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Abstract

The cortical grasp network encodes planning and execution of grasps and processes spoken 

and written aspects of language. High-level cortical areas within this network are attractive 

implant sites for brain-machine interfaces (BMIs). While a tetraplegic patient performed grasp 

motor imagery and vocalized speech, neural activity was recorded from the supramarginal gyrus 

(SMG), ventral premotor cortex (PMv), and somatosensory cortex (S1). In SMG and PMv, five 

imagined grasps were well represented by firing rates of neuronal populations during visual cue 

presentation. During motor imagery, these grasps were significantly decodable from all brain 

areas. During speech production, SMG encoded both spoken grasp types and the names of five 

colors. While PMv neurons significantly modulated their activity during grasping, SMG’s neural 

population broadly encoded features of both motor imagery and speech. Together, these results 

indicate brain signals from high-level areas of the human cortex could be used for grasping and 

speech BMI applications.
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Wandelt et al. study how signals from the human supramarginal gyrus, ventral premotor cortex, 

and somatosensory cortex can be used for brain-machine-interfaces. The supramarginal gyrus 

and ventral premotor cortex encode grasp motor imagery and the supramarginal gyrus encodes 

vocalized speech, indicating new target regions for grasp and speech BMI applications.
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Introduction

The ability to grasp and manipulate everyday objects is a fundamental skill, required for 

most daily tasks of independent living. Functional loss of this ability, due to partial or 

complete paralysis from a spinal cord injury (SCI), can irrevocably degrade an individual’s 

autonomy. Recovery of hand and arm function (Anderson, 2004), as well as recovering 

speech communication (Hecht et al., 2002), are very important to tetraplegic patients and 

those suffering from certain neurological conditions such as amyotrophic lateral sclerosis 

(ALS).

Brain-machine interfaces (BMI) could give tetraplegic individuals greater independence 

by directly recording neural activity from the brain and decoding these signals to control 

external devices, such as a robotic arm or hand (Aflalo et al., 2015) (Collinger et al., 2013). 

Recently, BMIs have utilized neural signals to reconstruct speech (Moses et al., 2021), 

(Wilson et al., 2020), (Angrick et al., 2021). Intracortical BMIs use microelectrode arrays to 

record the action potentials of individual neurons with high signal to noise ratio (SNR) and 

high spatial resolution (Nicolas-Alonso and Gomez-Gil, 2012). These characteristics make 

them valuable for BMI applications.

This study targeted three regions of the human cortex: the supramarginal gyrus (SMG), 

which is a sub-region of the posterior parietal cortex (PPC), the ventral premotor cortex 

(PMv) and the primary sensory cortex (S1). These brain areas are key components of 

the cortical grasp circuit. PPC and PMv each encode complex cognitive processes, like 

goal signals (Aflalo et al., 2015), but, similar to M1, also encode low level trajectory 

and joint-angle motor commands (Andersen et al., 2014), (Schaffelhofer and Scherberger, 

2016). Instead of decoding individual finger movements from M1, decoding movement 

intentions from upstream brain areas such as PPC and PMv may allow for more rapid and 

intuitive control of a grasp BMI (Andersen et al., 2019). S1 processes incoming sensory 

feedback signals from the peripheral nervous system, including proprioceptive signals 

during movement (Goodman et al., 2019) and imagined somatosensations (Bashford et al., 

2021).

The supramarginal gyrus (SMG) is involved in processing motor activity during complex 

tool use (Orban and Caruana, 2014). This finding is supported by functional magnetic 

resonance imagining (fMRI) studies of humans and non-human primates (NHPs), 

demonstrating tool use activation of SMG is unique to humans (Peeters et al., 2009). Other 
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studies have confirmed modulation of SMG activity during grasping and manipulation of 

objects (Sakata, 1995), reaching (Filimon et al., 2009), planning (Johnson-Frey, 2004) and 

execution of tool use (Gallivan et al., 2013), (Orban and Caruana, 2014), (McDowell et al., 

2018), (Buchwald et al., 2018), (Reynaud et al., 2019) (Garcea and Buxbaum, 2019). These 

characteristics highlight SMG’s rich potential as a source of grasp related neural signals in 

the human cortex.

In the somatosensory cortex, human and non-human primate (NHP) studies have 

demonstrated decoding of hand kinematics during executed hand gestures (Branco et al., 

2017) and before contact during object grasping (Okorokova et al., 2020). Modulation of S1 

neurons during motor imagery of reaching (Jafari et al., 2020) has been demonstrated for the 

same participant whose data underlies this work. Therefore, S1 might encode grasp motor 

imagery.

