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A B S T R A C T

Internet of things (IoT) application in e-health can play a vital role in countering rapidly spreading diseases
that can effectively manage health emergency scenarios like pandemics. Efficient disease control also requires
monitoring of Standard operating procedure (SOP) follow-up of the population in the disease-prone area
with a cost-effective reporting and responding mechanism to register any violation. However, the IoT devices
have limited resources and the application requires delay-sensitive data transmission. Named Data Networking
(NDN) can significantly reduce content retrieval delays but inherits cache overflow and network congestion
challenges. Therefore, we are motivated to present a novel smart COVID-19 pandemic-controlled eradication
over NDN-IoT (SPICE-IT) mechanism. SPICE-IT introduces autonomous monitoring in indoor environments with
efficient pull-based reporting mechanism that records violations at local servers and cloud server. Intelligent
face mask detection and temperature monitoring mechanism examines every person. Cloud server controls
the response action from the centre with an adaptive decision-making mechanism. Long short-term memory
(LSTM) based caching mechanism reduces the cache overflow and overall network congestion problem.
. Introduction

Surrounded by countless microbes, bacteria and virus novel diseases
re reported in every few months. Densely populated disease outbreak
picentres increase the spread of diseases especially airborne diseases
nd the diseases spread by direct and indirect human interaction [1].
ven if not being infected, humans can become carrier to vicious
iseases and can spread them in an exponential rate wherever they
ravel. Once spread, a tremendous amount of loss in form of finances
nd lives can occur that can change the management and overall
usiness structure of the whole world putting it to a halt for weeks
nd months with repercussions lasting for years. Prevalent in a region
r population, disease widespread among population of people of a
pecific region is graded as an endemic [2]. Affecting many people at
he same time, the disease eruption and spreading locally grades it to be
n epidemic. Out of control disease spread among people of different re-
ions and nationalities and reaching far borders of countries located in
nother corner of the world results as a pandemic such as Coronavirus
isease-19(COVID-19) [2]. With technological advancements, similar
hallenges require modern and efficient solutions that are practically
eployable to detect and control the spread of diseases.
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Smart sensing nodes in real-time collect and forward data over
the network of things resulting in the internet of things (IoT) [3].
Providing cheap and feasible solutions with a wide range of utilities,
IoT provide services with substantial security and efficient medical
record exchange. In past few years, several IoT based platforms have
been introduced that promise the provision of state of the art facilities
in modern applications including but not limited to smart homes, smart
cities, intelligent transportations system (ITS) and e-health care [4].
IoT communication protocols including CoAP, RPL and 6LoWPAN are
particularly designed to enable secured communication over resource-
constrained low powered IoT devices [5]. The network traffic requires
content, information, and data without concerning about the source of
the content. The IoT based applications also require broadcast nature of
wireless multimedia unlike conventional unicast or multicast wireless
transmissions associated with the internet protocol (IP) addresses of
both sending node and destination node over heterogeneous networks.

To enable content-centric communication while substituting host-
centric communication, named data networking (NDN) paradigm was
recently introduced that deeply relies on the concept of information-
centric networking (ICN) [6]. Future internet NDN paradigm retrieves
vailable online 27 March 2021
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content from the network with the application-specific naming scheme
and flooding-based broadcast mechanism. Default in-network content
caching reduces the end to end content retrieval delay providing effi-
cient wireless communication required for the IoT applications. For the
applications of smart homes, building monitoring systems and e-health,
NDN-IoT platforms have also been proposed [7]. NDN based smart
healthcare system to mitigate and control a pandemic with IoT technol-
ogy also introduces some challenges. Widespread disease control and
mitigation require monitoring and description of warning messages to
and from the disaster control centres with confirmed message delivery
mechanism with delay sensitivity. Besides, efficient caching is also re-
quired to cache the relevant content based on the available resources to
mitigate cache overflow problem that can introduce additional delays
in the communication.

In this paper, we extend NDN architecture in e-health care and
introduce SPICE-IT : Smart COVID-19 Pandemic Controlled Eradication
over NDN-IoT. The proposed system utilizes standard operation pro-
cedures (SOPs) functionalities in an indoor environment. We intro-
duce novel data structures in NDN and their roles in COVID-19 re-
port and response system. Moreover, the artificially intelligent system
enables autonomous detection and reporting of possible COVID-19
suspected patients and violations of the SOPs in the closed spaces.
Image processing-based face mask detection and warning generation
mechanism is also introduced to monitor people personal habits. An
intelligent caching mechanism is also introduced to keep the most rel-
evant and important content in the cache based on the network traffic
flow. The paper includes the following novelties and contributions:

• An artificial intelligent face mask detection mechanism.
• A hierarchical architecture is proposed in which the NDN-IoT

communicates with local edge and central cloud to respond,
monitor, and control pandemic spread with novel data structures.

• An intelligent caching mechanism to enable traffic prediction
based caching at local servers.

The rest of the paper is organized as follows. Section 2 discusses
he related research works. Section 3 introduces the proposed system
odel. Face mask detection mechanism is introduced in Section 4.

ection 5 introduces the proposed communication mechanism and the
erformance evaluation of the proposed system is included in Section 6.
ection 7 concludes the paper.

