational efficiency—In addition to contractile proteins actin and myosin, 

skeletal muscle hypertrophy is dependent on increased availability of proteins that serve 

a range of muscle functions. To produce functional proteins, muscle must be equipped to 

translate nascent transcripts (mRNAs) upregulated in response to RE in an efficient manner. 

So-called “translational efficiency” can be defined as the rate of mRNA translation by 

skeletal muscle cell (868). The current understanding is that changes in translation efficiency 

are mainly mediated by a variety of molecular pathways including phosphatidylinositol 

3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). In 

particular, mTOR targets p70S6 kinase (p70s6k) as well as eukaryotic translation initiation 

factor binding protein-1 (4E-BP1). Activity of these factors is upregulated following acute 

(607, 905, 1297) and chronic (530) RE.

Protein translational capacity—In addition to an increased abundance of enzymes 

and other factors in the translation pipeline, overall capacity to translate mRNAs is a rate-

limiting step in protein synthesis. The highly conserved organelle responsible for translation 

is the ribosome, an amalgamation of ribosomal proteins and single-stranded rRNA into 

distinct subunits that position mRNAs while facilitating binding of specific tRNAs to yield 

an amino acid sequence. While the overall muscle RNA pool is composed of rRNA, mRNA, 

tRNA, and other noncoding RNA species (395), rRNA constitutes almost approximately 

80% of the total pool. Thus, assessment of overall RNA content may be used as a proxy 

for ribosomal content and, indirectly, a reflection of the capacity for regulation of muscle 

protein synthesis (155, 217, 395).

Increases in the ribosome pool (i.e., ribosome biogenesis) demand a fine and coordinated 

process of several pathways. Briefly, this involves transcription of ribosomal DNA (rDNA), 

followed by processing, maturation, and assembly of rRNA and its ribosomal proteins 

(155, 395). It has been demonstrated that acute bouts of RE can upregulate some of these 

pathways, facilitating the molecular environment to promote ribosome biogenesis (396, 

397). For instance, Figueiredo et al. (397) demonstrated increases in the phosphorylation 

of rDNA transcription factors such as upstream binding factor (UBF) and c-Myc, as 

well as the total protein levels of UBF and transcription initiation factor (TIF)-IA; these 

changes were accompanied by increases in pre-rRNA-45S. With chronic RE exposure, 

these acute elevations in factors related to ribosome biogenesis yield augmented total 

RNA concentration and rRNA density within skeletal muscle (157, 396, 517, 1094, 
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1244), increasing the overall capacity to support hypertrophy. Muscle cell culture models 

corroborate the importance of ribosomes in muscle hypertrophy in the absence of systemic 

influences: myotube growth in vitro may be completely blunted by administration of 

mTORC1 inhibitor rapamycin (956) or inhibition of polymerase I, the DNA polymerase 

responsible for transcription of rRNA (1244).

Studies in humans have demonstrated a relationship between ribosomal density and the 

magnitude of RE-induced hypertrophy (396, 517, 908, 1244). For example, using total 

muscle RNA as a surrogate for ribosomal density, Stec et al. found that individuals that 

experienced the most robust hypertrophic response (“extreme responders”) presented not 

only a higher ribosomal density at baseline but also heightened posttraining ribosomal 

density, indicating ribosome biogenesis, in comparison to individuals that responded poorly 

to RE (1244). In concert with these results, Mobley et al. (908) demonstrated that only 

individuals that demonstrated moderate to large gains in muscle mass exhibited increased 

total RNA concentration in response to an RE intervention. Ribosome biogenesis, or at 

least translational capacity, is thought to be a contributor to the observed differences in 

hypertrophic response to RE between young and old individuals: data support that older 

individuals may present an attenuated hypertrophic response in comparison to younger 

adults. An underlying reason may be impaired activation of molecular pathways related to 

ribosome biogenesis (e.g., c-Myc gene expression and total protein levels of c-Myc and 

TIF-IA) in older individuals (156). Similarly, others have found that only middle-aged adults 

exhibit increased expression of 45S-preRNA after a single acute bout of resistance exercise, 

whereas older adults do not (1245). Many other potential mechanisms are thought to be 

at play in the attenuated age-related response to RE training, including (but not limited 

to) changes in the hormonal milieu (638), oxidative stress (656), and chronic basal muscle 

inflammation (757, 886).

Satellite cells and the myogenic program—There is limited evidence in humans that 

muscle fibers increase in number (hyperplasia) in response to RE. However, progressive 

overload contributes to a stress that eventually necessitates a key structural change: the 

addition of nuclei to the mature muscle syncytium. Each myonucleus is thought to be 

responsible for (and only capable of) coordinating homeostatic processes within a limited 

volume of cytoplasm, a region known as its “myonuclear domain” (533, 663, 1039). 

Accordingly, the preexisting number of myonuclei may eventually become a limiting factor 

as myofiber size increases in response to RE. The addition of new myonuclei into skeletal 

muscle is reliant on specialized, mononuclear, stem-like cells known as satellite cells (SCs), 

found between the sarcolemma and the basal lamina (862). In resting conditions, SCs 

are quiescent but are activated in response to an exercise stimulus, such as mechanical 

stress imposed by RE. Activated SCs may then proliferate and either fuse with an existing 

myofiber, donating its nucleus, or return to a quiescent state, rejoining the SC pool (225, 

349, 533, 534, 1014, 1227, 1463).

RE promotes an orchestrated increase in the expression of several factors thought to be 

crucial in regulating the SC cycle, such as mechano-growth factor (MGF), hepatocyte 

growth factor, and myogenic regulatory factors: for example, increased MyoD, myogenin, 

myogenic factors (Myf)-5 and -6, decreased myostatin (75, 871, 993, 1227, 1463). In 

Lavin et al. Page 42

Compr Physiol. Author manuscript; available in PMC 2023 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



addition to these molecular factors, studies typically examine SC content in histological 

muscle preparations using immuonostaining for their characteristic markers CD56 or paired-

box protein 7 (Pax7) (390). Several studies have demonstrated an expansion of the SC pool 

in response to both acute (345, 964, 1228) and chronic RE (295, 908, 1039, 1229, 1360). 

Furthermore, several have shown that long-term hypertrophy is related to expansion of the 

SC pool (104, 1038, 1039, 1361, 1362), while others have demonstrated that the basal SC 

pool size is of equal importance (1039). However, still others have not observed significant 

relationships between SC number and magnitude of RT-related hypertrophic response (908).

Notwithstanding the apparent effects of acute and chronic RE on SC dynamics, the exact 

threshold at which addition of myonuclei becomes necessary is still not clearly understood 

(946). While the standing estimate had been that an approximately 25% increase in myofiber 

size would necessitate myonuclear addition (664), a recent meta-analysis indicated that 

increases above 10% were sufficient (263). Even within this meta-analysis, the myonuclear 

addition response appears to track with the cellular demand such that more myonuclei are 

added at approximately 20% than at 10% myofiber hypertrophy. Furthermore, myofiber 

type may play a role in this process: some studies have observed that type I myofibers 

are more likely than type II myofibers to increase the number of myonuclei (104, 924, 

1229). This could be explained by a higher myonuclear domain ceiling in type II myofibers 

or characteristically different architecture between myofiber types; for example, type I 

myofibers tend to be situated near more muscle capillaries, which may deliver factors to 

activate SCs more efficiently (648, 963). While the threshold for addition of myonuclei to 

existing myofibers is not presently clear, skeletal muscle is capable of managing RE-induced 

perturbations to homeostasis without the immediate addition of myonuclei, indicating that 

SC fusion is a more stable change or that their heightened activity after RE may serve a 

different biological purpose (946).

Importantly, the role of SCs in hypertrophic response to RE training has been under 

increased scrutiny. Animal models provide an avenue for mechanistic manipulation of SCs, 

such as the use of a tamoxifen-inducible muscle-specific Pax7 knockout mouse. Using this 

design, McCarthy et al. (866) found that depleting approximately 90% of the muscle SC 

pool in mature mice does not impair hypertrophic capacity, at least in response to short-term 

(i.e., 2 week) mechanical overload stimulus. In contrast, Fry et al. (429) demonstrated that 

longer-term hypertrophy (i.e., 8 week) was attenuated in animals with SC depletion. Thus, 

perhaps the muscle hypertrophy attained in the former study was not sufficient to surpass 

the threshold at which addition of new myonuclei via SC fusion was necessary. In addition 

to continued research into the concept of the myonuclear domain, discovery of other factors 

that play a role in the myogenic program may prove useful, particularly as potential targets 

for individuals that are poor responders to RE.

Section summary

Skeletal muscle mass and function are clearly important for movement, but available 

evidence supports that the molecular environment within the tissue is equally critical for 

healthy function. While decades of research in human exercise studies have elaborated 

on the molecular transducers of skeletal muscle adaptations to both AE and RE, there 
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is a rapidly growing understanding of muscle’s roles in physiology that extend beyond 

movement and contraction. For example, mechanisms by which muscle communicates 

with other organ systems are still being elucidated. Given the ease of access to skeletal 

muscle tissue and the insight it may provide into overall health, continued investigation 

of its molecular profile in response to acute and chronic exercise is likely to provide 

guidance toward therapeutic targets to improve exercise tolerance and responsiveness across 

individuals, particularly in the context of morbidity and disease.

Cardiovascular System Adaptations to Exercise

The cardiovascular system is often acknowledged as the primary limitation to exercise 

performance (35) and is a key determinant of overall aerobic capacity, an indicator of 

whole-body health (954). Exercise (particularly AE) necessitates sustained, elevated cardiac 

output, reduces peripheral vascular resistance, and increases venous return of blood to the 

heart, stressing the cardiovascular system to adapt to heightened mechanical and metabolic 

demands. Beyond this, assessment of cardiovascular function using electrocardiography, 

blood pressure, and circulating metabolic markers is relatively well-developed and highly 

accessible. As such, the cardiovascular system is a frequently investigated and well-

understood system in the context of exercise.

Cardiovascular adaptations to aerobic exercise

Ventricular morphology—Adaptations to chronic AE are highly studied and include 

physiological cardiac hypertrophy (551, 1114), increased myocardial oxygen supply, blood 

flow, and transport capacity, increased vessel size, and improved endothelial function 

(551). In particular, the left ventricle (LV), whose action is responsible for pumping 

oxygen-rich blood into the aorta for delivery to the periphery, is often increased in both 

size (volumetric hypertrophy) and wall thickness (structural hypertrophy) (1412), driven 

by increased cardiomyocyte size (545). This process, referred to as cardiac remodeling, is 

brought about to meet the heightened physiological demands associated with higher tissue 

oxygen consumption rates during exercise (840, 1359).

Cardiac remodeling is traditionally categorized as either concentric or eccentric (1179, 

1359). Under physiological conditions, concentric growth is typically defined by greater 

increase in LV wall thickness compared to internal diameter, whereas physiological 

eccentric growth is characterized by increases in both LV internal diameter and wall 

thickness (1359). The time course of these adaptations is not uniformly linear. For 

instance, one year of intensive AE marathon training in young, sedentary men and women 

progressively increases both left and right ventricular mass; however, LV volume does not 

demonstrate a significant increase until after six months of training (44). Furthermore, 

adaptations are easily reversed: although sometimes accrued within two to three months of 

training, they may diminish as early as a few weeks into detraining (360, 686, 851).

Cardiac remodeling is influenced by mechanical stimuli known as hemodynamic forces 

such as flow, pressure, stretch, strain, and compression (166, 492). The combination and/or 

contribution of these hemodynamic forces upon the cardiovascular system establish the 

appropriate parameters for adaptation (1359). Thus, exercise type and modality influence 
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physiological cardiovascular adaptations. During a purely aerobic activity, heart rate, venous 

return, and contractility are all elevated above resting levels; still, even within this broad 

category, important distinctions exist. For example, although running and rowing are both 

AE activities requiring a substantial cardiovascular component, downstream outcomes on 

cardiac remodeling can vary considerably (Figure 6). Rowing is associated with both volume 

(isotonic) and pressure (isometric) stress, while running involves primarily isotonic forces 

on the heart (1399). As such, highly trained individuals in both modalities exhibit larger LV 

volumes (341), but rowers exhibit greater LV mass (1399).

Cardiac cell adaptations—Increases in cardiomyocyte size drive LV hypertrophy (1179, 

1359) and are considered a hallmark feature of AE training (420, 678, 1066). Like skeletal 

muscle, cardiomyocytes are terminally differentiated and primarily increase in size rather 

than number after exercise training. However, AE training in animals has been shown 

to lead to increases in newly formed cardiomyocytes, angiogenesis, and other parameters 

of myocardial remodeling through a range of cardiomyocyte growth factors including 

neuregulin (NRG)-1, bone morphogenic protein-10, and periostin (1398). Examination of 

cardiomyocyte physiology is naturally limited to preclinical models but provides important 

insight into potential mechanisms of adaptation. For example, in rats, AE enhances 

contractility and calcium handling (961, 1393, 1437). Molecular cues that propagate these 

effects in addition to cardiomyocyte hypertrophy are wide-ranging and likely vary by 

exercise type (AE vs. RE), hemodynamic stress-induced hypertrophic outcome (concentric 

vs. eccentric), and other phenotypic variables (840).