While the human grasping circuit represents an ideal target for grasp BMI applications, 

aspects of language are also decodable from this same network. (Stavisky et al., 2019) 

and (Wilson et al., 2020) demonstrated decoding of speech from the ‘hand knob’ area 

in M1, the final cortical output of the grasp circuit. (Aflalo et al., 2020) found PPC 

activation during reading action words and (Zhang et al., 2017) during vocalized speech. 

Transcranial magnetic stimulation (TMS) and fMRI experiments have both documented 

SMG’s involvement in language processing (Stoeckel et al., 2009), (Sliwinska et al., 2012), 

(Oberhuber et al., 2016) and verbal working memory (Deschamps et al., 2014), suggesting 

potential involvement in speech production. However, to our knowledge, speech decoding 

has not previously been demonstrated in SMG.

Results

Grasp representation in SMG, PMv and S1 was characterized by decoding five imagined 

grasps, cued with visual images taken from the “Human Grasping Database” (Feix et al., 

2016). We quantified grasp tuning in the neuronal population and decodability of each 

individual grasp across all brain regions. SMG, PMv and S1 neural populations showed 

significant grasp selectivity, making them candidates for grasp BMI implantation sites. We 

evaluated each region’s role during language processing by cueing the participant to vocalize 

grasp names and colors. PMv was selectively active during imagined grasps, while SMG 

was selective during both imagined grasps and speech production.

Motor imagery task design

The motor imagery task contained four phases: an inter-trial interval (ITI), a cue phase, a 

delay phase, and an action phase (Figure 1A). The Go variation of the task consisted of only 

Go-trials, with performed motor imagery during the action phase. A Go/No-Go variation of 

the task contained an action phase with randomly intermixed Go trials and No-Go trials. 

This control condition verified the participant could control motor imagery-related activity at 

will.

Go trial results were quantitatively similar in both the Go and Go/No-Go variations of 

the task, as assessed through a t-test between classification accuracies (p > 0.05 for all). 
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Therefore, neurons involved during Go-trials in both tasks were pooled over all session days 

(see Table 1), resulting in 819 SMG Go task units, 504 SMG No-Go task units, 146 PMv Go 

task units, 78 PMv No-Go task units, 1551 S1 task Go units, and 948 S1 No-Go task units.

SMG, PMv and S1 show significant tuning to grasps during motor imagery

Smoothed firing rates of example neurons for SMG and PMv most active for grasp 

“Sphere3Finger” are shown in Figure 1B. Motor imagery evoked a much stronger response 

during the action phase of Go trials compared to the action phase of No-Go trials.

After establishing individual neural firing rate modulation during motor imagery for 

different grasps, we quantified the entire neuronal population’s selectivity for each grasp. 

To compare selective neural activity within task epochs (image cue, Go-task action phase, 

No-Go task action phase), we determined the duration of selective (or tuned) activity of 

the neural population during each phase. Tuning of a neuron to a grasp was determined by 

fitting a linear regression model to the firing rate in 50ms time bins (see methods).

Population analysis (Figure 1C) of Go trials revealed two main peaks of activation in SMG 

and PMv, one at cue presentation (54.8% SMG, 41.1% PMV) and another during the action 

phase (37.4% SMG, 39.0% PMv). For S1, only a minor increase in neural tuning was 

observed during the action phase. During No-Go trials, neuronal activity decreased around 

1s after start of the action phase (Figure 1D, action phase).

The peaks of activity were selected to compute individual grasp tuning. Time windows 

incorporating the peaks began 250ms after the start of either the cue or action phase (to 

account for processing latencies), and were respectively 1.5s and 2s long (gray lines, top of 

Figure 1C,D). A longer time window was chosen for the action phase, as the exact onset of 

motor imagery is not possible to measure.

To assess if grasp tuning was significant, results were compared to a shuffled condition, 

where grasp labels were randomly reassigned (see methods). As linear regression uses 

the ITI phase as a baseline condition, shuffled results were proportional to the general 

increase of activity in the neuronal population. Tuning was significant during the Go-trial 

peak activity for all brain areas (Figure 1E). As expected, tuning was not significant in the 

ITI condition. During the cue phase, results were significant in SMG and PMv, but not 

significant in S1. During the action phase, no significance was found during No-Go trials for 

all brain areas (Figure 1F). These results highlight grasp-dependent neuronal activity during 

cue presentation in SMG and PMv, and during instructed motor imagery in all brain areas. 

Additionally, units tuned to multiple grasps existed in all brain areas, demonstrating mixed 

grasp encoding within the population (Figure S1).