. Related work

With the advancement of IoT based applications in healthcare lead
o the development of independent cloud-centric IoT based systems
n mobile healthcare (m-health). In [8], an m-healthcare framework
rchitecture is proposed for monitoring and diagnosing the diseases
nd updating with the level of their severity. The proposed solution
as three phases. Phase first consists of biomedical sensors and devices
o acquire health-related data of the patient. In phase second, the
roposed medical diagnosis system decides the person’s health. Finally,
n the third phase, an alert is generated and transmitted. The proposed
ramework is tested on a database from the web; however, it is not
mplemented in the real world to validate its performance in real-
ime critical scenarios.The concept of fog computing and Internet of
hings (IoT) for an elderly e-health monitoring was introduced in [9].
he authors have proposed a 3-layer architecture where in the first

ayer data distribution is provided on the remote database for storage
urposes, the second layer provides communication between the first
nd third layer and the third layer provides data management. The
hortcoming in the system is that it does not include any emergency
ommunication module for elderly which is an important and nec-
ssary feature. Moreover, the system can be enhanced to predict or
iagnose basic diseases based on the symptoms by employing artificial
ntelligence in the system.
51
IoT based two-tier smart healthcare monitoring system proposed
in [10]. The first tier monitors vital health information remotely in
realtime using wireless sensors attached to each individual and the
second tier relays the sensor data to the central. The proposed system
architecture is not cost and energy efficient considering the sensors
used. Moreover, for correlation, quantification and qualification of
medical emergency events, better probability and deterministic algo-
rithms are needed to be implemented. [11] also presents a smart
healthcare system based on the concept of fog computing and smart
e-health gateways. The proposed system architecture includes medical
sensors and actuators network in which sensed data is transmitted with
wired or wireless protocols to the smart gateways. The network of smart
e-health gateways consisting of smart gateways forms a fog which is
responsible for performing protocol conversion and providing services
like data aggregation, filtering, and dimensionality reduction. Finally, a
backend system made up of cloud computing platform for implement-
ing broadcasting, data warehouse and data analytics in addition to GUI
for visualization and feedback.

A secure healthcare data communication and monitoring framework
which integrates the NDN-based IoT and edge cloud were proposed
in [12]. In the proposed architecture IoT and edge cloud are inte-
grated, and clusters are formed to overcome the resource limitations
of IoT devices. The medical data in the proposed system is secured
using the hash and encryption techniques for converting plaintext
to ciphertext [13]. The proposed method however does not tackle
the problematic case when cluster head fails to deliver data to edge
devices. An NDN-based smart health IoT system named NHealthIoT
was proposed in [7]. The proposed architecture comprises three phases
where the data is collected from different sensors and processes the data
at a local home server. In the data transmission phase, the healthcare
data is transmitted to the cloud server using the publish–subscribe
model of NDN. In the last phase of remote data processing, the cloud
server is present that receives the healthcare data from the home server,
analyzes it and supports visualization.

NDN-based smart healthcare IoT system or NDNoT was proposed
in [14]. The proposed system supports both static and mobile users
with four-layer architecture. The first layer deals with real time data
collection. The second layer is collected data that is transmitted to
healthcare centres. Networking services and database are provided in
the third layer for recording, analysing, and visualizing the health
data of the patient. The central control layer is the last layer which
performs the function of routing the forwarding requests using NDN
CRoS routing algorithm. The use of NDN based IoT systems is not only
limited to smart healthcare systems but it also finds its applications in
a similar domain of disaster management. An IoT Disaster Management
System (DMS) architecture was proposed in [15] based on NDN, par-
ticularly for fire disaster. The authors have modified the legacy NDN
functionality of producer and consumer and introduced a fire sensor
and threshold level modules in the proposed architecture. The system
is activated if the threshold level is exceeded indicating a fire situation.

The use of NDN based IoT systems in healthcare and disaster
management systems is favourable. However, it is quite challenging to
implement such systems due to the problems of NDN such as secure
content retrieval, efficient caching and forwarding techniques, retrieval
of fresh and valid data, caching overhead and cache replacement.
Secure content retrieval using NDN caching technique is one of the
major issues while using NDN based architectures. Moreover, the con-
ventional authentication process for consumers in NDN results in high
computation overhead and network delay. A collaborative data access
control (CDAC) scheme for NDN was introduced in [16]. The producer
in the scheme encrypts the data content and forwards it to the cache-
enabled routers in the network. Then it acquires a decryption key for
decoding the contents. The consumer destroys the sub-key after using
which is computed locally using the decryption key.

Many routing strategies have been developed for efficient data

retrieval in NDN. An active updating routing strategy in NDN for
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periodic data retrieval was proposed in [17]. The proposed method
adds a period field in data packet’s MetaInfo for getting the periodic
characteristic of data which indicates the periodic data generation. The
table structure is also modified to store the periodic data. Furthermore,
a cache control module is added in the router to support periodic
data storage. Finally, a cache update algorithm is also proposed to
determine the best active update time and number of requests as per
user’s requirement in real-time. The proposed routing policy, however,
is not widely applicable and the performance of the router is also not
considered by authors to design an optimized algorithm. Enhanced net-
work performance and efficient content availability and retrieval can be
achieved using in-network caching of NDN. However, the security and
privacy issues are one of the major concerns in this regard.

A reputation based blockchain scheme implemented over NDN for
secure caching in a vehicular environment was introduced in [18]
that establishes trust between consumer nodes and the content stores.
A reputation value is assigned to each content store in the proposed
scheme which is further increased/decreased according to the content
served by it. The reputation value is increased by the consumer if the
consumer is served with valid content. This way the content stores are
aware of the trusted content and cache only the trusted content. A
caching and forwarding scheme is proposed based on the rendezvous
points (RP) [19] in which a detoured forwarding technique is proposed.
Depending on the weights assigned request is detoured for a content
name. To achieve faster packet forwarding, a route cache is also added
to FIB design. Another caching technique in the IoT network is pre-
sented in [20] for NDN based IoT traffic which focuses on the freshness
of the cached content. The work proposes a Least Fresh First (LFF)
cache replacement policy. The proposed policy relies on the prediction
of the time of the next event from the sensor for residual life estimation
of particular retrieved content. For predicting the time value of the
next event of the sensor, the authors have employed the Autoregressive
Moving Average (ARMA) model [21]. When the new content arrives
and it is to be cached and the cache is full, the proposed LFF algorithm
evicts the least fresh content from the cache. The caching technique is
useful in case of periodic IoT traffic, however, for OnOff IoT traffic it
is not suitable.