Although cardiomyocytes are the primary cause of cardiac hypertrophy in adults (784), there 

is evidence that other cardiac cell types also adapt to exercise training and may be the basis 

of other beneficial training effects. For instance, fibroblasts are responsible for production 

and release of angiogenic factors including VEGF and matrix metalloproteinases (MMPs) 

(1074). Furthermore, adult endothelial cardiac stem cells can be activated to differentiate 

toward the cardiomyocyte lineage by increased cardiac workload for smooth muscle cells 

and endothelial cells (1341). In the periphery, endothelial progenitor cells (EPCs) are 

affected by both AE and RE (431, 1086) in a manner influenced by exercise duration and 

intensity (431, 755). Derived from bone marrow stem cells (782), EPCs are involved in the 

regulation of large vessels and microvasculature expansion. EPCs are involved in vascular 

repair and vessel formation and have the ability to differentiate into mature endothelial 

cells when prompted by exercise training (51). In peripheral blood, EPC concentration 

increases with AE (1086), indicated by heightened presence of the common surface marker 

CD34 (51). Moreover, EPCs may secrete VEGF and granulocyte-colony factors, leading to 

neoangiogenesis (51).

Arterial adaptations—Arteries constitute the first branch of peripheral circulation and 

are responsible for transportation of blood from the heart to other organs. In addition 

to an approximately five-fold increase from basal cardiac output, exercise necessitates a 

highly regulated redistribution of blood flow to contracting muscle in lieu of visceral 

organs, the brain, and so on (431, 1124). To facilitate this redistribution, both conduit 

and resistance arteries play roles in regulating blood flow (551). Conduit arteries are 
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highly elastic and handle the highest pressure loads from the aorta; thus, exercise-induced 

adaptation in major conduits has been an area of clinical interest. A hallmark study by 

Hambrecht et al. investigated the role of hemodynamic forces on vascular function of the 

coronary artery (514), which supplies blood to the myocardium. They demonstrated that 

four weeks of exercise in individuals with stable coronary artery disease led to improved 

endothelium-dependent vasodilatory capacity (514). Others have illustrated that exercise 

improves coronary artery diameter and blood flow (343, 492).

Additionally, Dinenno et al. (334) found that AE increases femoral arterial remodeling, and 

Miyachi et al. reported that AE-induced increases in femoral artery size were associated 

with regional increases in blood flow (907). Furthermore, exercise training may promote 

increased flow within the carotid artery in healthy populations (810) and women with 

sarcopenic obesity (1007). These training-induced improvements may facilitate efficient 

delivery of energy substrates, heightened capacity for clearance of metabolic by-products, 

and reduced endothelial shear stress, the latter of which is thought to contribute to impaired 

endothelial cell function (494).

Resistance arteries are largely responsible for directing blood flow (244) and can be assessed 

in humans using plethysmography (659) or flow-mediated dilation (1310). Hemodynamic 

forces are critical for vascular adaptation: during acute AE, increased heart rate and blood 

pressure impose cyclic circumferential stress on the cardiovascular system. In a complex 

pathway, endothelial cells respond via upregulation of genes including endothelial nitric 

oxide synthase (eNOS), leading to heightened abundance of ROS such as NO (492). 

Training may also increase superoxide dismutases 1 and 3 (430, 570, 1069), enzymes 

that play a role in antioxidant defense (1466). Thus, while exercise acutely increases 

oxidative and shear stress, adaptive mechanisms are in place to handle repeated bouts (492), 

concurrently improving the basal health of the system.

Chronic exercise training-induced acute shear stress may prompt arterial remodeling, 

structurally preparing the vasculature to handle increases in shear stress or other 

hemodynamic perturbations (493). The mechanisms behind this effect continue to receive 

attention but appear to involve increased arterial diameter partly mediated by NO (551), 

which is primarily produced in vasculature through the actions of eNOS (1310). Further 

supporting that intermittent high shear stress is an adaptive trigger, complete removal 

of shear stress in rats increases expression of pro-inflammatory genes such as ICAM-1, 

VCAM-1, E-selectin, and monocyte chemoattractant protein-1 (MCP-1) (643).

Microcirculation—Broadly, the microcirculation is a network of arterioles, capillaries, 

and venules which distribute, perfuse, and collect blood from tissues. Several clinical trials 

have investigated adaptations in microcirculation in response to exercise training. Capillaries 

are in direct contact with skeletal myofibers and can be easily visualized and counted in 

skeletal muscle biopsy samples. Via angiogenesis, AE commonly leads to proliferation of 

the capillary network in human skeletal muscle (34, 930). Increased muscle capillarization 

is one of the later adaptations to AE (35), and newly added capillaries are fairly stable, 

lasting a few weeks into detraining (708, 943) or even throughout aging if training is 

continued (499, 1326). Angiogenesis is largely an adaptation to low oxygen stress, as a 
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hypoxia-based training paradigm (four weeks single-leg cycling with ischemia) increases 

capillary-to-myofiber ratio (376). Increased capillarization, induced by shear and passive 

stress, is mediated through angiogenic factors such as VEGF (579, 842, 990, 1284). In 

animals, removal of VEGF blunts exercise-induced increases in muscle capillary density and 

capillary-to-myofiber ratio (317).

Cardiovascular adaptations to resistance exercise

Although the vast majority of literature focuses on cardiorespiratory adaptations to AE, 

research into RE adaptations has increased, exposing a knowledge gap related to cellular, 

molecular, and regulatory mechanisms that may be specific to RE. Generally, RE has been 

shown to lead to increased ventricular mass, ventricular wall thickness, septum thickness, 

and peripheral vascular resistance (431, 1257). Short, intense bouts characteristic of RE 

are associated with increased blood pressure (1359). Thus, this physiological stimulus is 

more often associated with a pressure than volume load, leading to concentric hypertrophy 

(1057). Indeed, LV adaptations to RE are uncommon when accounting for LV wall thickness 

(1233). Others have shown that six months of RE training leads to decreased carotid 

wall thickness; however, the authors suggest that these changes may be driven by general 

exercise-induced increments in blood flow and shear stress, rather than a feature unique 

to RE (1234). It is well-established that RE training elicits pressure overload response 

in cardiac cells, which leads to intracellular signaling through endocrine cascades (113). 

Specifically, the renin-angiotensin system (RAS) responds to overload eliciting a mechanical 

stretch, and angiotensin II type I receptor (AT1) expression is associated with physiological 

cardiac hypertrophy after RE in a rat model (83). In the periphery, moderate RE can lead 

to increases in circulating EPCs and angiogenic factors such as MMP-2, MMP-3, and 

MMP-9 (1122); MMP-9 is a key regulator of vascularization, as its absence in a mouse 

knockout model reduces the capacity to recruit EPCs and develop blood vessels (598). 

Studies in humans have demonstrated increased skeletal muscle capillarization following 

short-term RE in young (587) and older men (1363), and additional evidence supports that 

capillarization may be highly important in muscle hypertrophy, a fundamental RE outcome 

(923, 1226). Together, the paucity of literature examining cardiovascular adaptations to RE 

represents an area ripe for continued study, particularly in the context of mechanistic factors 

that facilitate adaptation.

Molecular transducers of cardiovascular adaptations

Growth factors—Ligands including IGF-1, VEGF, and thyroid hormones modulate 

cellular growth, survival, and metabolism necessary for angiogenesis. Released from liver 

in response to growth hormone, circulating IGF-1 increases in response to both AE (1467) 

and RE (1482). Both insulin and IGF-1 are necessary for growth and development through 

intracellular signaling cascades (526). The IGF-1 receptor is a regulator of physiological 

cardiac hypertrophy (697, 875). In clinical models, VEGF interacts with NO in response 

to hemodynamic force such as shear stress. Known for regulating both vasculogenesis in 

development and angiogenesis in a mature organism, VEGF stimulates the production of NO 

in endothelial cells (551, 1005).
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Thyroid hormones—Thyroid hormones can have significant cardioprotective effects 

on the cardiomyocytes and the vasculature (631). Furthermore, thyroid hormone 

increases venous return, cardiac output, and systemic vascular resistance (476). Thyroid 

hormone signaling occurs through the thyroid gland, which secretes thyroxine (T4) and 

triiodothyronine (T3), the active form of the thyroid hormone; both are associated with 

physiological cardiac hypertrophy (665). Conflicting findings exist in regard to the effects of 

a single bout of aerobic treadmill exercise on thyroid hormones (250, 601). Some evidence 

demonstrates decreased thyroid hormone after acute AE (695), whereas others report an 

increase (714); these discrepancies may be the result of duration, intensity, or exercise mode. 

In support, Simsch et al. found a differential effect of AE versus RE on levels of thyroid 

stimulating hormone (thyrotropin) (1208), a pituitary hormone upstream of the thyroid gland 

(1004). In this study, well-trained rowers performed three weeks of RE training followed by 

one week of rest and subsequent three weeks of AE training. Thyroid stimulating hormone 

decreased after RE training and increased after AE training, an effect that the authors 

attribute to energy demand associated with high intensity.

Key pathways—PGC-1α plays an important role in physiological cardiac hypertrophy. 

Exercise training increases circulating catecholamine (e.g., β-adrenergic signaling) which, 

in turn, upregulates PGC-1α (431, 1359). PGC-1α is mediated via peroxisome proliferator-

activated receptor α (PPARα) and appears to play a role in exercise adaptations related to 

energy metabolism and mitochondrial biogenesis. Downstream targets of PGC-1α include 

NRFs 1 and 2, as well as the transcription factor ERR, a regulator of mitochondria and 

fatty acid oxidation. Akt is a central regulator of cell growth and survival (553) and is 

activated downstream of kinase cascades such as phosphatidylinositol 3-kinase (PI3K). 

In preclinical models, it is well established that exercise training alters IGF-1 and insulin-

induced signaling through PI3K cascade (1179, 1181, 1410). Briefly, binding of ligands to 

receptor tyrosine kinases (780) leads to activation of the 110 kDa lipid kinase subunit α of 

PI3K and internal stimulation of adaptor proteins insulin receptor substrate (IRS)-1 and 2 

(553, 875). The PI3K pathway has been associated with cell growth, survival, differentiation, 

and proliferation (188, 224).

Downstream, acute increases in activity of Akt can promote growth, whereas chronic 

increases may lead to pathological hypertrophy (840). These differential effects appear to 

depend on the active isoform of Akt and the activity/abundance of downstream targets. 

For instance, the Akt1 isoform appears to be involved in physiological rather than 

pathological cardiac hypertrophy (313). Akt can also inhibit glycogen synthase kinase-3 

β (GSK3β), which can lead to pathological hypertrophy (40). Another notable target of 

Akt is mammalian target of rapamycin (mTOR) (188, 1078), a key regulator of protein 

translation through atypical serine/threonine protein kinases composed of two adaptor 

proteins. Moreover, mTOR complex 1 (mTORC1) regulates protein synthesis, cell growth, 

and proliferation (1454), while complex 2 (mTORC2) is involved in cell survival and 

polarity (1454). Combined, these complexes are necessary for adaptive physiological 

hypertrophy (1172). In addition, mTORC1 is responsive to growth factors including IGF-1 

induction of the P13K/Akt pathway (875).
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Akt is also capable of exerting a cardioprotective effect through a pathway involving 

the growth factor NRG1, ErbB4, and the CCAAT enhancer-binding protein β (C/EBPβ) 

pathway. In a preclinical model, the activity of this pathway is associated with increased 

myocardial regeneration (117). Briefly, Akt blocks the activity of C/EBPβ, serine (Ser473)/

threonine (Thr308) kinase (847, 1286), an inhibitor of the positive effects of Creb binding 

protein (CBP)/p300-interacting transactivator with ED-rich carboxyl-terminal domain-4 

(CITED4) (840). In animals, downregulation of transcription factor C/EBPβ may drive 

cardiomyocyte proliferation and increase CITED4 expression in mice after aerobic exercise 

(135). Continued research into this pathway and its relationship to exercise adaptation (135) 

could have implications for cardiac remodeling and resistance to HF.

Emerging research into regulators of gene expression has revealed a role for miRNAs 

in exercise-induced adaptations in the cardiovascular system (1286). Briefly, miRNAs are 

small, noncoding RNA molecules that influence translation of target messenger RNAs. 

Found throughout the genome, miRNAs are involved in various cardiac functions, including 

adaptive processes, contractile force generation, and inflammation (65). Conveniently, 

miRNA may be sampled from circulation to gain insight into cardiovascular function, 

adaptation, and remodeling. Several species of miRNA are thought to be either cardiac-

specific or to have a particularly high degree of relevance to cardiovascular function. 