Similar to previous analysis methodologies (Murata et al., 1997), (Sakata, 1995), (Taira, 

1998), (Klaes et al., 2015), we separated tuned units into three categories: those tuned during 

the cue phase (“visual units”), those tuned during Go-trial action phase (“motor-imagery 

units”) and those tuned during both (“visuo-motor units”). All three neuron types were 

found in SMG and PMv (Figure 1B,G).
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SMG, PMv and S1 show significant classification accuracy during grasp motor imagery

To assess each brain region’s potential use for BMI applications, we evaluated decodability 

of individual imagined grasps using linear discriminant analysis (LDA - see methods). 

Significant motor imagery decoding was observed during the cue, delay and Go-action 

phases in SMG and PMv and during the Go-action phase in S1 (Figure 2A). For No-Go 

trials, no significant classification accuracies were obtained in the action phases (Figure 2B). 

Importantly, these results mirror our findings in Figure 1E,F, indicating significant grasp 

tuning can predict significant classification accuracies. A confusion matrix averaged over all 

sessions of Go-trials in SMG and PMv during the action phase indicates all grasps can be 

decoded (Figure 2C,D).

SMG and PMv show high generalizability of grasp encoding in the neural population

We addressed generalizability of grasp encoding in the neural population via two analyses, 

cross-phase classification and stability across different population sizes.

Cross-phase classification examined the similarities of neural processes across the cue and 

action phases (see methods). We trained a classification model on a subset of the data of one 

phase (e.g. cue phase), and tested it on two different subsets taken from the cue and action 

phases. If a model trained on the cue phase did not generalize to the action phase, distinct 

neural processes might be present in each phase. However, if the model generalized well, 

common cognitive processes might be occurring in both phases. A neuron dropping analysis 

tracked the evolving classification accuracy as units were removed or added to the pool of 

predictors (see methods). The analysis was performed separately for each of the implanted 

brain regions, with 100 repetitions of eight-fold cross-validation.

Results were averaged over 8-folds and bootstrapped confidence intervals (c.i.s.) of the mean 

were computed over 100 repetitions (Figure 3). Stable results led to small c.i.s, ranging from 

±2.88% to ±0.05% for SMG, ±2.83% to ±0.54% for PMV and ±2.36% to ±0.8% for S1, 

decreasing with the number of available units. SMG and PMv showed strong shared activity 

between the cue and action phases. When training on the cue phase, and testing on the cue 

and action phases, we observed good generalization of the model in SMG, with overlapping 

c.i.s, diverging only at high unit counts. In PMv, the generalization was lower, but showed 

similar trends, while decoding remained at chance level for S1 (Figure 3 A,B,C Train: Cue 

Phase). However, when training on the action phase, and evaluating on the cue phase, lower 

generalization of the model was observed in SMG and PMv (Figure 3A,B,C Train: Action 

Phase).

During the action phase, SMG peaked at 99% decoding accuracy when all recorded units 

were included in the analysis (Figure 3A). In S1, decoding accuracy during the action phase 

peaked around 32%, even when the pool of available neurons increased (Figure 3C). As 

PMv did not reach its peak decoding accuracy due to fewer number of units recorded (Figure 

3B), performance of SMG and PMv at the same population levels was compared directly. 

Figure 3D depicts the number of features needed to obtain 80% classification accuracy 

during cue (left) and action (right) phase. During the cue phase, 94 units in SMG and 

86 units in PMv were needed. During the action phase, 80% classification accuracy was 
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obtained with 50 units in SMG, and 63 units in PMv. These results demonstrate SMG’s and 

PMv’s potential for comparable grasp decoding. If higher neuronal population counts were 

available, excellent grasp classification results can be expected in both brain areas.

PMv had a limited number of neurons available for each daily session. It is possible 

that some units were included multiple times across multiple days, potentially reducing 

the amount of independent available information. However, since the highest classification 

accuracy during the action phase was higher for the neuron dropping curve (90%) than 

for individual session days (65%, Figure 2A), new grasp information was available by 

combining units across several days.

SMG significantly decodes spoken grasps and colors

To explore SMG, PMv and S1’s potential for speech BMIs, the participant was instructed 

to perform verbal speech instead of motor imagery during the action phase. By comparing 

each region’s evoked activity between these two cognitive processes, we aimed to uncover 

evidence for language processing activity at the single unit level. During each daily session, 

a “Motor Imagery”, a “Spoken Grasps” and a “Spoken Colors” version of the task was 

run (Figure 4A,B, see methods). Importantly, both the “Motor Imagery” and the “Spoken 

Grasps” task were cued with the same images. This allowed us to investigate if the cue 

representation of the grasps remained similar, even if different motor outputs (grasping vs 

speaking) were planned.

Classification results during the action phase corroborate SMG’s involvement during 

language processing (Figure 4C) (Oberhuber et al., 2016), (Deschamps et al., 2014), 

(Stoeckel et al., 2009). In contrast to our motor imagery task, only SMG showed significant 

results during vocalization of grasp names and colors.