The cache replacement in NDN is a critical task that requires an
efficient replacement strategy to keep the popular data cached all the
time to avoid extra delay and network overhead in re-fetching the
data. An NDN cache replacement policy is proposed in [22] named
as Named Data Networking Cache replacement approach based on
Software Defined Networking (NC-SDN). The replacement strategy is
based on the content popularity which is calculated by the switches
in the Software Defined Network (SDN) architecture. The proposed
approach uses a topological control system inspired by [23] to control
the network in real-time. The cache replacement is performed based on
three principles: (1) data popularity, (2) available topological informa-
tion, and 3) collaboration of different nodes in the network. The data
popularity is measured at each switch using a counter of Forwarding
Interest Base (FIB) table which is incremented every time a content is
retrieved from that switch. The content popularity is calculated based
on Zipf law [24] The proposed method does not exploit the intelligent
control of network resources in NDN. Moreover, the scope of proposed
work is limited to single zone communication without exploring the
communication between multiple zones.

With the development of machine learning techniques, the au-
tomated content caching is becoming popular. [25] implements the
machine learning for behaviour of services’ data exchange. For each
data item, the proposed system chooses a suitable caching strategy
such as LRF or LFU, using deep learning. Recently, for sequential data
prediction, recurrent neural networks (RNNs) have been proved as an
efficient machine learning tool. Given the sequential nature of content
requests, [26] proposes an LSTM based Encoder–Decoder model for
52

predicting the content popularity considering it a seq2seq problem. A
Fig. 1. Proposed architecture.

proposed caching policy then takes decisions based on the predicted in-
formation. Another content caching technique employing the machine
learning tool is proposed in [27]. A deep reinforcement learning (DRL)
based framework is proposed which employs Wolpertinger architecture
for the content caching on the edge node. The system takes the content
requests as an input and the DRL agent trains on the deep deterministic
policy gradient (DDPG). The system claims to achieve short and long
term cache hit rate. However, the system considers just one access point
and same data size for all contents. [28] proposes edge caching based
on machine learning for video content. The proposed scheme presents
a content aware cache admission policy and online reinforcement
learning algorithm is used for discovery of critical features from video
feature space. The training is performed in two steps including, critical
feature and admission decision.

3. System model

We introduced NDN-IoT based solution to monitor the SOPs of
COVID-19 in the closed indoor environment. As illustrated in Fig. 1,
the proposed architecture includes a set of installed cameras 𝐶 =
{

𝑐1, 𝑐2, 𝑐3,… , 𝑐𝑁
}

on buildings, a set of verified individuals 𝐼 =
{

𝑖1, 𝑖2,
𝑖3,… , 𝑖𝑁

}

that are people with or without masks, region based local
servers1 𝐿 =

{

𝑙1, 𝑙2, 𝑙3,… , 𝑙𝑁
}

, central cloud server 𝑆 and set of COVID
response centres 𝑅 =

{

𝑟1, 𝑟2, 𝑟3,… , 𝑟𝑁
}

. Cities and resident areas are
further divided into a set of different zones 𝑍 =

{

𝑧1, 𝑧2, 𝑧3,… , 𝑧𝑁
}

.
The communication is supported with wired and wireless NDN based
network backbone comprising of NDN relays and routers.

The proposed architecture comprises of multiple hardware, pro-
cessing, and communication elements. Cameras and thermal scanners
mounted in the closed buildings to monitor individual-person health.
Image processing mechanism is introduced to detect the proper face
mask-wearing and is combined with the thermal scanning report to
decide to generate which type of notification. Sensing a violation of
SOP, interest is generated from the building cameras 𝐶 which first

1 Edge servers and Local servers are replaceable terms.
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𝑆
l

Table 1
Summary of Literature Review.

Paper Technologies used Domain Contributions Limitations

[9] VIoT, cloud Smart healthcare Monitoring and diagnosis of disease No real-tie validation of scheme
[10] Fog computing and IoT Smart healthcare Complete e-health system for elderly patients No emergency communication module
[11] IoT Smart healthcare Monitoring of health parameters Not cost and energy efficient
[12] Fog computing, cloud

computing and IoT
Smart healthcare Strategic positioning of smart gateways in

e-health system in ioT
–

[13] NDN based IoT, edge
cloud, hashing

Smart healthcare Healthcare data communication and monitoring
+ overcoming IoT resource limitations

No counters to cluster head failure problem

[8] NDN, IoT, cloud Smart healthcare Monitoring of health parameters –
[15] NDN, IoT Smart healthcare Remote monitoring, storing, and communicating

the patient’s health parameters
–

[16] NDN, IoT, Wi-Fi Disaster management Fire disaster management system System does not notify the nearby secure
location; inefficient memory and broadcasting
strategies used

[17] NDN, IoT Networking (NDN
architecture)

Secure content retrieval and data access control
in NDN

Not tested in real wireless IoT scenario

[18] NDN Networking (NDN
architecture)

Routing strategy for periodic data retrieval Not widely applicable; performance of router not
considered in designing routing algorithm

[19] NDN, blockchain Vehicular
Communication

Secure caching in vehicular environment Not deployed on a real NDN testbed and
cross-industry blockchain technologies

[20] NDN Networking (NDN
architecture)

Caching and forwarding scheme for NDN –

[21] NDN, IoT Networking (NDN
based IoT)

Caching scheme for NDN based IoT traffic Not suitable for OnOff IoT traffic

[22] NDN, SDN Networking (NDN
architecture)

Cache replacement in NDN Network resources are not intelligently
controlled, suitable only for single zone
communication

[25] Machine learning Content caching Selection of suitable caching strategy using deep
learning

–

[26] Machine learning Content caching Predicting content popularity using long
short-term memory (LSTM)

–

[27] Machine learning, Edge
caching

Content caching Content caching System considers just one access point and same
data size for all contents

[28] Machine learning, Edge
caching

Video content
caching

Discovery of critical features from video feature
space using online reinforcement learning

–

arrives at local servers 𝐿 and is further relayed towards the cloud server
in multi-hop broadcasting. 𝐿 are assumed to be deployed at distract

evel although 𝑆 collects and responds to the requests forwarded from
all local servers. Databases with the person by person habit and health
record is maintained locally servers as well as on 𝑆 with periodic data
synchronization. Policy-based decision-making mechanism controls the
response of 𝐿 and central server 𝑆. In response to the interest, 𝑆 takes
actions in line with the intensity of the violation, previous record and
central policy and generates action messages which act as a content
packet.2 The virtual division of cities into zones 𝑍 helps to enforce
smart lockdown in disease spread zones only instead of the whole city,
province, or state shutdown.