Of note, miRNAs regulating the vascular endothelium (miR-208a and miR-126), cardiac 

remodeling (miR-222), and inflammatory pathways (miR-146a) have been associated with 

the heart (65). MiR-126 is acutely increased in circulation following AE in humans (65), 

and some research proposes an intensity-dependent effect (1382). This endothelial-specific 

miRNA may be related to exercise-induced cardiac angiogenesis through pathways such as 

MAPK and PI3K/Akt/eNOS (1204). Targets of miRNA-126 include Sprouty-related protein 

1 (Spred-1) and PI3K regulatory subunit 2, negative regulators of angiogenesis through 

inhibition of the VEGF pathway (918). Moreover, EPC-derived exosomes may promote 

vascular repair and angiogenesis through miR-126. This regulatory network including 

Spred-1 and VEGF may represent a mechanism by which exercise protects endothelial cells 

(830).

A noteworthy mediator of cardiac hypertrophy influenced by exercise is miR-222, which 

inhibits adverse cardiac remodeling through targets including cyclin-dependent kinase 

inhibitor 1B (p27), homeobox-containing 1, and homeodomain-interacting protein kinases 

1 and 2 (814). In humans, circulating miR-222 is increased after both acute (1165) and 

chronic HIIT (590). Additionally, free circulating miRNAs (c-miRNAs) may be released 

by cardiac cells after acute stress such as exercise (65). Preclinical and cell culture-based 

studies are useful in discovery of c-miRNAs and elucidation of their mechanisms of action; 

these approaches can then be complemented clinically with targeted assessment in human 

exercise studies. There appear to be a range of possible effects of acute and chronic exercise 

on c-miRNAs (64, 976), and it is likely that mode- and intensity-dependent effects also exist.

Section summary

The central role of the cardiovascular system in blood and oxygen supply makes it an 

extremely adaptive system in response to exercise. Highly responsive to metabolic (energy 
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stress, hypoxia), and mechanical (hemodynamic forces) stressors, the heart and associated 

vascular increase in size and function to meet peripheral demands of heightened training 

loads. On the molecular level, signaling cascades initiated by hormones, growth factors, and 

other regulatory molecules are critical for these adaptations to occur. Certainly, continued 

investigation in areas of sparse knowledge would be advantageous for the field, for example, 

a focus on cardiac outcomes in response to RE or combined training.

Adipose Tissue Adaptations to Exercise

Now recognized as highly metabolically active, adipose tissue (AT) actively engages in cross 

talk with skeletal muscle in response to exercise to positively modulate hormones, energy 

metabolism, and the resolution of exercise-induced inflammation. In addition, AT secretes 

regulatory factors that influence multiple physiological systems beyond skeletal muscle. 

While a significant body of research has traditionally examined the influence of exercise 

on the quantity of adipose, emerging research supports that adipose quality is of utmost 

importance for health.

Structure and function of adipose tissue

AT is considered a connective tissue and is found throughout the body in specific sites 

called depots that derive from different origins. These depots thus play distinct functional 

roles under the overarching role of AT in metabolism and endocrine signaling. At the 

cellular level, adipose cells (adipocytes) are classified as white, brown, and beige adipocytes. 

Beyond the primary adipocyte populations (762), AT is a heterogeneous and complex 

tissue comprised of fibroblasts, endothelial cells, immune cells, and innervating sympathetic 

nerves, activation of which is required to mediate breakdown or lipolysis (66, 93).

White adipocytes are well-characterized for their role in storage of excess energy 

as triglycerides and the release of hormones and adipokines (762). They are often 

distinguishable by their single large lipid droplet and sparse mitochondrial population 

(1198). White adipocytes constitute white adipose tissue (WAT), the most abundant and 

ubiquitous adipose depot, which forms the basis of both subcutaneous and visceral AT (742). 

Subcutaneous adipose can be easily sampled, whereas visceral adipose is situated within the 

abdominal cavity, presenting a challenge for direct analysis. Thus, there is generally a better 

understanding of the mechanistic role of subcutaneous WAT in adaptation to exercise. Given 

that WAT is found in various specific depots, acts in different metabolic and endocrine 

capacities, and has been shown to arise in certain patterns during embryogenesis and 

growth, it has been generally accepted that the origins of WAT vary based on developmental 

patterning.

During embryogenesis, brown adipose tissue (BAT) develops before WAT (774) and arises 

from progenitor cells expressing Myf5 (774). In humans, BAT is primarily localized to the 

intrascapular region (1198) but also exists in select depots in the neck, supraclavicular, 

axillary, paravertebral, and a few vascular regions in adult humans (778). Originally, 

BAT was thought to be metabolically active during only embryogenesis and infancy; 

however, in 2009, Virtanen et al. (1374) reported its measurable metabolic function in 

adults. Biopsy samples taken from supraclavicular BAT exhibit three-fold higher oxygen 
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consumption versus WAT (1369). BAT is primarily responsible for generation of heat 

through nonshivering thermogenesis, a process mediated by the actions of uncoupling 

protein 1 (UCP-1). Briefly, UCP-1 partially alleviates the hydrogen ion gradient established 

across the mitochondrial membrane during aerobic respiration, reducing its potential to be 

harvested for energy in favor of heat production (66). Fittingly, brown adipocytes have 

an extensive mitochondrial network and are comprised of multiple small lipid droplets 

(1198). While many studies examine BAT via 18F-fluorodeoxyglucose positron emission 

tomography-computed tomography imaging, molecular studies using biopsies are rare due to 

the difficulty of access, complicating its examination in the context of human exercise (241).

Recently, it was discovered that mature white adipocytes exhibited considerable plasticity 

and could transition toward a brown adipocyte phenotype via a process known as 

“browning” (774). These apparently white adipocytes are referred to as “beige adipocytes,” 

which are thought to be derived from the vascular smooth muscle niche (21, 114, 818) 

and thus distinct from fully brown adipocytes. Characteristically, beige adipocytes have 

a unique dendritic morphology and typically express the markers CD34, PDGF Receptor 

α, spinocerebellar ataxia type 1, and UCP-1; morphologically, they are similar to brown 

adipocytes with a large number of mitochondria and multiple lipid droplets (762, 774, 1339). 

Beige adipocytes tend to be interspersed throughout WAT and are thought to play a role in 

response to injury and cold stress (1199, 1338). Currently, the process of WAT browning 

has not been elucidated in humans (1338), perhaps a consequence of small biopsy size. 

Nevertheless, the study of factors that promote browning or beiging of WAT is targeted at 

harnessing potential mechanisms of obesity treatment, based on the premise that conversion 

of energy-rich WAT to the essentially energy-inefficient BAT might represent an intervention 

to increase basal metabolic rate (1355).

In disuse, disease, and energy surplus, adipose tissue can be mobilized from depots, 

redistribute throughout the body, and infiltrate other tissues such as skeletal muscle. 

Intermuscular adipose tissue (IMAT) is considered an ectopic deposition of subcutaneous 

AT induced by factors such as age, overall adiposity, chronic disease, and inactivity (10, 219, 

320, 846). A high degree of IMAT is disruptive to normal muscle function and has been 

linked to impaired strength and mobility, chronic inflammation, insulin resistance, T2D, 

CVD, and other chronic conditions (10, 174).

While not a proper AT depot, skeletal muscle stores fat molecules as intramuscular 

triglyceride molecules (IMTG) that have a high degree of relevance for exercise. IMTG are 

found in lipid droplets in all fiber types, with higher density in oxidative, type I myofibers 

(292, 693). Spatially, IMTG lipid droplets are conveniently located in proximity to the 

endoplasmic reticulum and mitochondria (292). IMTGs, composed of three fatty acids 

linked to a glycerol backbone, can be catabolized for energy production to support muscle 

contraction in both AE (614) and RE (377). Free fatty acids released from other adipose 

depots can also be transported to skeletal muscle via circulating albumin and trafficked 

into these lipid droplets until oxidation (669). Before ultimately undergoing oxidation, fatty 

acids are bound to a carnitine molecule and shuttled into muscle mitochondria via the 

enzyme carnitine palmitoyl acyl-transferase (827). However, supplementation with carnitine 
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has failed to yield ergogenic benefits (87, 983, 1327), indicating that this substrate is not a 

rate-limiting factor.

Role of adipose tissue in acute exercise

In AT, exercise initiates a cascade of events that leads to lipolysis and recruitment of fatty 

acids to skeletal muscle. Skeletal muscle further promotes this through release of myokines, 

key mediators of lipid oxidation (621, 762, 1238). Through the exercise-induced exchange 

of myokines and adipokines, the two systems interact to influence metabolic function of 

immune, cardiac, and endocrine systems (1238). This requires a molecular cascade that 

stimulates lipolysis to respond adequately to heightened energy consumption and metabolic 

demand during exercise. As such, it is necessary to consider the role of AT in exercise in its 

context downstream of endocrine events signaling its activation.

Initially, exercise stimulates the hypothalamus (1384) to produce corticotropin-releasing 

hormone (CRH), which in turn stimulates the anterior pituitary gland to secrete ACTH. 

ACTH acts upon the adrenal cortex in the kidney to release cortisol, a catabolic 

glucocorticoid hormone, into the blood-stream (170): cortisol helps maintain blood pressure 

during exercise and plays a central role in fat metabolism. During exercise, circulating levels 

of cortisol are monitored by the hypothalamus and anterior pituitary to determine the amount 

of ACTH that is released (568). Glucocorticoids such as cortisol promote AT lipolysis 

through increased expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) 

(342) and glucocorticoid receptor-α (GRα) (649). As demonstrated by animal models, both 

factors are important in the appropriate response to exercise-induced increases in cortisol 

(184): 11β-HSD1 is capable of activating inactive glucocorticoids, and GRα is a necessary 

component in lipolysis and lipid secretion. Interestingly, upregulation of GRα has been 

correlated to the reduction of AT mass (649), leading some to pursue it as a treatment for 

obesity (649).

White adipose tissue signaling in exercise—Exercise-induced lipolysis in WAT 

is relatively well-understood due to the size and ease of access of subcutaneous WAT 

depots. Given the important endocrine role of AT, a great deal about its health can 

be ascertained by the secretory phenotype (315) at rest or in response to a challenge, 

such as exercise. While aging negatively influences these parameters, training promotes 

an oxidative phenotype and increases mitochondria in WAT (1052). WAT is primarily 

stimulated through sympathetic innervation of WAT or the action of circulating endocrine 

factors (e.g., norepinephrine, epinephrine, cortisol, and cardiac-derived natriuretic peptides) 

(21, 93). Following stimulation of a primary receptor on the surface of an adipocyte, such 

as β-adrenergic receptor, a cAMP/PKA cascade is activated (920), resulting in downstream 

phosphorylation of various lipase enzymes to initiate lipolysis at the surface of the lipid 

droplet. These include hormone-sensitive lipase (HSL), adipose triglyceride lipase, and 

monoacylglycerol lipase, acting in turn until the glycerol backbone is separated from the 

fatty acids. The resulting single fatty acids are released into circulation, bound to serum 

albumin, and directed to various tissues, including working muscle, to generate ATP for 

energy (920).
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To further support lipolytic metabolism, exercising muscle releases an array of myokines 

such as IL-6, a prominent factor in glucose sensing. Often considered a pleiotropic cytokine, 

IL-6 has numerous beneficial effects on AT when stimulated by exercise. In addition 

to promoting AT lipolysis through the activation of the AMPK pathway (762), exercise-

induced IL-6 has been associated with reduced visceral AT mass in humans (1409) and 

reduced inflammatory cell infiltration into AT in an animal model (835). Furthermore, 

myokine β-aminoisobutyric acid (BAIBA) is produced and released by skeletal muscle 

downstream of PGC-1α activation. BAIBA can lead to the upregulation of UCP-1 and other 

markers of browning in pluripotent stem cells (1106). BAIBA has been linked to obesity 

treatment through stimulation of fatty acid oxidation, attenuation of lipogenesis in WAT, and 

reduction of inflammation and insulin resistance (460, 662). Muscle-derived irisin has also 

been associated with lower levels of visceral AT and browning of WAT (762, 774), although 

the extent of its direct effects on browning is still a subject of debate.

An important class of myokine mediators of AT is the peroxisome proliferator-activated 

receptor (PPAR) isoform family (762, 778). These receptors bind fatty acids to initiate a 

range of pertinent effects on processes including lipolysis, adipogenesis, and lipid storage 

(649). Together, PPARs play complementary roles in AT, acting as the “master regulators” 

of lipolysis and lipid storage balance. For instance, PPARγ is involved in adipogenesis and 

lipid storage, leading to its study as a target of obesity research (649). On the other hand, 

PPARα plays a prominent role in lipolysis and has been linked to the role of BAIBA in 

browning (1106) and increased fatty acid uptake and oxidation in skeletal muscle (177, 591). 

Similarly, PPARδ also functions to increase fatty acid uptake and oxidation in muscle (177) 

and can be activated in response to exercise-induced increases in myokine IL-15, a factor 

inversely correlated to AT mass (762). PPARs initiate downstream effects in both AT and 

skeletal muscle. For example, angiopoietin-like 4 (ANGPTL4) is both a myokine and an 

adipokine with roles in multiple processes related to energy metabolism (762) including 

promoting lipolysis (624), raising insulin sensitivity (251), and increasing circulating fatty 

acids (1089).