To assess selectivity of SMG neurons to the different task parameters, tuning in 50ms bin 

was computed identically to Figure 1C,D for each task (Figure 4D). The population analysis 

revealed similar temporal dynamics during the cue phase for the “Motor Imagery” and 

“Spoken Grasps” tasks. This result was expected; both conditions employed the same grasp 

cue. However, responses for the “Spoken Colors” cues were shorter in time and of lower 

amplitude, even though they were presented for the same duration as the grasp cues on the 

screen. During the action phase, temporal dynamics between motor imagery and spoken 

words were comparable, possibly indicating similar underlying cognitive processes.

We evaluated this hypothesized similarity between motor imagery and speech production by 

performing cross-task classification of the cue and action phases. Cross-task classification 

involved training a model on the neuronal firing rate observed in one task, and evaluating 

the model on all three tasks, performed separately for each phase (see methods). During 

the cue phase, decoding of grasps nicely generalized between the “Motor Imagery” and 

the “Spoken Grasps” task (Figure 4E, Train: Motor Imagery; Train: Spoken Grasps). This 

effect weakened during the delay phase, potentially indicating the formation of separate 

motor plans for speech and motor imagery. During the action phase, generalization between 

grasp motor imagery and grasp speech was weak or absent, even if the semantic content 
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was identical. No generalization between the “Spoken Colors” and “Spoken Grasps” tasks 

occurred.

These results were strengthened by two additional analyses. Venn diagrams displayed the 

overlap of tuned units between the tasks in different phases. During the cue presentation 

(Figure S2A), highly overlapping neural populations were engaged in the “Motor Imagery” 

and “Spoken Grasps” tasks. However, during the action phase (Figure S2B), the output 

modality (speech vs. motor imagery) was represented more similarly than semantic content 

(grasps vs. colors). The projection of z-scored action phase data onto the first two principal 

components indicated grasp motor imagery, grasp speech and spoken colors occupied 

different feature spaces (Figure S2C).

We found a similar relationship between the cue and action phase neural representations 

during speech production as was found previously (Figure 3) in the “Motor Imagery” task 

(Figure S3A,B). Results from the cross phase classification analysis and neuron dropping 

curves yielded evidence of generalizability from the cue to action phase in both types of 

tasks (Figure S3).

Discussion

To demonstrate the participant’s volitional control of motor imagery during the action 

phase, interleaved No-Go trials served as a control. As expected, during No-Go trials in the 

action phase, unit tuning was not significantly different from a shuffled distribution (Figure 

1F, Figure S1B), and classification was not significantly different from chance (Figure 

2B). A non-significant peak in tuning was observed in Figure 1D (No-Go action phase 

trials), potentially indicating the formation of a motor plan before the No-Go cue that then 

dissipated in the action phase. Similar cancelled plans have been previously observed in PPC 

of NHPs for reach and saccade plans (Cui and Andersen, 2007).

S1 encodes imagined grasps significantly, but does not improve with population size

While S1 grasp motor imagery classification was significant (Figure 2A), performance did 

not improve with increased population sizes as was seen with SMG and PMv (Figure 3D). 

This could be an indication of limited grasp information within the S1 population, or highly 

correlated firing units. Firstly, no actual movement was performed, likely decreasing the 

occurrence of proprioceptive signals. Secondly, the task design might have only weakly 

engaged the neural populations we recorded from, as the electrode implant mostly covered 

the contralateral arm area (Armenta Salas et al., 2018). Thirdly, units in S1 showed 

mostly grasp independent increases in activity compared to baseline (Figure 1C,E), possibly 

indicating that the grasp-related responses were not different enough to support stronger 

decoding in S1.

SMG and PMv show significant grasp activity during the visual cue and motor imagery

SMG’s cue phase activity rose faster, and peaked higher compared to activity during motor 

imagery (Figure 1C). A study showed grasp planning in SMG was disrupted by TMS 

as early as 17ms after cue presentation, implicating a causal role in grasp planning and 

execution (Potok et al., 2019).
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While human participants can self-report strategies employed while performing internal 

cognitive tasks, cue processing and motor imagery do not have independently observable 

behavioral outputs to correlate with the measured neural data. Our analysis showed 

generalizable representation (Figure 3A,B) and overlapping tuning (Figure 1G) in both SMG 

and PMv during both the cue and action phases. Multiple explanations for generalized 

neural activity observed during these tasks are plausible. During cue presentation, an 

increase in neural activity could represent visual feature extraction of the presented cue 

(visual processes). Alternatively, activity could be independent of visual input and represent 

planning activity of the cued grasp (motor processes). Additionally, activity could be 

related to memory or semantic meaning, as the participant remembers the instructed grasp 

(cognitive processes). Finally, a combination of all these processes might be at play. While 

proving a definitive answer to these questions is beyond the scope of this paper, performing 

cross-phase classification between the cue and action can help identify similar or distinct 

cognitive processes within the observed data.