End to end communication is supported with NDN based interest
and content pull-based mechanism with novel data structures to pro-
vide the e-health service over NDN-IoT to ensure packet delivery. NDN
introduces content caching over the relay nodes that participate in the
content forwarding process. Considering continues data generation and
communication over the network, we introduce long short-term mem-
ory (LSTM) based intelligent content caching mechanism that considers
network traffic to cache content within the network while avoiding
cache overflow problem. The intelligent content caching mechanism
ensures that vital content is cached in the relay nodes while reducing
the cache overflow problem while reducing the end to end delay.

4. Face mask detection

In this section, we introduce details of the face-mask detection
mechanism used in the proposed system.

2 Content packet and Data packet are replaceable terms.
53
4.1. MobileNetV2

Fig. 2 shows the general architecture of the proposed method. The
MobileNet v2 architecture first creates the basic convolution feature
maps for fast object detection in low-end systems. An advanced pyra-
mid production module is designed to create an enhanced pyramid,
where each level of the pyramid can be used to identify objects of a
different scale. Finally, a detection network, which is a fully convolu-
tional network, connects to all feature levels in the extended functional
pyramid to find objects. Furthermore, the focal loss function in the
classification branch of the detection network is used to transfer class
imbalance problems to single-phase object detectors. Details of each
module are explained in the following sections.

4.1.1. Initial feature maps generation
MobileNet is a neural network architecture introduced by Google

that works very efficiently on mobile devices or with little processing
effort. MobileNet was developed as a model that offers high precision
and minimizes mathematical operations and parameters. The architec-
ture of MobileNet v1 [29] replaces regular convolutional layers, which
are essential for computer vision activities, but whose computation
is quite costly, depthwise separable the 3 × 3 convolution layer that
filters the input features. A 1 × 1 convolution layer, called a pointwise
convolution layer, that combines these filter values to create new
features. Fig. 3 shows a depthwise separable convolution block. Batch
normalization and the ReLU6 layer follow each of the depthwise and
pointwise convolution layers:

𝑦 = 𝑚𝑖𝑛(𝑚𝑎𝑥(0, 𝑥), 6) (1)

Together, the depthwise and pointwise convolution layers do almost
the same as normal folding layers, but they are much faster. Suppose
the size of the input image is 224 × 224 × 3, the entire architecture of

MobileNet v1 is shown in Table 1. As shown in Table 1, MobileNet v1
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Fig. 2. The overall architecture of the proposed method.
Fig. 3. The architecture of a depthwise separable convolution block.

includes a normal 3 × 3 convolution layer as the first layer, followed
by 13 convolution blocks. There are no pooling layers between these
depthwise separable blocks. Instead, some of the depthwise convolution
layers have a step of 2 to reduce the spatial dimensions of the input
feature map.

MobileNet v2 [30] is being advertised as an additional development
of MobileNet v1, making it even more efficient and powerful. In the
MobileNet v2 architecture, the depthwise separable convolution block
is redesigned, as shown in Fig. 3. The new, detachable foldable block
contains three depthwise separable convolution blocks. The first level
is a 1 × 1 convolution layer that is used to expand the number
of channels in the input function tab before entering the depthwise
convolution layer. The intermediate is a 3 × 3 deep convolutional layer
that filters the input features map as in MobileNet V1. The last layer is a
1 × 1 convolution layer. However, the last convolution layer is used to
project multichannel data onto a tensor with a much smaller number
of channels, thereby reducing the number of channels on the feature
map. The last level is also known as the bottleneck layer, as it reduces
the amount of data passing through the network.

Besides, the remaining connection in the MobileNet v2 architecture
is adopted as in ResNet [31] to support gradients flow through the
network. Each layer of the new depthwise separable convolution is
followed by batch normalization and ReLU6 as the trigger function
(except for the last bottleneck level, since the use of non-linearity
54
Fig. 4. The architecture of the depthwise separable convolution block used in
MobileNet v2 architecture.

was destroyed after this layer useful information was destroyed). The
complete architecture of MobileNet v2 is shown in Table 2. As shown
in Table 2, MobileNet v2 contains 17 of the new depthwise separable
convolution blocks, followed by a custom 1 × 1 convolution layer. The
first layer is a standard 3 × 3 convolution layer with 32 channels.

For fast object detection on low-end systems, this paper adopts
MobileNet v2 architecture to generate initial feature maps. The feature
maps generated after layer 18, layer 13, layer 6, and layer 3 are adopted
to generate enhanced feature maps by feature pyramid generation
module as explained in the next section.

For quick detection of objects on low-end systems, this article uses
MobileNet v2 architecture to generate the feature maps. The feature
maps produced at level 18, level 13, level 6, and level 3 are used to
produce feature maps expanded by the resource pyramid production
module, as explained in the next section.
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Fig. 5. The architecture of the enhanced feature pyramid generation module.