Immediately after exercise, cardiac-derived natriuretic peptides, such as atrial (ANP) and 

B-type (BNP), are released from the heart (423). These have widespread effects on several 

tissues within the body, including AT (744). In AT, natriuretic peptides promote lipolysis 

through a cAMP-independent pathway induced by natriuretic peptide guanylyl cyclase 

receptor A (NPR-A) (744). In addition, evidence suggests that natriuretic peptides can cause 

the browning of WAT by inducing a browning program in gene expression (132). However, 

the magnitude of contribution that natriuretic peptides have in inducing lipolysis is unknown 

and likely small when compared to the typical induction of lipolysis. Overall, exercise 

induces a wide variety of molecular responses in WAT beyond those covered here, and 

continued investigation using ‘omics is likely to reveal important signaling factors beyond 

the currently understood adipokine-myokine cross talk.

Role of other adipose depots in exercise

Brown adipose tissue—In contrast to WAT, there is a less-developed body of knowledge 

surrounding molecular effects of exercise on BAT, as BAT depots are difficult to access 
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and study. As such, our understanding of the molecular mechanisms of exercise cross talk 

with BAT is limited and primarily based on animal models and in vitro human cell studies. 

Unfortunately, existing evidence in human exercise is not only sparse but contradictory: 

while some evidence suggests that overall BAT mass decreases and becomes less active in 

response to exercise (778, 1379), others have demonstrated that BAT activity is higher in 

young, lean humans and associated with better glucose tolerance in obesity (1422). In an 

effort to clarify the role of BAT in humans, several animal models of BAT have identified 

BAT-derived chemokines (so-called “batokines”) that play major roles in metabolism, 

glucose and lipid homeostasis, and overall have similar endocrine, paracrine and autocrine 

effects similar to WAT (1422). Theoretically, batokines could be used as biomarkers of BAT 

activity in human exercise. In reality, detection of batokines in humans has been difficult, 

likely due to the predominant outpouring of WAT signaling factors induced by exercise. 

Identification of a circulating factor specific to BAT or BAT metabolism is needed to further 

explore BAT’s role in acute and chronic exercise.

Intermuscular AT—Despite the physical proximity of the two, the molecular cross talk 

between skeletal muscle and IMAT has not been well defined to date. It can be hypothesized 

that due to the secretory nature of AT, IMAT is also a source of regulatory molecules that 

directly impact skeletal muscle. A recent study found that, at rest, IMAT secretes factors 

that decrease skeletal muscle insulin sensitivity and increase free fatty acid concentration, 

potentially promoting muscle insulin resistance (1135). Additionally, myostatin, an inhibitor 

of myogenesis, has been positively correlated with IMAT mass, suggesting that IMAT may 

negatively regulate muscle growth (722). However, AE can reduce (722) or prevent (219) 

the accumulation of IMAT, suggesting that this may be an easily accessible energy reservoir 

for working muscle. In further support, exercise-induced changes in the quantity of IMAT 

appear to be site-specific, as a recent study by Chambers et al. found lower age-related 

IMAT accumulation in the thigh but not the calf muscles of lifelong-trained men and women 

performing primarily cycling (219). Furthermore, higher intensity training was associated 

with attenuated deposition of IMAT. Thus, continued research is needed to understand 

whether the overall abundance of IMAT is a primary determinant of muscle quality or if 

exercise training positively modulates the composition of IMAT (e.g., via browning or other 

indices of adipocyte health).

Intramuscular triglycerides—While IMTG content is negatively related to insulin 

sensitivity in untrained individuals, training reverses this relationship, a phenomenon known 

as the “athlete’s paradox” (111, 729). IMTG are a substantial source of energy during 

(693, 1350, 1403) and after (694) moderate-intensity long-duration exercise and chronic AE 

training increases reliance on IMTG at an absolute workload (110, 614). Interestingly, a 

sex-specific pattern may exist such that females typically store more IMTG than males (618) 

and may preferentially utilize IMTG during exercise (1251). During exercise, IMTG are 

acted upon by HSL and subsequently by perilipin 5 (PLIN5), which is thought to mediate 

shuttling of liberated fatty acids into the mitochondrion for efficient oxidation (134, 693). 

Interestingly, HSL can be differentially regulated in skeletal muscle and AT by selective 

phosphorylation of distinct serine residues, allowing the source of energy substrates for 

lipolysis to be controlled (1404).
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Section summary

While the majority of studies related to exercise training effects on adipose focus on changes 

in total fat mass, the field is shifting toward a more intricate understanding of adipose 

tissue health. In the context of human exercise, examining molecular communication 

between AT and skeletal muscle may reveal factors with key bioenergetic, inflammatory, and 

endocrine roles that can be leveraged for therapeutic benefits. For instance, exercise-induced 

adipokines or myokines that promote browning or beiging have potential for treatment of 

chronic metabolic diseases. Regardless, AT is clearly required for proper endocrine function, 

response to exercise, and energetic support of the skeletal muscle system; benefits of long-

term exercise on adipose health are likely to further promote these critical functions.

Liver Adaptations to Exercise

Metabolic support for exercise is largely regulated by the liver. Through its roles in 

managing glycogen, lactate, lipids, and other metabolites, the liver is critical to support 

continued muscle contraction during exercise. In addition, the liver is a filtration system; 

thus, good insight into overall health, liver function, and inter-organ communication can be 

assessed from circulating factors, including lipoproteins (e.g., LDL, HDL) and cholesterol. 

While much is known about the liver in acute exercise (particularly AE), the specific 

molecular benefits of long-term exercise on liver health are less understood outside of 

preclinical models. Nevertheless, an understanding of the liver’s actions in supporting acute 

exercise provides important perspective into overall health and the adaptive effects that 

support improved exercise performance and metabolic homeostasis.

Structure and function of liver

The liver is the largest gland in the body (~2.5% of total body weight) (951) and its 

energy expenditure accounts for approximately 20% of basal metabolic rate (432, 1394). 

This is related to various homeostatic roles, including synthesis of proteins and hormones, 

extraction and processing of nutrients (e.g., lipids), removal of waste products, antigens, and 

microbes, and storage of glucose and bile (84, 951, 1189). Briefly, oxygen-rich blood enters 

the liver through the hepatic artery. Peripheral blood from the gastrointestinal system gathers 

nutrients, metabolites, and other molecules that may be carried to liver via the portal vein. 

Within the liver, blood is processed in the liver acini and various substances are synthesized, 

either for export through the hepatic vein to remain in circulation or conversion into bile 

for excretion. At the cellular level, liver is comprised of hepatocytes, cholangiocytes, liver 

sinusoidal endothelial cells, natural killer cells, Kupffer cells, and hepatic stellate cells. 

Together, these structures orchestrate the functions of liver as the molecular milieu and 

metabolite flux change.

Role of liver in acute exercise

As a digestive organ, the liver is affected by reduced blood flow to the splanchnic bed 

at the onset of exercise: while it receives approximately 25% of cardiac output at rest, 

redistribution of blood flow substantially reduces this (548, 1031) in favor of skeletal muscle 

(359, 432). However, while working muscle metabolic demand increases, liver is capable of 

maintaining its functioning to support the metabolite flux of exercise (432, 932), including 
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mobilization of lipids (160) and glucose output (1383). Rodent models demonstrate that 

acute exercise markedly affects liver expression of genes related to cellular stress (575), 

perhaps a reflection of the liver’s importance in bearing the metabolic burden of exercise.

Carbohydrate metabolism—Glycogen is the major storage form of carbohydrate (644), 

a highly branched structure arranged that is easily dismantled to constituent glucose 

molecules. Liver glycogen stores are highly concentrated but, given the small mass of the 

liver (~1.5–2 kg), quite limited in comparison to those in skeletal muscle (644), particularly 

in well-trained individuals (477). In fact, it is estimated that hepatic glycogen utilization 

alone could not support exercise for longer than ~20 min (865). Thus, muscle glycogen 

reservoirs are critical to provide carbohydrate during exercise (477), and further advantages 

are conferred by carbohydrate-sparing adaptations within muscle or exogenous carbohydrate 

supplementation (477).

Despite its inadequate glycogen storage capacity, the liver plays a major role in coordinating 

carbohydrate flux to support exercise (11, 300). This role was first illustrated by Carl and 

Gerty Cori in a sophisticated mechanism for which they were awarded the 1947 Nobel 

Prize in Physiology or Medicine (1128). Since this time, it has become well appreciated 

that liver is the central hub of carbohydrate traffic during exercise. For instance, lactate 

and pyruvate, byproducts of glycolysis, can leave working muscle and travel to the liver to 

be converted into glucose (11, 456, 477) and resynthesized into glycogen (270), or simply 

shuttled to inactive tissues (e.g., other muscles) for immediate use as energy substrates 

(16). During exercise, skeletal muscle preferentially uses its own stored glycogen as a 

carbohydrate source, especially at higher intensities (1115), but may draw from plasma 

glucose as resident stores are depleted. As plasma glucose drops, glucagon is released from 

the pancreas (1103) and stimulates liver glycogenolysis, by which liver glycogen is broken 

down to fortify circulating glucose (1103) and support continued muscle contraction (1383). 

Glucose production may also be stimulated in response to exercise-induced increases in 

skeletal muscle IL-6 (1018) and circulating epinephrine (348, 1103), although the latter 

effects may only be seen at very high concentrations (707).

The process by which circulating glucose enters skeletal muscle has been of great research 

interest, particularly in the context of metabolic diseases (e.g., T2D). This occurs in 

both an insulin-dependent (644, 1285) and insulin-independent fashion (28, 1073). The 

former is reliant on the upregulation of the membrane-bound insulin-mediated GLUT4 

transporter (644). Within the myofiber, insulin may activate glycogen synthase, which is 

necessary for glycogen production and eventual storage in skeletal muscle (644). Due to 

high metabolic demands, the actions of insulin in promoting resynthesis and storage of 

glycogen are limited during exercise but prominent after cessation of an acute bout (645, 

1073). Throughout and after exercise, muscle-derived IL-6 may function as a carbohydrate 

sensor, promoting insulin-mediated glucose uptake through communication with the liver 

(549, 1018). Preclinical evidence from John Holloszy’s laboratory demonstrated that skeletal 

muscle glycogen was resynthesized more quickly than liver glycogen 24 h following 

exhaustive exercise in rats (388), supporting that skeletal muscle is preferentially replenished 

and equipped for future metabolically demanding activity.
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Lipid metabolism—In addition to storing small depots of lipids, liver coordinates overall 

lipid metabolism (Figure 7) through its interactions with adipose (source) and muscle 

(sink) (1035, 1189). Under resting conditions, liver metabolizes approximately 40% of 

free fatty acids (FFAs) circulating throughout the body for disposal or storage. During 

exercise, however, FFAs are redirected to support muscle energetics (1189). In fact, 

hepatic lipid metabolism is largely unchanged during exercise (1189), but hepatic lipid 

concentrations are increased after acute AE (653). In regulating hepatic lipid metabolism 

during exercise, pancreatic glucagon serves a dual purpose, stimulating fatty acid breakdown 

in the liver while simultaneously inhibiting lipogenesis (1103). These actions are thought to 

be primarily driven through activation of AMPK, which is known to affect both glucose and 

lipid metabolism in the liver (897).

The liver acts as the central mediator of lipolysis and lipogenesis, feeding fatty acids to 

the body tissues such as skeletal muscle and adipose tissue (999). Glycerol byproducts of 

lipolysis in AT can be shuttled to the liver, where they are then used as a noncarbohydrate 

substrate for conversion to glucose via gluconeogenesis (1123). Alternatively, glycerol may 

also be processed into a triglyceride via reesterification with free fatty acids (958, 1439). 

This process occurs both in adipocytes and skeletal muscle (354, 917). Throughout the body, 

the degree of fatty acid cycling that occurs at rest and after exercise is remarkable (1439), 

and flexibility in the process appears important to transition from resting metabolism to the 

heightened demands of a perturbation such as exercise.

Molecular transducers of liver roles in exercise

Key pathways—The mechanisms mediating the range of liver functions are incompletely 

characterized but include several key factors. For instance, 5′-AMPK acts as a central 

metabolic switch that is particularly sensitive to exercise in both the liver and skeletal 

muscle (640). In the liver, AMPK activation is involved in glucose and lipid metabolism 

(348, 897, 1103), along with other processes including catabolism, cell cycle arrest, 

mitochondrial biogenesis, fatty acid oxidation, glucose uptake, and insulin signaling (942). 

Specifically, AMPK phosphorylation leads to suppression of fatty acid synthesis and 

favors fatty acid uptake and oxidation (640). The specific downstream effects of AMPK 

activation in energy sensing and metabolism appear to depend on differential activities of 

its subunits. For example, phosphorylation of the α subunit of AMPK facilitates hepatic 

glucose secretion (640), while the β2 subunit has been described to bind to glycogen and 

promote in an increase of skeletal muscle glucose uptake (640). Additionally, angiopoietin-

like protein-4 (ANGPTL4) is a plasma protein secreted by adipose and liver (688, 696) 

that reduces the activity of lipoprotein lipase to regulate plasma triglyceride levels (624). 