These similarities could be explained by the participant performing “visual imagery” rather 

than motor imagery during the action phase, as they recall a mental image of the grasp 

(Figure 3A,B Train: Cue Phase). Cue phase activity can partly be explained during action 

phase (classification performance 80% SMG, 55% PMv) (Figure 3A,B Train: Action Phase), 

but neuronal activity unique to action phase exists (classification performance 99% SMG, 

89% PMv, Figure 3A,B Train: Action Phase). This generalization from cue to action is not 

bidirectional (from action to cue). Therefore, we argue this additional information during 

the action phase is likely motor-related and thus fundamentally different from neural activity 

during the cue phase.

Good generalization of the model to both cue and action phases when training on the 

cue phase could indicate motor components as well as visual components. PMv has been 

shown to represent planning activity of the grasp in NHP experiments (Schaffelhofer and 

Scherberger, 2016). Therefore, planned hand shape as well as visual object features can 

modulate neuronal firing rates within the cortical grasp circuit during a grasp task. In 

SMG, a fMRI study demonstrated planning activity for grasping tools that were previously 

manipulated without vision, hinting that SMG’s cue phase activity is likely not to be only 

visual (Styrkowiec et al., 2019).

During tool use, SMG is hypothesized to integrate the appropriate grasp type with the 

knowledge of how to use the tool (Osiurak and Badets, 2016; Vingerhoets, 2014), which 

requires access to semantic information. As our current task design does not allow the 

determination of this cognitive process, further experimentation is necessary.

SMG encodes speech

During speech, SMG and PMv showed vastly different results. Spoken words (both grasp 

names and colors) were decodable equally or better than only motor imagery of grasps in 

SMG. In contrast, PMv and S1 showed neither significant classification of spoken grasp 

names nor of spoken colors (Figure 4C).
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The motor imagery and speech tasks showed similar proportions of tuned SMG neurons 

during the action phase (Figure 4D). Does this result suggest SMG processes semantics, 

regardless of the performed task? To answer this question, we performed cross-task 

classification (Figure 4E)

During the cue phase, the model generalized nicely between the grasp motor imagery 

and spoken grasps tasks, confirming the neural code of the cued grasp image remained 

similar. This effect decreased during the delay phase and became weak or absent during the 

action phase. SMG may engage different motor plans when motor imagery or speech was 

performed, even if the semantic content was identical.

During the action phase, none of the models trained during one task generalized well to a 

different task. Furthermore, accurate classification of color words confirmed SMG’s role is 

not confined to only action verbs, even if classification accuracy of spoken colors was lower 

than that for spoken grasps. Possibly, the novelty of the words affected the amplitude of the 

neural representation, as color words are more common than the grasp names we employed. 

However, our participant was well versed in the names of the grasps, having used them 

repeatedly prior to data collection.

Study of the underlying feature space in SMG’s neuronal population suggested that hand 

posture (proximity of “Lateral” and “Palmar Pinch” in PCA space, Figure S2C) rather than 

object size and shape modulate SMG activity. These results support fMRI findings, where 

object size was not shown to modulate SMG activity (Perini et al., 2020).

Conclusion

In this study, we demonstrate grasps are well represented by single unit firing rates of 

neuronal populations in human SMG and PMv during cue presentation. During motor 

imagery, individual grasps could be significantly decoded in all brain areas. SMG and PMv 

achieved similar highly-significant decoding performances, demonstrating their viability 

for a grasp BMI. During speech, SMG achieved significant classification performance, in 

contrast to PMv and S1, which were not able to significantly decode individual spoken 

words. While temporal dynamics between motor imagery and speech were similar, we 

observed different motor plans for each output modality. These results are evidence for a 

larger role of SMG in language processing. Given the flexibility of neural representations 

within SMG, this brain area may be a candidate implant site for BMI speech and grasping 

applications.

STAR Methods

Resource Availability

Lead Contact—Further information and requests for resources should be directed to the 

Lead Contact, Sarah K. Wandelt (skwandelt@caltech.edu).

Materials Availability—This study did not generate new unique materials.
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Data and Code Availability—All analyses were conducted in MATLAB using 

previously published methods and packages. MATLAB analyses scripts and preprocessed 

data are available on GitHub (https://doi.org/10.5281/zenodo.6330179).