4.2. Enhanced feature pyramid generation

In this article, the Functional Pyramid Network (FPN) is used to
create the enhanced functional pyramid production module that pro-
duces improved feature maps in different resolutions. The FPN extends
a standard convolution network with top-down pathway and lateral
connections so that the network creates a large multi-scale feature
pyramid with multiple input image ratings with a single resolution.
Each level of the pyramid can be used to identify objects on a different
scale. According to [20], this article develops FPN in MobileNetv2
architecture, as shown in Fig. 4. Let C5, C4, C3, C2 provide the feature
map of levels 18, 13, 6 and 3. In this article, a 1 × 1 convolution layer
is first applied to reduce the C5 channel depth to 256-d and create
an M5. This functionality guide becomes the first level of the feature
map, which is used to find objects in the detection network. This article
follows the top-down path and analyzes the previous level by a factor
of 2, using the algorithm to override the nearest neighbours. In the
same branch, a 1 × 1 conviction level is applied to all corresponding
feature map in the base network. The corresponding feature map is then
combined using element-wise addition to unsampled feature map. A
3 × 3 conviction level is applied to all unified feature map to minimize
the effect of aliasing when merging with the unsampled layer. This
process is repeated until the best feature map is produced. The last
set of feature maps is called P5, P4, P3, P2, corresponding to C5, C4,
C3, C2, all with the same spatial dimensions. Since the above process
uses the same classifier and regression table for each map of the output
feature map, each map of the pyramidal features P5, P4, P3 and P2 have
256-d output channels.

As with anchor boxes, the detection network with enhanced func-
tionality crosses all sites at all levels of the feature pyramid, without
the need for multiple anchor boxes to resize to a certain level. In this
article, anchor boxes are assigned to a single ladder at each level of
the enhanced pyramid, as in [9]. More specifically, this article defines
anchor boxes with areas of 32 ×32, 64 × 64, 128 × 128, 256×256 pixels
at P2, P3, P4, P5 respectively. This article also uses anchor boxes
with varying ratios 1:2, 1:1, 2:1 for the ratios at each level of the
enhanced functional pyramid. Therefore, there are 15 anchor boxes at
each point on the enhanced feature pyramid. In this article, the anchor
55
boxes for training examples receive training labels according to their
Intersection-over-Union (IoU) ratios with real site boundaries, as in [4].
In particular, an anchor box receives a positive label if it has the highest
IoU for a given ground truth box or an IoU greater than 0.7 with a
ground truth box and a negative label if it is an IoU less than 0.5 for
each ground truth box.

4.3. Detection network

The detection network consists of a classification subnet and a
regression subnet, as shown in Fig. 5 The distribution subnet predicts
the probability that objects are present at any location and any level
of the pyramid. The proposed distribution subnet is a small, fully
convolutional network that maps to all feature levels in the expanded
feature pyramid. The classification parameter is shared at each level of
the pyramid. Fig. 6 (a) shows the architecture of the proposed distribu-
tion subnet. For each C-channel input characteristics map, four 3 × 3
×C convolution levels are first applied, followed by ReLU activation.
A 3 × 3 convolution level is then used with NA filters, where N is
the number of object classes and A is the number of anchor boxes.
Finally, sigmoidal activation is associated with generating NA binary
predictions by spatial location. The regression subnet is used to roll
back the displacement of each anchor box onto a real object on the
adjacent ground. Fig. 6 (b) shows the architecture of the proposed
regression subnet. As noted, the architecture of the cash regression
sub-network is similar to that of the proposed distribution subnet.
However, the regression subnet produces 4 A linear values per spatial
location. For each of the anchor boxes A, based on their spatial position,
these four outputs provide the relative offset between the anchor box
and ground truth box. Although the Object Classification subnet and
the Regression subnet share a common structure, they use separate
parameters.

4.4. Loss function

The Cross-Entropy (CE) loss function [4] is the common loss func-
tion used for object classification. The CE loss can reduce the imbal-
ance between positive and negative samples. However, the CE loss is
not good enough to train classifiers for distinguishing between easy
and hard samples. In general object detection, because of complex
backgrounds, the problem of balance between easy and hard samples
becomes more significant. Focal loss function (FC) was originally in-
troduced by Lin et al. [33] to dedicate the class imbalance problems
for the one-stage object detectors. Inspired by the improvements of the
FC loss, this paper proposes to use the focal loss function instead of
the conventional CE loss. For better understanding, let us have a quick
review of the CE loss function. The traditional CE loss for classification
is formally defined as follow:

𝐿𝐶𝐸 (𝑝, 𝑦) = −𝑙𝑜𝑔(𝑝𝑡) (2)

𝑝𝑡 =

{

𝑝, if 𝑦 = 1
1 − 𝑝, otherwise

(3)

where p represents the predicted probability of given candidate having
label +1; 𝑦 ∈ {− − −1,+1} represents the ground-truth label.

By adding a modulating factor (1 − 𝑝𝑡)𝛾 to the CE loss, where 𝛾 ≥ 0
represents the tunable focusing parameter. The loss function becomes
the FL loss. Thus, the FL loss function is defined as follow:

𝐿𝐹𝐿(𝑝𝑡) = −(1 − 𝑝𝑡)𝛾 𝑙𝑜𝑔(𝑝𝑡) (4)

With the FL loss function replacing the traditional CE loss function,
the contribution of the easy examples is reduced while the ones from
hard examples are enhanced during the training process. The output of
the face mask detection is illustrated in Fig. 7(a,b).
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Fig. 6. The architecture of the detection network. (a) The classification subnet. (b) The box regression subnet.
Fig. 7. Face mask detection.
5. SPICE-IT: Smart COVID-19 pandemic controlled eradication
over NDN-IoT

In this section, the communication architecture of SPICE-IT is intro-
duced.
56
5.1. NDN-IoT: Communication background

In NDN-IoT, content-centric communication is initiated with two
types of packets: the Interest packet, sent by content requester with
the name of the requested content. Each node propagating an interest
is named as a consumer node and the nodes that relay the packets
are named as forwarder nodes. Content provider nodes respond to an
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interest packet with the content data packet and become a producer
node. NDN data structure includes content (CS) caching content, a
pending interest table (PIT) that keeps a record of received and for-
warded interest and forwarding information base (FIB) storing outgoing
interfaces information (in NDN-IoT each sensing node is expected to be
equipped to multiple interfaces including 802.11, WiMax, BLE, 5G etc.).