In response to exercise, the liver increases ANGPTL4 production through glucagon-induced 

stimulation of the cAMP/PKA pathway (624). ANGPTL4 also plays roles in lipolysis 

in adipose and skeletal muscle, angiogenesis, and vascular permeability (577). Continued 

investigation of the impact of these factors in response to differential energy stress is 

warranted in the context of human exercise.

Exosomes—The role of exosomes in exercise-mediated tissue cross talk is a developing 

area of study (1136), but the liver may be particularly relevant to these research efforts, 
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since exosomes released from skeletal muscle have an apparent tendency to localize in 

the liver (1423). This may represent a mechanism for muscle-liver cross talk or a central 

role for the liver in filtering and/or redistributing muscle-derived exosomes to other tissues. 

Whitham et al. recently demonstrated that the vesicular adhesion protein integrin beta 5 

(ITGB5) was both released by exercising muscle and taken up by animal liver cells in vitro, 

indicating its potential importance in directing exosomes to liver (1423). These findings 

provide direction toward identification of mechanisms underlying exosome and extracellular 

vesicle trafficking through the liver. Given the wide range of possible downstream effects, 

continued investigation is necessary.

Liver adaptations to chronic exercise

The effects of chronic exercise training on the liver are poorly understood in healthy human 

populations. The present understanding of molecular pathways driving liver adaptations 

to exercise is obtained through a combination of preclinical models and histological 

observations in human disease (e.g., fatty liver disease, diabetes). Chronic AE leads to 

lower hepatic fat deposition (432, 1330), and studies in animals have associated these 

changes with improved coupling of mitochondrial oxidation to the tricarboxylic acid cycle 

and decreased oxidation of palmitate (1330). As most of these utilize a treadmill running 

paradigm, is unclear whether other modes of exercise (e.g., RE, HIIT) elicit the same 

metabolic impact that contributes to these effects. Nevertheless, exercise-induced reductions 

in liver lipid droplet distribution have potential relevance for nonalcoholic fatty liver 

disease (84). Impaired PPAR signaling is thought to play a role in the development of 

characteristic features of this condition, including liver steatosis, dysregulated lipid profile, 

and inflammation (177, 808).

While the mechanisms are not completely clear, exercise training often leads to changes 

in levels of circulating lipoproteins produced in the liver, for example, cholesterol, HDL, 

LDL (1358). However, reductions in cholesterol are not a universal outcome of exercise 

training studies (725). Some evidence suggests that an intensity threshold exists to modify 

blood lipid profile (1129); this may be a result of metabolic stress associated with increased 

carbohydrate utilization at higher intensity. Nevertheless, exercise-induced increases in HDL 

may contribute to reduced overall systemic burden, promoting hydrolysis of cholesteryl 

esters in the liver through the actions of sterol carrier protein 2 and fatty acid binding protein 

1 (27). Furthermore, HDL facilitates removal of cholesterol released by arterial macrophages 

(1081), a process upregulated with regular exercise (1129).

As the body’s toxin filtration system, the liver sees inflammatory and oxidizing factors 

originating from a variety of sources, including free radicals and ammonia derived from 

active skeletal muscle (1134, 1330). Acute inflammation following exercise is associated 

with increased production of ROS in liver mitochondria, which may result in liver 

injury in animal models (84, 403). Some evidence supports that IL-6, a key factor in 

carbohydrate metabolism during/after exercise, can contribute to liver pathology when 

chronically elevated (1162). However, chronic exercise training has both anti-inflammatory 

and antioxidant effects, which may bolster resistance to these acute stresses (84, 1084). In 

support, moderate- and high-intensity exercise reduces inflammatory cytokines and injury-
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related markers in the liver (84), including superoxide dismutase, catalase, and reduced 

glutathione. In consideration of these results, it is important to recognize that combination 

of exercise with antioxidant supplementation may obscure the natural antioxidant effects of 

exercise.

Another prime liver-derived indicator of overall health is C-reactive protein (CRP). Liver 

produces CRP in response to inflammatory signals such as IL-6 and IL-1 (441, 1162). CRP 

serves as a nonspecific diagnostic marker for the progression of a variety of conditions 

characterized by an inflammatory component (42), which, incidentally, is a feature of 

many chronic diseases (433). At the cellular level, CRP is involved with activation of 

immune functions including phagocytosis (5) and complement activation (1236). While 

more highly fit, higher-functioning individuals often demonstrate lower circulating CRP 

than their counterparts (450, 462, 1096, 1280), short-term exercise does not consistently 

induce changes in circulating CRP (518, 716, 974). It is therefore unclear whether the 

etiology of an exercise training effect is based in the liver or another tissue, for example, 

adipose (186, 1367). Nevertheless, exercise likely lessens the overall systemic inflammatory 

burden, reducing the load on the liver and enabling its optimal functioning.

Section summary

The capacity to maintain normal liver function is important both for resting and exercising 

metabolism. Continued investigation into the role of the liver in managing metabolites 

affected by exercise may be supplemented by exercise studies employing metabolomics, 

lipidomics, and other unsupervised ‘omics platforms. Finally, the health of other splanchnic 

organs, including the gastrointestinal system, is likely to be important in overall metabolism. 

Attention to this area via improved understanding of the gut microbiome will be fruitful 

in our understanding of the integration of physiological systems to maintain homeostasis 

during acute and chronic exercise.

Nervous System Adaptations to Exercise

A.V. Hill once postulated that exercise performance was likely controlled by a physiological 

ceiling in work output imposed by the heart or the nervous system (566). Nearly a 

century later, Timothy Noakes introduced what is known as the Central Governor Theory, 

maintaining that the brain enforces necessary limitations to exercise performance to protect 

the organism as a whole (458, 981). While the theory’s underlying mechanisms (1054, 1148) 

and shortcomings (627, 1188) continue to captivate the field, it is clear that the nervous 

system is both an integral player in adaptation to exercise and a beneficiary of regular 

structured exercise.

The central nervous system

Until very recently (374), it was believed that the central nervous system (CNS) was not 

plastic in adult humans; that is, neurogenesis did not occur in a fully formed adult brain. We 

now appreciate that exercise training may exert a powerful influence on the architecture and 

thus the function of the CNS, typically defined as the brain itself and the spinal cord. In an 

elegant series of animal studies, van Praag et al. have established a direct effect of treadmill 
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running on neurogenesis (1351, 1376). In humans, compelling evidence exists to suggest 

that elite exercise performance may be attributable to neural plasticity (541, 542, 826). 

Cross-sectional studies suggest structural differences in the CNS of highly trained athletes 

(1290) that may confer performance-related advantages (599). Evidence in young (79) 

and older (80) adults suggests that baseline neural architecture may determine the degree 

of adaptability to training: individuals with increased separation between neural networks 

(termed “modularity”) exhibit more favorable changes in learning and cognition with 

exercise training. Thus, as with many physiological systems, it is likely that a combination 

of baseline phenotype and extrinsic factors (e.g., exercise mode, frequency, and intensity) 

combine to influence exercise adaptations in the CNS.

Central nervous system adaptations to aerobic exercise

Research into the effects of exercise on the CNS has largely focused on the hippocampus 

(267), the learning and memory center of the brain that appears very plastic to exercise 

training. In adult humans, the left hemisphere of the hippocampus is generally more 

responsive, although some studies demonstrate additional benefits for the right hippocampus 

(399). These structures are involved in episodic and spatial memory, respectively (379). 

These effects are thought to be mediated by induction of long-term potentiation and 

upregulation of receptors for the neurotransmitters excitatory glutamate (1138) and 

inhibitory GABA (267). Animal research demonstrates that voluntary wheel running (AE) 

promotes the proliferation, development, and survival of hippocampal neurons, which are 

then guided toward the nearby entorhinal cortex, a structure involved in spatiotemporal 

processing and memory (1375). In adult humans, the entorhinal cortex is activated by 

walking (371) and combined exercise (819, 1195), including AE, RE, walking, and 

stretching. Interestingly, animal data also suggest a positive correlation between the 

magnitude of cardiovascular adaptability to AE and degree of hippocampal neurogenesis 

(982), suggesting a strong influence of genetics on these connections.

Many studies link neural plasticity (1171), hippocampal volume (215, 372), and cognitive 

function (1101) to aerobic capacity at various stages of life. However, in mid-life (i.e., 

outside periods of brain growth or atrophy), fitness correlates best with viscoelasticity, a 

measure of brain structural organization (1171). This raises the important distinction that 

exercise does not necessarily increase hippocampal volume during periods of maintenance 

(e.g., mid-life) but is most effective during development and age-related atrophy (373, 

399). During childhood brain development, exercise appears to have a beneficial role in 

hippocampal volume (215, 562, 1029), translating to better learning (562), memory (215), 

and academic performance (449). In older adults, AE interventions may slow or reverse 

age-related hippocampal atrophy in a year or less (373). Evidence in Master’s athletes 

supports that high-intensity AE may protect structural integrity. This population exhibits 

increased cortical thickness (1443), preserved integrity of white matter composed primarily 

of myelinated axons (1337), and attenuated loss of grey matter in brain regions associated 

with memory and motor control (1336). These patterns are complemented by an 83% 

reduction in white matter hyperintensities, hotspots that indicate loss of myelination and are 

correlated with risk of dementia and death (311, 1337).
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In addition to promoting improvements in size and function of these brain regions, regular 

exercise prepares the brain for subsequent bouts of exercise. Anticipatory increases in heart 

rate and respiration, as well as appropriate redistribution of blood flow, are components of 

this adaptation mediated by the cortical autonomic network (23). CNS regions including 

the insular, medial prefrontal, and anterior cingular cortices communicate with peripheral 

mediators to reduce parasympathetic input, aiding in preparing the body for the onset of 

exercise. Whereas impaired activity of the cortical autonomic network in aging (1443) 

and disease (31) may contribute to increased perceived effort during exercise, long-term 

training enhances the system’s efficiency, improving exercise tolerance. This is supported by 

examining the alpha:beta ratio, a comprehensive measure of brain efficiency in multiple 

regions monitored through electroencephalogram (826). During cycling, highly trained 

cyclists with higher Vo2max demonstrate greater alpha:beta activity ratio, indicating less 

active cognitive processing during an accustomed exercise bout (826).

Central nervous system adaptations to resistance exercise

Functional domains of neural health are also improved after short-term RE in older 

adults (209, 560). Progressive RE outperforms computer-based cognition training in older 

women with MCI (1271), improving both cognitive performance and white matter lesion 

frequency. In a randomized controlled trial of 100 community-dwelling adults, RE-induced 

improvements in cognition were better associated with gains in strength than with change 

in aerobic capacity (863). This may be due to greater absolute dynamic range in skeletal 

muscle strength gains than in aerobic capacity, which others have shown to be associated 

with neurocognitive outcomes and structural integrity in the pretrained state (215, 372, 

1101, 1171). Data regarding structural adaptations to RE are less conclusive. It has been 

shown that a year of RE training in older women reduces the rate of total white matter 

atrophy (118), with benefits persisting up to a year after cessation of supervised training. 

Hippocampal neurogenesis in animals subjected to weighted ladder climbing, a model of 

RE, is not consistently elevated (474, 982), but simply the act of learning a motor-based task 

may improve synapse formation in the rat motor cortex (709). Additional research is needed 

to understand the impact of RE on prevention of hippocampal atrophy throughout aging.

RE generally receives less attention than AE in studies designed to examine neural 

adaptations to exercise. This discrepancy might be due to the vast preponderance of 

mechanistic information from animal research using treadmill running, difficulty in 

discerning the tissue origin of systemic responses to AE, the lack of a universally 

accepted RE-based analog to cardiovascular fitness (e.g., muscle size, strength, or power), 

and/or some other methodological consideration. Further evidence exists to suggest that 

cardiovascular stress, presumably reflective of greater systemic burden, is necessary to 

elicit beneficial effects of exercise on memory (1378) and functional connectivity (869). 

In support, some authors have suggested using blood flow-restricted RE to increase the 

metabolic load above that of more traditional RE, theoretically enhancing the production of 

neuroactive substances that impact cognitive outcomes (1318). Clearly, further work using a 

wider range of intensities and alternative modes of exercise is needed to elaborate on these 

findings (559).
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Molecular transducers of central nervous system adaptations

Growth factors—Several factors believed to influence neural adaptability to exercise have 

been identified, and it is thought that muscle either directly secretes them or indirectly 

promotes their secretion (318, 1021). In distinguishing whether a muscle-derived signaling 

molecule may act in the CNS, it is critical to establish whether the factor has the capacity to 

cross the blood-brain barrier (BBB). This physical barricade between peripheral circulation 

and cerebrospinal fluid is selectively permeable and regulates leakage of potentially toxic 

materials into proximity with the brain. Some evidence suggests that BBB integrity is 

generally fortified by exercise training (246, 864), whereas its permeability is increased in 

aging (370, 909) and disease (799, 841).