Experimental model and subject details

A tetraplegic participant was recruited for an IRB- and FDA-approved clinical trial of 

a brain-machine interface and he gave informed consent to participate. The participant 

suffered a spinal cord injury at cervical level C5 two years prior to participating in the study.

Method details

Implants—The targeted areas for implant were the left ventral premotor cortex (PMv), 

supramarginal gyrus (SMG), and primary somatosensory cortex (S1). Exact implant sites 

within PPC and PMv were identified using fMRI while the participant performed imagined 

reaching and grasping tasks. The subject performed precision grip, power grip or reaches 

without hand shaping of objects in different orientations (Aflalo, Kellis et al., 2015). For 

localization of the S1 implant, the subject was touched on areas with residual sensation 

on the biceps, forearm and thenar eminence during fMRI, and reported the number of 

touches (Armenta Salas et al., 2018). In November 2016, the participant underwent surgery 

to implant one 96-channel multi-electrode array (Neuroport Array, Blackrock Microsystems, 

Salt Lake City, UT) in SMG and PMv each, and two 7 × 7 sputtered iridium oxide film - 

tipped microelectrode arrays with 48 channels each in S1.

Data collection—Recording began two weeks after surgery and continued one to three 

times per week. Data for this work were collected between 2017 and 2019. Broadband 

electrical activity was recorded from the NeuroPort arrays using Neural Signal Processors 

(Blackrock Microsystems, Salt Lake City, UT). Analog signals were amplified, bandpass 

filtered (0.3–7500 Hz), and digitized at 30,000 samples/sec. To identify putative action 

potentials, these broadband data were bandpass filtered (250–5000 Hz), and thresholded 

at −4.5 the estimated root-mean-square voltage of the noise. Waveforms captured at these 

threshold crossings were then spike sorted by manually assigning each observation to a 

putative single neuron, and the rate of occurrence of each “unit”, in spikes/sec, are the data 

underlying this work. Units with firing rate <1.5 Hz were excluded from all analyses. To 

allow for meaningful analysis of individual datasets, recording sessions where high levels 

of noise prevented us from isolating more than three units on an array were excluded. This 

resulted in the removal of three PMv datasets. The rounded average number of recorded 

units per session was 55 +/− 17 for SMG, 12 +/− 9 for PMv, and 119 +/− 48 for S1.

Experimental Task—We implemented a task that cued five different grasps with visual 

images taken from the “Human Grasping Database” (Feix et al., 2016) to examine the neural 

activity related to imagined grasps in SMG, PMv and S1. The grasps were selected to 

cover a range of different hand configurations and were labeled “Lateral”, “WritingTripod”, 

“MediumWrap”, “PalmarPinch”, and “Sphere3Finger” (Figure 1A).

Go task:  Each trial consisted of four phases, referred to in this paper as ITI, cue, delay 

and action (Figure 1B). The trial began with a brief inter-trial interval (2 sec), followed by 
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a visual cue of one of the five specific grasps (4 sec). Then, after a delay period (gray circle 

onscreen; 2 sec), the participant was instructed to imagine performing the cued grasp with 

his right (contralateral) hand (Go trials; green circle on screen; 4 sec). Three datasets had a 

longer action phase. For these, only data from the first four seconds of the action phase were 

included in the analysis.

Go/No-Go task:  In a Go/No-Go version of this task, the participant was presented with 

either a green circle (Go condition) or a red circle (No-Go condition) after the delay, with 

instructions to imagine performing the cued grasp as normal during the Go condition (Go 

trials), and to do nothing for the No-Go condition (No-Go trials). In both variations of the 

task, conditions and grasp types were pseudorandomly interleaved and balanced with eight 

trials collected per combination (Figure 1B).

Spoken Grasps task:  A speaking variation of the task was constructed with the same task 

design outline above, but instead of performing motor imagery during the action phase, the 

participant was instructed to vocalize once the name of the grasp. Spoken Colors task: 

Another variation of this speaking task used five squares of different colors instead of 

five grasps, and the participant was instructed to vocalize once the color during the action 

phase (Figure 4A,B). On each session day, a “Motor Imagery task” (identical to Go task), 

a “Spoken Grasps task” and a “Spoken Colors task” was performed, to allow comparisons 

between tasks.

Table 1 illustrates the number of recording sessions for each task variation.

The participant was situated 1 m in front of a LED screen (1190 mm screen diagonal), 

where the task was visualized. The task was implemented using the Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997; Kleiner et al, 2007) extension for MATLAB (MATLAB. 

(2018). 9.7.0.1190202 (R2019b). Natick, Massachusetts: The MathWorks Inc.).

Neural Firing Rates—Firing rates of sorted units were computed as the number of spikes 

that occurred in 50ms bins, divided by the bin width, and smoothed using a Gaussian filter 

with kernel width of 50ms to form an estimate of the instantaneous firing rates (spikes/sec). 