5.2. Proposed SPICE-IT system architecture

As illustrated in Fig. 1, SPICE-IT is sub categorized in multiple sub
functional blocks. The communication is initiated by the cameras and
thermal sensors mounted inside the closed buildings at various spots. As
discussed in Section 2, the process of image processing-based face mask
identification also calculates the percentage accuracy of result. While
detecting the probability of face with mask on (𝑝𝑚) and the probability
of no face mask 𝑝′𝑚 is also calculated as shown in (5).

𝑝′𝑚 = 1 − 𝑝𝑚 (5)

𝑝′𝑚 is further labelled in to three categories as shown in (6).

𝑝′𝑚(%) =

⎧

⎪

⎨

⎪

⎩

0.00 ≤ 𝑝′𝑚 < 0.10; 𝐿𝑜𝑤
0.10 ≤ 𝑝′𝑚 < 0.70; 𝑀𝑒𝑑𝑖𝑢𝑚
0.70 ≤ 𝑝′𝑚 < 1.00; 𝐻𝑖𝑔ℎ

(6)

Human body temperature 𝑇 𝑒𝑚𝑝 is also classified into normal,
yrexia (fever) and hyperpyrexia [32] as shown in (7).

𝑒𝑚𝑝(◦C) =

⎧

⎪

⎨

⎪

⎩

36.5 ≤ 𝜏 < 37.5; 𝑁𝑜𝑟𝑚𝑎𝑙
37.5 ≤ 𝜏 < 40.0; 𝑃𝑦𝑟𝑒𝑥𝑖𝑎
40.0 ≤ 𝜏 < 41.0; 𝐻𝑦𝑝𝑒𝑟𝑝𝑦𝑟𝑒𝑥𝑖𝑎

(7)

The parameter of observed temperature ratio (𝜏𝑟) is calculated
in Eq. (8).

𝜏𝑟 =
𝜏𝑜𝑏𝑠 − 𝜏𝑚𝑖𝑛
𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛

(8)

where 𝜏𝑜𝑏𝑠 is the observed temperature, 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are minimum and
maximum temperatures respectively.

The sensing camera classifies the intensity of notifications as low
critical, critical, and urgent notification types by calculating notifica-
tion intensity factor (𝛹 ) as shown in (9).

𝛹 =
𝑝′𝑚 + 𝜏𝑟

𝜆
(9)

where 𝜆 is the sensor count parameter which is 2 in current application.
Relationship between 𝛹 and notification type (𝑌 ) is illustrated in
Table 1.

𝛹 Values 0 > 0.00 & ≤ 0.50 > 0.50 & ≤ 0.60 > 0.60 & ≤ 1.00
Type (𝑌 ) Sync Low Critical Critical Urgent

Once an SOP violation is observed, the notification is generated
ith an interest. We introduce novel NDN data structures in SPICE-

T as illustrated in Fig. 8. At the sensing camera, pending notification
ntries (PNE) stores the record of notification interest forwarded to
he 𝑆 while still waiting for the confirmation of packet delivery. PNE
tores information of individual(person) ID (𝐼𝑖) of the person who

violated the SOPs, camera ID (𝐶𝑖) of the camera that recorded the event,
notification intensity factor (𝛹𝑖) of the event, notification message type
(𝑌𝑖) of the event and the time (𝑇𝑖) when the event occurred. While
onfirmed response entries (CRE) stores the information regarding the
vents whose interest have been satisfied by the 𝑆. CRE also stores the
nformation of the local server ID (𝐿𝑖) in addition to the other similar
arameters stored in PNE.

Local servers (𝐿) locally maintains the record of the individuals who
iolated the SOPs. SPICE-IT introduces data structures of local notifica-
ion entries (RLNE) and individual local notification record (ILNR) to
tore and manage interest packets received from 𝐶 and content packets
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eceived from 𝑆 respectively (Fig. 8). The decision of content caching
Table 2

𝜁𝑣𝑎𝑙 values 0 > 0.00 & ≤ 0.50 > 0.50 & ≤ 0.70 > 0.70 & ≤ 1.00

Action type (𝜁) Sync Caution Warning Immediate action

over 𝐿 is taken based on the LSTM mechanism is discussed in section
-C.

Cloud server 𝑆 plays a vital role in SPICE-IT. 𝑆 repeatedly synchro-
izes the individual SOP violation records with the 𝐿. On receiving
n interest packet from 𝐶, 𝑆 decides to generate one of the following
ackets referring to the actions (𝜁) taken by 𝑆:

• Generate Caution: Alert intensity of the packets are low. The
broadcasted packets act twofold, act as interest packets to give
caution on SOP violation and act as content packets for the action
(content) requester.

• Generate Warning: Alert intensity of the packets are medium.
The broadcasted packets act as interest packets for the individual
as a final warning. Similarly, the packets act as content packets
for the action (content) requester.

• Action Recommended: Alert intensity of the packets are high.
The broadcasted packets act threefold, as interest packets for the
individual informing him about that emergency centre is about
to respond on the SOP violation, content packets for the action
(content) requester and interests. Similarly, the packets act as
content packets for the action (content), and as interest packets
for the response team to take recommended actions.