Studies in humans have linked exercise-induced increases in hippocampal volume to a 

rise in circulating brain-derived neurotrophic factor, BDNF (373). Binding to tropomyosin 

receptor kinase (Trk)B receptor (812, 1041), BDNF acts centrally by promoting long-

term potentiation and survival of neurons (737). BDNF may also exert peripheral effects 

through other receptors, such as muscle regeneration in myocytes via neurotrophin receptor 

p75NTR (262). Numerous studies demonstrate increased concentrations of circulating BDNF 

during and after exercise (812, 1277). However, it remains unclear whether muscle is 

the direct source of this increase, with studies showing varying results (860, 1389). 

Circulating megakaryocytes are likely to produce a substantial fraction of BDNF in humans 

(214, 860), suggesting an integration of body systems is involved in this response to 

exercise. Furthermore, successive exercise bouts are believed to have a synergistic effect 

on circulating BDNF (1277), although conflicting data exist as to the impact of long-term 

AE on basal BDNF (63, 105, 1435, 1481). The role of BDNF in neural adaptations to RE is 

also unclear. Animal models often demonstrate hippocampal neurogenesis independent of an 

increase in BDNF (474, 982). Similarly, BDNF is unchanged after 12-week RE in humans 

(617), though some data suggest responsiveness to RE may be contingent on variables such 

as sex (411, 412), intensity (870), or training status (247, 1459).

VEGF is intricately involved in cardiovascular adaptations to exercise (579) but may also 

be a major player in neural adaptations (671, 1098). In animals, exercise-induced VEGF 

promotes neurogenesis after injury (1476) and cerebral angiogenesis via hydroxycarboxylic 

acid receptor (HCAR1) (921). While upregulation of VEGF mRNA is commonly detectable 

in human skeletal muscle following both AE and RE (128, 285, 1292), there is a broad 

range of potential sources of exercise-induced VEGF. Concerningly, however, an age-

dependent decrease in acute AE-induced muscle VEGF expression is apparent in women 

(285), and long-term AE may not be fully protective against this (1150). Nevertheless, 

cerebrospinal fluid concentrations of VEGF are increased after RE in individuals with 

chronic hydrocephalus (1458), a neural condition contributing to dementia and cognitive 

impairment. Thus, improved blood flow promoted by VEGF signaling may represent a 

potential therapeutic mechanism for restoring delivery of blood and oxygen to the brain 

(1194).

PGC-1α plays a central role in coordinating production/secretion of VEGF (779) and 

other neuroactive molecules following exercise (318). For example, irisin and kynurenine 
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aminotransferase (KAT) enzymes are upregulated through the transcriptional co-factor 

activity of PGC-1α. Irisin represents the secreted form of fibronectin III domain-containing 

protein 5 (FNDC5), which is upregulated postexercise in mouse hippocampal and cortical 

neurons upstream of an increase in BDNF (1448). In humans, acute exercise increases 

circulating irisin approximately 15% to 20% (414), although long-term training does not 

appear to influence basal irisin levels (120). Skeletal muscle FNDC5 shows no increase with 

acute exercise or chronic training (1024) but is increased in young men following 20 days of 

twice-daily high volume HIIT (352), suggesting a potential intensity- or frequency-mediated 

effect. The precise implications of the PGC1α-FNDC5-irisin axis for neural adaptations to 

exercise in humans are not yet clear, but this pathway is receiving increasing attention as a 

target for neurodegenerative (1465) and neurological conditions (151).

Neuroactive peptides—KAT facilitates the breakdown of kynurenine (KYN), a 

byproduct of tryptophan metabolism. Under normal physiological conditions, tryptophan 

is metabolized into neurotoxic and BBB-transient KYN; however, exercise promotes the 

breakdown of this substance into kynurenic acid (KYNA). The BBB is impenetrable to 

KYNA (1021), and this has been associated with neuroprotective, antidepressive, and 

anxiolytic effects (13, 912). KAT expression in healthy adult skeletal muscle is increased 

by acute exercise and long-term AE (1161), and acute increases in KYNA are seen after 

marathon running (786). Furthermore, skeletal muscle expression of genes in the KYN 

pathway are upregulated following RE training (25), and dysregulated urine concentrations 

of KYN in chemotherapy patients are normalized by RE (1480). However, depressed 

individuals undergoing moderate AE or combined AE/RE training do not exhibit changes 

in circulating KYN or KYNA, despite improvements in depression score and fitness (903). 

As with BDNF (1277, 1459, 1481) and VEGF (1292), a higher training status may predict 

a stronger signaling response; thus, longer-term studies may be necessary to elucidate the 

dynamics of tryptophan metabolite processing in exercise and mood disorders.

Exercise promotes the release of other neuroactive factors that may improve mood 

and pain tolerance (18, 452). For instance, endorphins interact with opioid receptors 

(1133), and endocannabinoids such as anandamide bind to cannabinoid receptors (436). 

Heightened endorphin activity is detectable in the human brain after HIIT (1133) and AE 

lasting approximately 2 h (124). Increases in circulating endocannabinoids are thought to 

result from cortisol signaling (569) and may be involved with BDNF (563). Circulating 

anandamide is increased following 30 min of moderate-intensity AE, but not after high- 

or low-intensity (1085). Further, anandamide is increased in healthy adults regardless 

of whether exercise is prescribed or self-selected (144), whereas only the former elicits 

increases in depressed individuals (896). Given these mechanisms of action, it is enticing 

to consider that exercise training might help reduce dependence on recreational drugs (145, 

829, 1110). However, clinical trials investigating this connection have produced equivocal 

results (1153, 1332, 1478). More human-based research is clearly needed to expand on the 

mechanisms of exercise-induced improvements in mood disorders and addiction, including 

whether long-term exercise reduces lifetime risk.

Furthermore, while regular exercise has numerous benefits for cognitive health throughout 

the lifespan, it is worth noting that dependence on exercise remains a risk to mental health 
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(266, 906), especially in young individuals and those involved in physique-oriented sports 

(e.g., gymnastics, bodybuilding, wrestling). Thus, mindfulness of exercise dose, as well 

as purpose (e.g., competition, wellness, weight loss), is encouraged. On the other hand, 

abstinence from exercise in an exercise-dependent individual may bring about disordered 

mood and affect, apparently mediated by dysregulated endorphin and anandamide signaling 

(41). This fragile balance between wellness and illness further highlights the range of 

physical activity thresholds that exist across body systems. The field is encouraged to 

consider this when designing integrated exercise trials to target the health of multiple organ 

systems.

The peripheral nervous system

The peripheral nervous system (PNS) includes the somatic and autonomic systems, which 

are under voluntary and involuntary control, respectively. Skeletal muscle is innervated by 

both systems through physical connections with both motor (169, 1311) and sympathetic 

(86, 223, 1261) neurons (Figure 8). The neuromuscular junction (NMJ) represents the direct 

physical interface between the somatic nervous system and skeletal muscle. Sympathetic 

input typically exists in close proximity to an NMJ (690) and, through the adrenergic 

receptors (690), may influence a range of skeletal muscle functions and processes (1104) 

including ion transport, calcium sequestering, and even gene expression (1112). These 

neural inputs are critical for muscle survival in addition to contraction, locomotion, and 

exercise.

Somatic nervous system—A given motor neuron and all fibers that it innervates are 

considered one motor unit. According to Henneman’s “size principle” (554), the motor 

units associated with the smallest neuron bodies (and, usually, the least fatigable myofibers) 

fire at the lowest threshold. Thus, exercise intensity dictates the demand on the motor unit 

pool of a given muscle and is likely to explain adaptations to different types of training. 

For example, regular AE reduces the firing threshold, allowing maintenance of rhythmic 

muscle contractions with lesser neural current. Rats subjected to treadmill training exhibit 

hyperpolarized resting potential, specifically in the slow motor neurons most impacted by 

continuous AE (98). It is suspected that this finding may be driven by trophic factors such 

as BDNF (98) or adaptative changes in abundance of receptors for neurotransmitters (e.g., 

GABA and serotonin) and other signals whose integration determines muscular contraction 

(831).

Motor units can be indirectly assessed in humans using motor unit number estimate 

(MUNE), calculated by dividing the summed muscle action potential of all motor units by 

the average motor unit potential measured throughout the muscle (316). While not sensitive 

to a large range in motor unit potentials across the muscle, this approach is well-correlated 

with the number of motor units and enables the detection of general dynamic changes 

in neuromuscular remodeling (557). A salient finding in humans is that primary aging 

tends to reduce MUNE (876, 1044) while increasing estimates of motor unit size. This 

observation is most commonly understood as the result of myofiber denervation followed 

by collateral reinnervation by a neighboring motor neuron’s axon (787, 877). The functional 

consequences of this are only beginning to be elucidated, but it is generally thought to 
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be preferable to denervation without reinnervation, in which myofibers undergo death and 

contribute to overall atrophy and impairments in function (1045, 1105).

In older adults, habitual exercise appears to promote reinnervation in a mode-specific 

manner, as supported by higher MUNE values (1065) in muscles that are regularly activated 

by the activity of choice (1044). On the other hand, neither AE nor RE has an effect 

on motor unit potential in young adults (1044), although power training may increase the 

overall number of motor units. In highly AE-trained older adults, reinnervation may occur 

to such an extent that type I motor units are remodeled into a “grouped” configuration (934, 

935, 1065), due to shifts in myosin heavy chain composition caused by collateral innervation 

with a type I motor neuron. The underlying molecular mechanisms are not completely clear 

but may involve signaling to promote cell adhesion, NMJ stability, and myofiber survival 

(683, 684, 759).

Evidence from animals supports that age-related changes in NMJ structure are mitigated by 

exercise (1345). In humans, improvements in muscle innervation are reported to occur with 

short-term training (683, 889), and histological evidence supports that long-term AE may 

protect against denervation and/or failed reinnervation in old age (934). Denervated skeletal 

muscle undergoes predictable changes in membrane composition, including disassembly of 

the Ach receptor (505), and recapitulated expression of factors such as neonatal myosin, 

neural cell adhesion molecule (340), and developmental ion channels. Presently, insight as to 

the effects of muscle contraction on these factors comes from diseased populations such as 

individuals with PD (683) or spinal cord injury (195). The mechanistic effects of long-term 

training on NMJ stability in healthy populations constitute a considerable knowledge gap. 

Nevertheless, that a considerable degree of plasticity still exists in chronic disease may 

suggest that adaptation is possible in healthy older muscle, given the appropriate type and 

degree of exercise stress.

Animal models have provided considerable insight into mechanisms underlying exercise-

induced alterations in neuromuscular junction integrity. For instance, in an animal model of 

denervation, exercise facilitates more extensive dendrite branching (237), axonal sprouting, 

and NMJ stability (980). In mice bred for high versus low running performance, factors 

related to NMJ integrity are differentially responsive to AE initiated in later life (165), 

suggesting an influence of genetic composition, as is thought to exist in the CNS (79, 

80, 982). While the ability to discern whether a given genotype predetermines response 

to exercise in humans is an attractive area of current research, it is not currently known 

whether responder status is associated with improvements in NMJ dynamics such as reduced 

denervation or heightened success of reinnervation throughout aging.

Autonomic nervous system—Downstream of the cortical autonomic network, the 

other primary PNS pathway includes both the sympathetic and parasympathetic nervous 

systems. Sympathetic output orchestrates the endocrine responses that accompany exercise, 

including upregulations in the hormone norepinephrine. Norepinephrine consequently 

interacts directly with NMJs, the site of chemical exchange underlying muscle contraction 

(1104), augmenting the effect of Ach exchange. In animals, removal of sympathetic 

innervation obliterates the catecholamine response, alters neurotransmitter release, reduces 
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membrane Ach receptor density, and contributes to an array of muscle gene expression 

changes that mirror motor denervation [e.g., upregulated expression of Ach receptor subunit 

γ and histone deacetylase 4 (HDAC4), upstream of an increase in atrophy signal muscle 

ring-finger 1 (MuRF-1) (1112)]. Individuals with spinal cord injury impacting autonomic 

function display a blunted sympathetic response to AE (e.g., wheelchair cycling over a 

half-marathon distance) (574, 987), but it is presently unclear what the ramifications are for 

long-term adaptability or recovery. In healthy populations, regular training does not notably 

impact the sympathetic response to exercise (22, 201), likely due to its importance as a 

highly conserved integrated response. At rest, parasympathetic tone is elevated in highly 

trained athletes (201), just as resting sympathetic output may be curtailed in individuals 

with metabolically stressful conditions such as hypertension (201) or during periods of 

altered hormonal flux, such as menopause (992). Notably, extremely high training doses are 

thought to partially reverse these beneficial effects (254, 1278), an area warranting continued 

investigation.

Additional knowledge gaps facing the field include molecular examination of PNS 

structures such as muscle spindle fibers and the Golgi tendon organ (832). These 

proprioceptive mechanisms enable continual awareness of body position (1076) and muscle 

forces to protect against damage from excessive stretch or ill-timed contraction (1077). 