For the Go condition, 40 trials (8 repetitions of 5 grasps) were recorded per block. For the 

No-Go condition, two consecutive blocks of 40 trials (4 repetitions of 5 Go and 5 No-Go 

grasps) were recorded and combined, to accommodate the participant with shorter tasks.

Quantification and Statistical Analysis

All analyses were performed using MATLAB R2020b.

Linear regression analysis—To identify units that exhibited selective firing rate 

patterns (or tuning) for the different grasps, linear regression analysis was performed in 

two different ways: 1) step by step in 50ms time bins to allow assessing changes in neuronal 

tuning over the entire trial duration; 2) averaging the firing rate of specified time windows 

during the cue (1.5s) and action phase (2s), allowing to compare tuning between both 

phases. The model returns a fit that estimates the firing rate of a unit based on the following 

variables:
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FR = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5

Where FR corresponds to the firing rate of that unit, and β corresponds to the estimated 

regression coefficients. A 48 × 5 indicator variable, X, indicated which data corresponded to 

which grasp. The first 8 rows were the average firing rate of the ITI phase, and indicated the 

offset term βo, or baseline condition. These rows had only zeros. The next 40 rows indicated 

the trial data, for example, if the first trial was “Lateral” (grasp 1), it would have a 1 in 

column 1, and zeros in all other columns.

In this model, β symbolizes the change of firing rate from baseline for each grasp. A 

student’s t-test was performed to test the hypothesis of β = 0. A unit was defined as tuned if 

the hypothesis could be rejected (p < 0.05, t-statistic). This definition allows for tuning of a 

unit to zero, one, or multiple grasps during different time points of the trial.

Linear regression significance testing—To assess significance of unit tuning, a 

null dataset was created by repeating linear regression analysis 1000 times with shuffled 

labels. Then, different percentile levels of this obtained null distribution were computed and 

compared to the actual data. Data higher than the 95th percentile of the null - distribution 

was denoted with a * symbol, higher than 99th percentile was denoted with **, and higher 

than 99.9th percentile was denoted with ***.

Classification—Using the neuronal firing rates recorded in this task, a classifier was used 

to evaluate how well the set of grasps could be differentiated during each phase. For each 

session and each array individually, linear discriminant analysis (LDA) was performed, 

assuming an identical diagonal covariance matrix for data of each grasp. These assumptions, 

compared to a full diagonal covariance matrix, resulted in best classification accuracies. 

Classifiers were trained using averaged data from each phase, which were either 2s (ITI, 

delay) or 4s (cue, action). We applied principal component analysis (PCA) and selected the 

10 highest principal components (PCs), or PCs explaining more than 90% of the variance 

(whichever was higher), for feature selection on the training set. When less than 10 PCs 

were available, all features were used. This feature selection method allowed us to compare 

if there was a correlation between the number of tuned units and classification accuracy, 

without selecting tuned units as features. The unit yield in PMv was generally lower than 

in SMG and S1; however, significant classification accuracies were still obtained with a 

limited number of features. Between 12 and 21 PCs were used in SMG, 6 and 16 in PMv, 

and 18 and 27 in S1. Leave-one-out cross-validation was performed to estimate decoding 

performance. A 95% confidence interval was computed by the student’s t-inverse cumulative 

distribution function.

Classification performance significance testing—To assess the significance of 

classification performance, a null dataset was created by repeating classification 1000 times 

with shuffled labels. Then, different percentile levels of this null distribution were computed 

and compared to the mean of the actual data. Mean classification performances higher than 
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the 95th percentile were denoted with a * symbol, higher than 99th percentile were denoted 

with **, and higher than 99.9th percentile were denoted with ***.

Neuron dropping curve and cross-phase classification—The neuron dropping 

curve represents the evolution of the classification accuracy based on the number of neurons 

used to train and test the model. All available neurons were used for all brain areas. Cross-

phase classification was performed to investigate how well a model trained on data of the 

cue phase can predict data of the action phase, and vice-versa. Classification with eightfold 

cross validation was performed for each subset of neurons selected for classification. First, 

one of the neurons was randomly selected, and the classification accuracy on the cue and 

action phase was computed with a model trained on either the action phase or the cue phase. 

Then, a new subset of two random neurons was selected, and classification accuracy was 

again computed. This was performed until all available neurons were randomly added. PCA 

was performed on the dataset. To avoid overfitting by using more features than observations 

(40), the maximum number of principal components used was 20, and the process was 

repeated 100 times. The prediction accuracy was averaged over the cross-validation folds, 

and the mean with 95% confidence interval (bootstrapped) was plotted against the number of 

neurons.