SPICE-IT introduces data structures of received notification entries
RNE) and individual notification record (INR) at 𝑆. Populated cities

are virtually divided into multiple zones. Based on the rate of patient
increase within a zone, 𝑆 can declare the zone as a safe, or unsafe zone.
Officials then perform a smart lockdown to limit the disease spread by
shutting down unsafe zones only. Value of 𝜁𝑣𝑎𝑙 is evaluated based on
the values of individual previous SOP violation record factor (𝜈), safety
actor of zone of notification (𝜒), and notification intensity factor (𝛹 )
s shown in (10).
Values 0 > 0.00 & ≤ 0.50 > 0.50 & ≤ 0.70 > 0.70 & ≤ 1.00
(𝜈) No Violation Few Violations Repeated Violations Serious Violations
(𝜒) Safe Zone Critical Zone Unsafe Zone Emergency Zone

𝛹 =
𝜈 + 𝛹 + 𝜒

𝜆
(10)

Where value of 𝜆 is 3. Relationship between 𝜁𝑣𝑎𝑙 and action type (𝜁) is
illustrated in Table 2.

Emergency response centres (𝑅) are the hospitals and medical cen-
tres that take actions recommended by the 𝑆. Individuals 𝐼 receive the
action notification from 𝑆 and can also request for the proof 𝑃 of the
event of SOP violation accordingly.

5.3. Long Short-Term Memory (LSTM)

For intelligent caching and content retrieval we introduce long
short-term memory network (LSTM) based mechanism that outstands
the conventional recurrent neural networks (RNNs) with special units
termed as memory. The memory cells temporarily store the state of the
network. Special multiplicative units gates control the flow of informa-
tion. The proposed training model predicts future network traffic at
local servers 𝐿 which eventually leads to intelligent content caching
withing the NDN-IoT reducing network congestion and cache overflow
problems. Fig. 9 illustrates the structure of the LSTM cell.

The input sequence is the data-set containing NDN-IoT commu-
nication network traffic 𝑋 = (𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑇 ) of 𝑇 entries, where
𝑥𝑡 represents 𝑡th observation. The hidden states of memory cell is
represented as 𝐻 = (ℎ1, ℎ2,… , ℎ𝑛) and output of the cell is represented
as 𝑌 =

{

𝑌𝑡1, 𝑌𝑡2, 𝑌𝑡3,… , 𝑌𝑡𝑛
}

. The computations are carried out as shown
in Eqs. (11) and (12). The memory cell 𝑐𝑡 contains information of t time
stamp observed at each step. Several gates control the cell that decide
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Fig. 8. SPICE-IT data structures.
Fig. 9. LSTM cell.

either to keep or reset the values according to the state of the gate.

ℎ𝑡 = 𝐻(𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (11)

𝑝𝑡 = 𝑊ℎ𝑦𝑦𝑡−1 + 𝑏𝑦 (12)

Four special gates control input reading (input gate 𝑖𝑡), to output new
cell value (output gate 𝑜𝑡), to reset current cell value (forget gate 𝑓𝑡)
and to modulate the input (input modulation gate 𝑐). Definitions of cell
updates and input–outputs are shown in Eqs. (13)–(18).

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1) (13)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1) (14)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1) (15)

𝑐𝑡 = 𝜙(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1) (16)

𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ 𝑐𝑡 (17)

ℎ = 𝑜 ⊗ 𝜙(𝑐 ) (18)
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𝑡 𝑡 𝑡
Where 𝑊 is the network parameter matrix and ⊗ denotes the
product operations. The hyperbolic tangent 𝜙 and the sigmoid 𝜎 are the
non-linearities with ℎ𝑡 hidden states. The objective function is modelled
in Eq. (19) as a function of mean squared error (MSE). The MSE is
reduced using Adam optimizer based on stochastic gradient descent
process.

𝑀𝑆𝐸 =
𝑛
∑

𝑡=1
(𝑦𝑡 − 𝑝𝑡)

2 (19)

where, 𝑦𝑡 represents the real value and 𝑝𝑡 represents the predicted
value.

5.4. Example scenarios

In Figs. 10–12, SPICE-IT example scenarios are illustrated. Consid-
ering in Fig. 10, an SOP violation by an individual 𝑖𝑖 is observed by
the camera (𝑐𝑖) in zone 𝑧1, an independent entry is created at PNE and
the notification type of low criticality is broadcasted in the network
which is received by the local server (𝑙𝑖) (marked with 1) creaking an
entry in LNE. Considering the network traffic intensity is high and low
criticality 𝑙𝑖 further rebroadcasts the interest (marked as 2) that arrives
at the cloud server 𝑆 and creates an entry in RNE. Assuming low 𝜁𝑣𝑎𝑙,
𝑆 generates a caution message that acts as a content packet for 𝑙𝑖 and
an interest packet for 𝑖𝑖 (marked as 3) with an entry marked at INR. 𝑖𝑖
responds to the interest with a content packet that acts as confirmation
message which arrives at 𝑆 (marked as 4) and removes the PIT entry. 𝑙𝑖
further broadcasts the caution message which arrives at the 𝑐𝑖 (marked
as5), PIT waiting time stops and the PIT entry is removed from 𝑙𝑖.

Fig. 11 illustrates an event in zone 𝑧2 was observed by sensing
camera 𝑐𝑗 which is also a safe zone. Assuming that the network traffic
was low and space in the cache of the 𝑙𝑗 was available using LSTM-
based intelligent mechanism, evidence(video/picture) of the violation
was requested from 𝑐𝑗 in form of an interest 𝐼2 (marked as 3). In
response to the interest, the evidence of a violation is provided in the
data packet (marked as 4) removing the PIT entry for 𝐼2. Similarly,
individual 𝑖𝑗 requests for the evidence of the violation in the form of an
interest 𝐼2 (marked as 8). The interest is rebroadcasted by 𝑆 (marked
as 9). In response to the interest, the evidence of a violation is provided
in the data packet (marked as 10 and 11) removing the PIT entry for
𝐼2 from 𝑆 and 𝑖 respectively.
𝑗
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Fig. 10. SPICE-IT Example Scenario 1.