Methodological difficulties are likely contributors to the lack of molecular knowledge 

related to these structures in humans, but researchers are encouraged to consider their 

roles in exercise adaptations, fatigue, and performance. For example, function of the muscle 

spindle appears to be linked to skeletal muscle satellite cell abundance (369, 632), with clear 

implications for adaptability to a training regimen.

Section summary

The nervous system is a master regulator of physiological function and performance, and 

the full range of its plasticity with exercise training is continuing to unfold. Across the 

lifespan, exercise confers benefits for neural functions such as learning, memory, and spatial 

awareness, while facilitating neural adaptations underlying exercise tolerance. Presently, a 

range of mechanistic factors have been identified, and continued pursuit of their roles in 

human exercise will be fruitful. Eventually, this knowledge could be applied to the use 

of exercise as a preventative or adjuvant therapy for neurodegenerative disease, cognitive 

impairment and dementia, neuromuscular conditions, mental health disorders, and substance 

dependence.

Skeletal System and Associated Structures in Adaptation to Exercise

Critical to locomotion and load-bearing, the skeletal system (e.g., bone) provides structural 

support and protection for many organs. Skeletal muscles, directly attached to bones 

through tendons, contract to create bone movement that forms the basis of exercise. 

Like most physiological systems, bone is adaptive to structured exercise training. Though 

most mechanistic work is limited to preclinical studies, system-level exercise-induced 

improvements in bone, joint, and tendon (Figure 9) illustrate that these structures are active 

and responsive to acute and chronic exercise.
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Structure and function of bone

Bone is an osseous tissue comprised of four primary cell types: osteocytes, osteoclasts, 

osteoblasts, and bone lining cells known as the basic multicellular unit (BMU) (407, 

501, 1406). BMU cells are responsible for sensing changes occurring within their niche 

and respond accordingly by reabsorbing or laying down new bone (407). Normally, 

osteoblasts secrete bone matrix and osteoclasts reabsorb matrix in a coupled fashion to 

maintain relative homeostasis. However, when this equilibrium is dysregulated (e.g., as 

in osteoporosis), osteoclasts promote greater demineralization than the osteoblasts restore, 

resulting in decreased bone mineral density (BMD) (58). Exercise also affects this balance, 

most typically in a positive manner to promote bone health outcomes (1147), such as 

increased BMD and strength (1407).

BMD is the most common measure of bone health and is commonly taken at the femoral 

head, hip, and lumbar spine with the use of dual-energy X-ray absorptiometry (DEXA) (588, 

635, 1279). While common, use of DEXA alone provides information on only one facet of 

bone health and may not capture the intricacy of other important outcomes related to bone 

strength, such as cortical and trabecular volume (127, 236, 443, 642). Attempts to provide 

more comprehensive measurements include geometric analysis by peripheral quantitative 

computer tomography (pQCT) (365, 630, 1334). Use of DEXA in conjunction with pQCT 

may provide complementary approaches for assessment of exercise-induced adaptations in 

bone health (815).

Adaptive responses in bone are brought about by metabolic and mechanotransductive 

forces that initiate signaling cascades specific to a given microenvironment (1147). Briefly, 

mechanical sheer signals through ion-gated channels and propagates through cell-to-cell 

contact via integrins and gap junctions (480). These forces upon bone promote anabolism 

by blunting osteocyte release of receptor activator of nuclear factor- ligand (RANKL) and 

activating the Wnt/β-catenin pathway (1000). Through the latter mechanism, β-catenin 

is stabilized and can translocate to the nucleus to promote expression of encoding RUNT-

related transcription factor 2 (RUNX2), aiding in progression toward the osteogenic lineage 

(205).

Bone adaptations to aerobic exercise

Under load or high muscle force typical of exercise, bone is formed (480). The greater the 

load, the more immense the skeletal strain, and, likewise, the larger the increase in BMD 

(216). Thus, when considering aerobic exercise prescription for bone health and increased 

BMD, modalities with greater concussive forces may lead to a more dramatic outcome 

(715). Specifically, AE such as walking may produce forces from 2.2 to 2.5 times body 

weight, while descending stairs increases the force absorbed to 2.8 times body weight 

(1294). Moreover, activities such as sprinting or downhill running increase the load on the 

tibia up to three-fold that of walking (176). Thus, athletes that participate in sports involving 

high forces due to ground contact have higher BMD than their counterparts (715). However, 

increases in BMD appear site-specific and dependent on activity (634).
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Acutely, markers of bone turnover in humans do not differ between weight-bearing 

(running) or weight-assisted (cycling) AE modalities (727). However, in chronically trained 

female athletes across high-, medium-, and low-impact sports, all three groups exhibit 

similar markers of resorption, but only the high- and medium-impact groups exhibit greater 

BMD bone formation (284). This suggests that there is a differential response to chronic 

loading on BMD and bone formation markers. Sclerostin, a negative regulator of bone 

formation via attenuation of the Wnt/β-catenin pathway, increases in serum following AE in 

both males and females (382, 727, 1046). However, the effect of this in humans is not yet 

clear, as there are no long-term changes in bone turnover markers such as procollagen type 

I amino-terminal propeptide (PINP) and cross-linked telopeptide of type I collagen (CXTI) 

(727, 728). In contrast, chronic AE training consisting of walking, running, step-ups, and 

mobility exercises led to decreased sclerostin levels and higher levels of bone anabolism 

(46). Thus, multiple exercise bouts may be necessary to propagate intracellular signaling that 

leads to meaningful changes in BMD.

Bone adaptations to resistance exercise

There appear to be many benefits of RE in relation to bone health (588). Presently, a large 

fraction of human research into bone adaptations to RE examines postmenopausal women, 

an at-risk group for osteoporosis and osteopenia (675). These interventions are based on 

the premise that RE may be leveraged to mitigate the progression of bone health decline 

(368, 596, 635, 674, 680, 1059, 1253, 1402, 1468, 1474), which may start as early as three 

years after the onset of menopause (675). Strong evidence in a recent meta-analysis by 

Zhao et al. suggests that RE is an effective strategy for increasing BMD in these cohorts 

(1474). Likewise, males exhibit similar increases in BMD following resistance training (126, 

738). Less is known about the influence of RE training on bone compartments such as the 

trabeculae. However, in diseases such as type II diabetes, bone quality is more affected 

than BMD, suggesting a need to examine this phenotype. Some evidence in literature 

reviews and meta-analyses describes the ability of exercise to prolong trabecular volume, but 

discrepancies in study design limit the statistical power to completely investigate this (588, 

1059). In a rat model of type II diabetes, RE in the form of percutaneous muscle stimulation 

promotes BMD and bone quality (622), and human exercise trials are ongoing (73).

Recent studies have provided valuable insight into molecular communication of bone with 

surrounding tissues beyond the currently understood mechanisms of mechanotransduction. 

In particular, signaling between bone and the closely associated skeletal muscle has been 

of research interest (159, 190) with an emphasis on myokine, osteokine, and growth factor 

cross talk, as reviewed in detail (761). Muscle-bone cross talk has the capacity to regulate 

each tissue in an anabolic or catabolic fashion, depending upon the stimulus (701, 702). 

Harry et al. reported that open tibial fractures in mice recovered significantly faster when a 

flap of skeletal muscle was placed over the wound in comparison to a fasciocutaneous tissue, 

resulting in 50% greater cortical bone content (525). Thus, muscle secretions may promote 

regeneration and repair when bone is compromised. Even healthy bone allows molecular 

penetrants through the periosteum in a size-dependent fashion in mice (745), and a number 

of myokines and other muscle-derived species (such as IGF-1, IL-15, PGE2, and FGF-2) 

fall within the size constraint predicted to be able to penetrate through the periosteum (745). 
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Given that muscle has a well-established role as a secretory organ (1017) and myokines are 

augmented during exercise (767), it appears that exercise-induced adaptations in bone are at 

least partially mediated by myokine production and cross talk with bone (761).

Despite the benefits of exercise for BMD and other parameters of bone health on earth, 

there is limited knowledge of the optimal exercise intervention to support the skeletal 

system without a gravitational vector: that is, in space. While exercise countermeasures are 

protective for the skeletal muscle and cardiovascular systems in surprisingly small doses, 

loss of bone integrity in microgravity poses a major barrier to long-duration spaceflight 

missions (282, 1222, 1224). Furthermore, bone formation upon return to gravity does not 

appear to fully recover (1366), potentially heightening long-term fracture risk. Existing 

exercise devices aboard the International Space Station appear unable in isolation to apply 

sufficient loads to stimulate bone formation over resorption, prompting investigation into 

nutritional supplementation approaches to promote bone health (764, 1037, 1197, 1222, 

1223). Animal models taken aboard space-faring vessels have provided insight into the 

time course of bone integrity loss and molecular signatures associated with this process 

(1291, 1450), and earth-based analogs such as bedrest can provide an avenue to conduct 

microgravity research in a controlled setting (719, 763). Certainly, continuation of this line 

of research is essential to support long-duration space travel and protect long-term astronaut 

bone health.

Structure and function of joints

Joints are loosely defined as the point of connection between two bones and are classified 

into three types in humans (661). Fibrous joints are fixed, and collagen is the primary 

connective tissue holding these joints in place (661). Cartilaginous joints are subcategorized 

based on the type of cartilage separating bone as either primary (hyaline cartilage) or 

secondary (fibrocartilage) (1471). Synovial joints are capable of large movements and are 

made up of a fibrous capsule, which is coated in synovial fluid to permit movement of the 

articulating bone with minimal friction (661). Joints are formed through a complex network 

of molecular signaling that occurs throughout development. The main pathways regulating 

joint development were recently reviewed in detail by Salva and Merrill (1142) and include 

Wnt, Hedgehog, Notch, and bone morphogenetic protein.

Joint adaptations to aerobic exercise

In relation to the effect of exercise on joint adaptations, the vast majority of mechanistic 

research is based on individuals with RA and osteoarthritis OA, both degenerative joint 

diseases. The primary proinflammatory cytokines believed to drive RA progression [e.g., 

tumor necrosis factor (TNF)-α, IL-1β)] have been demonstrated to destroy joint integrity 

(434) and induce pain (1390). Conversely, chronic AE elicits a systemic anti-inflammatory 

effect (757, 1477), which may be able to mitigate inflammatory pathology characteristic of 

disease progression. In support, a meta-analysis by Baillet et al. showed AE activities in the 

range of 50% to 90% maximum heart rate decreased pain and increased radiographically 

assessed bone sparing and quality of life in patients with RA (1155). Continued investigation 

into mechanisms underlying this effect may reveal both inflammatory and other molecules 

that could provide therapeutic benefit in RA.
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In addition to cartilage and periarticular degradation, OA is characterized by a robust 

inflammatory pathology in the affected joint and surrounding tissues, compounding the 

joint damage via molecular tissue cross talk promoting further inflammation and impaired 

proteostasis (817). As introduced above, exercise prehabilitation may alleviate long-term 

pain in individuals with OA (1343) through its effects on hypoalgesia (1058). Though 

potential mechanisms of diminished pain response are wide-ranging, they may include 

increased release of endorphins, inhibition of the N-methyl-d-aspartate receptor (NMDA) 

subunit NR1, and decreased serotonin transporter activity (1218).

Joint adaptations to resistance exercise

Molecular-level joint adaptations to RE in the context of humans are poorly understood: 

most of the present knowledge is derived from animal models but could point toward 

future directions for human research. Rat models of OA have shown favorable responses 

to agents that reduce oxidative stress, as exercise training might accomplish (234). For 

instance, hydrogen-rich water inhibits cyclooxygenase activity and MMP-3 and -13 (234). 

Pathologically expressed MMPs have been shown to play a noteworthy role in OA 

pathogenesis by degrading cartilage ECM within a joint (879). MMP production is driven 

by inflammatory mediators such as TNF-α (879). The effects of RE on the inflammatory 

response are context-dependent. For instance, while long-term RE may alleviate low-grade 

inflammation in humans, reductions in circulating TNF-α are not a universal finding (99, 

181, 1042, 1072). However, mechanotransductive forces have been shown to positively alter 

joint integrity by diminishing inflammatory mediators and MMPs responsible for cartilage 

breakdown in animal models (783). Specifically, tissue loading decreases IL-1-induced 

MMP activation and mitigates collagen loss (1316). Thus, available evidence supports that 

RE may be beneficial for joint health in inflammatory degradative conditions and highlights 

the need for further study in human trials to investigate mechanistic underpinnings.

Structure and function of tendon

Tendons are composed of a complex array of bundled molecules making up the functional 

unit that transmits forces from muscle to bone. The tendon is primarily made of the 

collagen I molecule, but other collagens (III and IV) and proteoglycans contribute to 

their structure (1391). Tendons exhibit a hierarchical structure beginning with the collagen 

molecule (1392): these molecules constitute fibrils, many fibrils form the fiber, fibers form 

the fascicle, and many fascicles comprise the tendon unit (1391). The tendon attaches to 

the bone at a point known as the enthesis and allows the contraction of muscle to pull on 

the bone for locomotion (1391). Tendons have received attention in the context of human 

exercise due to their obvious role in movement as well as reasonably easy sampling access 

via microbiopsy needle (900, 937, 1329). For these reasons, the effects of acute and chronic 

exercise on molecular transducers of tendon adaptation are relatively well-characterized in 

comparison to bone and joint adaptation.

Tendon adaptations to aerobic exercise

In response to exercise, tendons generally adapt through increased collagen turnover, 

stiffness, and size (cross-sectional area) (427). Based on a recent meta-analysis, exercise 

that elicits loading of greater magnitude appears to be most beneficial, and chronic (>12 
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week) loading is preferable to acute (125). Nevertheless, acute AE has been shown to 

induce collagen I synthesis in humans (546, 748). Moreover, chronic long-distance runners 

have approximately 23% greater cross-sectional area at the Achilles tendon than their 

counterparts (1117). This appears to be partially driven by an acute inflammatory cascade 

involving IL-6 and PGE2 (32, 243), which are detectable in serum after high-intensity 

AE (996, 1015). Attenuation of PGE2 with nonsteroidal anti-inflammatory drugs has a 

negative effect on collagen synthesis in young men after acute AE (243). Notably, PGE2 

has been linked to IL-6 in skeletal muscle tissue in vitro (1237), and findings suggest that 

a regulatory relationship between these factors may exist in tendon (503). In response to 

IL-6, collagen synthesis markers such as procollagen type I NH2-terminal propeptide (PINP) 

are increased (32), but the effects of AE on this marker are dose- and time-dependent 

(546, 747, 748). Growth factors such as IGF-1, transforming growth factor-beta (TGF-β), 

and platelet-derived growth factor BB have been shown to positively influence dynamics 

of tendon remodeling in vitro (710, 994, 1305). Many of these factors are modulated by 

exercise. However, data in humans is far more equivocal than results from animal studies. 

It has been suggested that this is due to clinical studies sampling tendon outside of a period 

of active growth; conversely, many animals are tested during growth, allowing detection of 

trends in tendon biology that may be masked in mature human tendon (838).

Tendon adaptations to resistance exercise

RE has been shown to lead to tendon adaptations in a load-dependent fashion (125). The 

primary adaptation observed following RE training in humans is increased tendon stiffness, 

or Young’s modulus (736, 1092). Interestingly, hypertrophy has also been observed in the 

human patellar tendon, although it is not uniform throughout the length of the tendon: 

cross-sectional area tends to increase at the proximal and distal ends (720). Investigations 

have examined the response to acute RE in tendinous tissue, revealing a basis for molecular 

transducers of these adaptations. Following RE (3 sets of 10 repetitions of knee extension 

exercise), tendon expression of collagen I, III, and MMP-3 were decreased 4 h postexercise 

but returned to baseline at 24 h (1269). Others have found that acute RE increases 

connective tissue growth factor (CTGF) and type I collagen; however, this increase was not 

matched by fractional synthetic rate of collagen I or other regulatory markers such as TGF-β 
(333). In preclinical models, TGF-β interacts with CTGF and plays a vital role in tendon 

remodeling (710, 1335). Like AE, the discrepancy of the effect of RE on tendons may 

be due to the adult human tendon being more stable than actively remodeling or growing 

animal tendons (547, 838). Even chronic (10 year) RE training in young adults does not 

lead to appreciable differences in tendon structure or size (781). Given the effects of age on 

tendon health (198, 1274), it is possible that meaningful exercise-induced changes in tendon 

physiology might be best captured using longitudinal studies extending into older age or 

examining lifelong-trained older adults.

Section summary

Health of the skeletal system and associated structures such as joints and tendons is 

of utmost importance for exercise. It is important to expand our knowledge of exercise-

induced molecular transducers underlying promotion of healthy bones, joints, and tendons 

in children and adolescents and maintain their health into old age or during periods of 
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high-volume training. Given sampling limitations of some of these structures in humans, 

much remains to be learned with regard to molecular drivers of adaptation in the context of 

performance, health, and disease.

Conclusions and Future Directions

While available evidence supports that exercise may forestall, alter, or even partially reverse 

the course of many diseases and disorders (Figure 10), a number of knowledge gaps and 

practical challenges limit its utility as a formal prescription or a tool for leveraging toward 

development of novel drug targets. First, individual variability in responsiveness (as exists 

with pharmaceutical interventions) to exercise presents a potential issue (1231). It is not yet 

completely understood why individuals respond differently to the same exercise regimen, 

but it is likely that large molecular-level cohort studies, such as MoTrPAC, will shed light 

on important factors whose variability impacts exercise responsiveness. In examination of 

these potential influences, it is critical to strive for inclusivity in study cohorts, including 

racial/ethnic diversity, sex balance, age, and consideration of other important demographics 

that may introduce variability into a data set (e.g., socioeconomic status, education level). 

Continued development of bioinformatics platforms [e.g., surrogate variable analysis, 

svaSeq (775)] to identify confounding artifacts in data and to integrate ‘omics data from 

multiple phenotypic levels (532) may aid in discriminating molecular associations that are 

the result of biological relationships or simply individual heterogeneity (i.e., noise).

Secondly, human behavior presents a major challenge to prescription of exercise. While 

researchers may facilitate a robust, supervised exercise intervention, commitment to long-

term exercise is a lifestyle choice. Cross-sectional studies examining the benefits of the 

exercise lifestyle have provided insight into long-term effects of exercise, but these tend 

to focus primarily on AE. Attention in this area has revealed which physiological systems 

are completely, partially, and poorly protected by exercise throughout normal human aging 

(196, 219, 498, 499, 757, 1030, 1193, 1323). It is likely that examination of lifelong 

engagement in practices such as RE will reveal differential effects and guide us toward 

optimization of exercise as an antiaging strategy. Nevertheless, not all individuals may be 

persuaded to exercise by the promise of a healthier and/or longer life; thus, the challenge is 

to encourage individuals to discover a preferred modality that is maintainable and enjoyable 

for its own sake while simultaneously accruing functional benefits. Collaboration with 

behavioral scientists may guide exercise biologists toward encouraging individuals to build a 

sustainable habit of physical activity (677, 1141).

Third, the landscape of human health and disease is continually changing. For example, 

at the time of preparation of this article, the novel coronavirus (COVID-19) pandemic 

is taking foothold in the United States and much of the world (232, 1210), presenting 

challenges to both physical (925, 960) and psychological resilience (1315). While it may 

be impossible to predict such events, strong evidence supports that regular exercise fortifies 

physiological reserves that may be critical in protection and/or recovery from threats to 

human health and life. Presently, the impact of regular exercise on strengthening the immune 

system is of enormous public health relevance (183, 989, 1207). It is probable that the 

full range of these effects extends beyond our present understanding of skeletal muscle as 
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the primary amino acid reservoir (1080, 1365, 1438). Furthermore, the protective effects 

of exercise on physiological reserves other than physical [e.g., cognitive, emotional (235, 

988)] are likely of importance. While much research focuses on molecular mechanisms 

underlying physical benefits of exercise, consideration of exercise as a holistically favorable 

activity will yield insight into important factors influencing mood, affect, and quality of life. 

Activities blending physical exercise with mindfulness practices (e.g., yoga, Tai Chi) may be 

of particular interest.

Despite the challenges ahead and a somewhat incomplete picture of its mechanisms of 

action, exercise is an accessible, affordable, and effective strategy for prolonging healthspan 

through a range of physiological benefits. A more complete mechanistic knowledge 

of exercise adaptations may enable greater specificity in prescribing exercise across 

demographics (e.g., age, sex, race, health status) and heterogeneous molecular profiles 

(e.g., transcriptomic, epigenetic). Furthermore, it may enable flexibility of physical activity 

recommendations in response to changes in population structure and public health status.

In closing, we recognize the rich history of the field of exercise research. Although 

(to our knowledge) this article will be the most comprehensive ever constructed on the 

molecular adaptations to exercise (Table 2), we recognize that not all pertinent literature 

may have been addressed, and this is an inherent limitation. Still, despite the wealth of 

literature in the area, much remains to be elucidated regarding the molecular adaptations 

that underlie the beneficial health effects of exercise, and we are hopeful that this article 

will have illustrated such knowledge gaps. Undoubtedly, the anticipated MoTrPAC dataset 

will provide substantial opportunity in this area, including evaluation of the molecular map 

of exercise in healthy individuals, investigation of biological interactions across ‘omics, and 

direction toward understanding variance in human biology. Even with this promise, many 

questions remain; as such, continued interdisciplinary collaboration is encouraged to expand 

our collective understanding of the role of exercise as an ultimate protector of human health.
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Didactic Synopsis

Major teaching points

• Regular, structured exercise promotes prevention of disease, as well as a 

variety of benefits for general health.

• Throughout its history, the study of exercise has been a multidisciplinary 

pursuit.

• Basic methodological considerations, analysis techniques, and emerging 

advancements continue to facilitate collaboration, discovery, and progress.

• Key mechanisms underlying exercise-induced adaptations are driven by 

cellular and molecular cues throughout the body’s physiological systems.

• Aerobic and resistance exercises stimulate distinct but overlapping 

adaptive mechanisms that improve health, human performance, and system 

functioning. With the Molecular Transducers of Physical Activity Consortium 

(MoTrPAC) as important infrastructure, critical knowledge gaps present 

opportunities for future investigation.
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Figure 1. 
Marie-Ann Pierrette Lavoisier’s sketch depicting her husband Antoine Lavoisier conducting 

the first exercise physiology experiment and herself taking notes in the right corner. Note the 

use of the bell-jar calorimeter and the subject pressing a foot pedal below the table. Reused, 

with permission, from West JB, 2013 (1416).
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Figure 2. 
This figure illustrates an overview of sex-specific differences in skeletal muscle, the 

cardiovascular system, and energy metabolism that may be important considerations relevant 

to human exercise.
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Figure 3. 
This figure illustrates exercise benefits across the lifespan. Normal age-related changes 

affect physiological resilience to environmental or genetic stressors, while the susceptibility 

to metabolic, cardiovascular, and other risk factors increases. Exercise improves multiple 

functions and physiological indices of wellness. Pie chart slices are greyed out when (i) 

the physiological index shown is not relevant for a given age (either no longer growing/

developing or process has not yet begun to decline) or (ii) the physiological index has not 

been sufficiently studied in a population at that life stage.
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Figure 4. 
This figure illustrates the range of current and emerging tools in analysis of human tissue for 

exercise research, with a focus on preparation of blood, skeletal muscle, and adipose tissues 

(most easily accessed in humans) for downstream high-throughput ‘omics analyses.
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Figure 5. 
This figure illustrates key skeletal muscle adaptations to aerobic and resistance exercise, 

highlighting the role of molecular transducers of these effects that are described in the text.
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Figure 6. 
This figure illustrates physiological hypertrophy resulting from exercise training. The long-

term cardiovascular adaptive response depends on the type of hemodynamic stress resulting 

from the modality of exercise training. Most commonly, aerobic exercise imposes volume 

overload, leading to eccentric hypertrophy, whereas resistance exercise elicits concentric 

hypertrophy through pressure overload. Relevant molecular and cellular transducers are 

explored in the text.
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Figure 7. 
This figure illustrates molecular-level cross talk between skeletal muscle, adipose tissue, and 

liver to facilitate energetics during exercise. Key myokines, adipokines, and hepatokines are 

highlighted.
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Figure 8. 
This figure illustrates simultaneous innervation in skeletal muscle by the somatic and the 

autonomic nervous systems. Briefly (1104), motor neuron release of acetylcholine (Ach) 

promotes influx of sodium (Na+) and calcium (Ca++) into skeletal muscle cell. This 

promotes release of calcium from sarcoplasmic reticulum (SR), leading to contraction. The 

sympathetic neuron innervates muscle in close proximity and may release norepinephrine 

(NE) to augment Ach release. Circulating epinephrine from the endocrine system supports 

sympathetic activation by augmenting Ach release in addition to enhancing Na+ influx and 

calcium-induced calcium release and re-sequestering.
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Figure 9. 
This figure illustrates summary of exercise-induced adaptations in bone, joint, and tendon; 

existing knowledge gaps in humans are indicated by question marks (?).
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Figure 10. 
This figure illustrates the range of the impact of exercise on risk factors and pathologies 

associated with chronic diseases. Exercise is associated with reduced morbidity, lower 

hospitalization rates, and decreased risk of all-cause mortality and premature death from 

disease. Overall, higher cardiorespiratory fitness and a regular exercise training decrease the 

economic burden of multiple diseases. ↑ indicates increase; ↓ indicates decrease.
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Table 1

Commonly Used Intensity Ranges

Intensity classification Aerobic exercise: %heart rate reserve Resistance exercise: %1 repetition max

Low 40–50 <50

Moderate 50–70 50–70

High 70–85 70–85

Very high/vigorous 85–100 85–100
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