Fig. 11. SPICE-IT Example Scenario 2.
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Fig. 12. SPICE-IT Example Scenario 3.
In Fig. 12, considering an event is recorded by the camera (𝑐𝑘)
in zone 𝑧3 which is an unsafe zone. Considering the network traffic
was low 𝑖𝑘 requests for the proof of the event in form of an interest
𝐼2 (marked as 3) after forwarding the notification interest (marked as
2). The evidence of violation arrives as a data packet (marked as 4)
that removes the PIT entry for 𝐼2. Assuming high 𝜁𝑣𝑎𝑙, 𝑆 generates
an action recommended message that notifies 𝑖𝑘 that response team is
about to take an action on its violation (marked as 5). Same action
packet is received at 𝑙𝑘 and 𝑐𝑘 acts as content packet for 𝐼1 hence
removing PIT entries for 𝐼1 from 𝑙𝑘 and 𝑐𝑘 respectively (marled as 5
and 7). Considering the emergency scenario, 𝑆 also requests proof of
the violation to be kept in the central database (marked as 6) which
is provided by the 𝑙𝑘 (marked as 8) which was already cached at 𝑙𝑘
in advance. When an individual 𝑖𝑘 requests for the evidence of the
violation in the form of an interest 𝐼2 (marked as 9). The evidence of
a violation is provided in the data packet (marked as 10) removing the
PIT entry for 𝐼2 from 𝑖𝑘.

6. Performance evaluation

Two evaluate the performance of LSTM Enabled caching/requesting
we simulated SPICE-IT over network consists of 20 sensing nodes
(cameras), 1 local(edge) server, 22 intermediate routers as transit nodes
and a central server. The local server is placed at 1–3 hop counts from
60
Fig. 13. Loss/accuracy curve.
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Table 3
LSTM hyper parameters.

Number of layers 5
Neurons in each layer 128
Optimizer ADAM
Dropout 0.2
Activation Layer Softmax
Epoch 300
Batch size 32
Training data 75%
Testing data 25%

Fig. 14. Network Traffic Geenerated.
61

u

Fig. 15. Network Traffic at Respective Transit Links.

thermal sensing cameras, whereas the central server is located at more
than 20 hop counts. We consider the 20 thermal cameras which are
located in buildings. These cameras detect the face mask and body
temperature of the person within the building. These cameras act as the
source that generates notifications (𝑌 ) of types, as 𝑌 = Low Critical, 𝑌 =

ritical and 𝑌 = Urgent, based on 𝛹 values as shown in Table 1. The
obile VNET2 framework is applied for the detection of face mask.3

3 This source code is publicly available at GitHub (https://github.com/
aliksaad84/NDN-based-Framework-to-mitigate-COVID-19.git) released by
s.

https://github.com/maliksaad84/NDN-based-Framework-to-mitigate-COVID-19.git
https://github.com/maliksaad84/NDN-based-Framework-to-mitigate-COVID-19.git
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Fig. 16. Predicted Network Traffic.

he machine is learned for 20 epochs. Fig. 13 shows the loss and
he accuracy curve for training the model. We simulated the network
opology in ndnSIM [33], which is ns-3 based network simulator. The
requency of interest generation of 𝑌 = Low Critical, 𝑌 = Critical and 𝑌 =

Urgent was kept high, medium and low respectively in all cases. For the
prediction of network traffic, the dataset is collected for the training
set and validating/testing set. Then LSTM is applied to the network
traffic prediction at the local server. LSTM model consists of 5 stacked
layers; the hyperparameters are shown in Table 3. The simulation was
run on a Ubuntu server 18.04 installed on intel i7 processor with 8GB
RAM. In our simulation, we use Keras and tensor flow at the backend
for deep learning and pandas for data analysis. Fig. 14(a), Fig. 14(b)
62
Fig. 17. Network Traffic after Enabling Caching.

and Fig. 14(c) show the network traffic generated for the three types of
notifications. Fig. 15 shows the traffic at respective transit links. After
repeatedly fine-tuning the hyperparameters of the LSTM model, our
model consists of one input layer, four hidden layers and one output
layer with dropout layer as 20%.

Fig. 16(a), Fig. 16(b) and Fig. 16(c) shows the predicted network
traffic of the three types of notifications. Also the Confidential Interval
(CI) has been shown. CI shows that predicted output can be varying
with +/- CI. From Fig. 16(a), it is shown that transit traffic for interest
type 𝑌 = Low Critical is high at links R1, R2, R3, R8. Fig. 16(b) shows
for interest type 𝑌 = Critical, network traffic is high at Edge and transit
links, R18, R19, R6, R8 and R9. Similarly Fig. 16(c) shows for interest
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type 𝑌 = Urgent, the network traffic is high at Edge and transit links
18, R19, R6, R8, R9.

After predicting the network traffic at transit links, identifying the
nterest priority, the cache is enabled at local servers to reduce the
etwork congestion. Fig. 17 show network traffic is reduced after
nabling intelligent caching.

. Conclusion

Considering the resource constraints of IoT devices and with the
hallenges inherited by NDN information-centric communication,
PICE-IT introduces an intelligent mechanism to monitor and counter
OVID-19 pandemic spread in close indoor environments. The pro-
osed mechanism works on different stages. In the first stage, mon-
toring is performed at IoT sensors that monitor SOP violations. In
econd stage NDN based content-centric communication enables the
ommunication between IoT devices, local server, cloud server, individ-
al persons and emergency response centres. An LSTM-based content
equesting/caching mechanism is also introduced to request and store
iolation proof at the local server in advance to the cloud server
equest that reduces the content retrieval delay while avoiding network
ongestion problem. In the third stage, the cloud server communicates
nd takes an adaptive decision based on person previous record and
isease spreading status in different geographical zones. In future, we
ill include testbed based testing of SPICE-IT and will make it more

lexible to provide practical NDN-IoT based e-health service to counter
he spread of COVID-19.
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