Cross-task classification—To evaluate the similarity of neuronal firing in the “Motor 

Imagery”, the “Spoken Grasps” and the “Spoken Colors” tasks, cross-task classification was 

performed. This method consisted of training a classifier on the averaged neuronal firing 

rates recorded during one of the tasks (e.g. “Motor Imagery”), and evaluating it on the 

neuronal firing rates of all three tasks. For “Spoken Colors”, data was only averaged over the 

first 2s of the cue phase, as neuronal activity for this condition was shorter than for the other 

tasks (Figure 4D). A LDA with PCA and Leave-one-out cross validation was performed for 

each individual phase (see method section “Classification”).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Single neurons in the human cortical grasp circuit encode motor imagery and 

language

• Neural representations of unique grasps are found in cortical areas SMG, 

PMv and S1

• Additionally, SMG encodes the vocalization of grasp names and colors

• Our results identify new target areas for grasp and speech brain-machine 

interfaces
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Figure 1|. Neurons in the cortical grasp circuit encode grasp types.
A) Grasp images were used to cue motor imagery in a tetraplegic human. The task was 

composed of an inter-trial interval (ITI), a cue phase displaying one of the grasp images, 

a delay phase and an action phase. For the Go/No-Go task the action phase contained 

intermixed Go trials (green – performed motor imagery) and No-Go trials (red – rest). B) 
Example smoothed firing rates of neurons in SMG and PMv during Go and No-Go trials. 

Smoothed average firing rates of two example units (solid line: mean, shaded area: 95% 

bootstrapped confidence interval) for 8 trials of each grasp. Vertical dashed lines represent 
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the beginning of each phase. C) Percentage of tuned units to grasps for Go trials in 50ms 

time bins in SMG, PMv and S1 over the trial duration. The gray lines represent cue and 

action analysis windows for figures E,F. D) Same as C) for No-Go trials. E) Stacked 

percentage of units tuned for each grasp in the ITI, cue and action phase windows during Go 

trials. Significance was calculated by comparing data to a shuffle distribution (striped lines, 

*** = p < 0.001). F) Same as E) for No-Go trials. G) Overlap of tuned units between the cue 

and action analysis windows during Go trials for SMG and PMv.
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Figure 2|. Significantly decodable grasps from all brain areas during motor imagery.
A) Classification was performed for each session day individually using leave-one out 

cross-validation (black dots). PCA was performed. 95% c.i.s for the session means were 

computed. Significance was evaluated by comparing actual data results to a shuffle 

distribution (averaged shuffle results = red dots, * = p < 0.05, ** = p < 0.01, *** = p < 

0.001) B) Same as A) for No-Go trials. C) Error matrix during Go-trial action phase for 

SMG, averaged over all session days. D) Same as C) for PMv.
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Figure 3|. SMG and PMv show high generalizability of grasp encoding in neuronal populations.
A-C) Neuron dropping curves were performed in SMG, PMv and S1 over 100 repetitions of 

eight-fold cross validation. The first 20 PC’s were used as features. The model was trained 

once on the cue phase and applied on both cue and action phases (Train: Cue phase), and 

vice-versa (Train: Action phase). The mean classification accuracy with bootstrapped 95% 

c.i.s are plotted. D) The first 140 units of each brain area were plotted together to compare 

the number of units required for 80% classification accuracy. SMG and PMv results were 

similar, with less units needed for classification during the action phase compared to the cue 

phase.
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Figure 4|. SMG encodes speech.
A) Grasp images cued the “Motor Imagery” and “Spoken Grasps” tasks. Colored squares 

cued the “Spoken Colors” task. B) The task contained an ITI, a cue phase displaying 

the image of one of the grasp or colored squares, a delay phase and an action phase. 

During the action phase, the participant vocalized once the name of the cued grasp or 

color. C) Classification was performed for each individual session day using leave-one-out 

cross-validation (black dots) for all tasks. PCA was performed for feature selection. 95% 

c.i.s for the session mean was computed. Significance was computed by comparing actual 
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data results to a shuffle distribution (averaged shuffle results = red dots, * = p < 0.05, 

** = p < 0.01, *** = p < 0.001). SMG, PMv, and S1 showed significant classification 

results for motor imagery. Only SMG data significantly classified spoken grasps and 

spoken colors. D) Percentage of tuned units to grasps or colors in 50ms time bins in 

SMG for each task. The gray lines represent cue and action analysis windows for figure 

S2A,B. E) Cross-task classification was performed by training a classification model on one 

task (e.g. Motor Imagery) and evaluating it on all three tasks, for each phase separately. 

Confidence intervals and significance were computed as described in figure 4C). During the 

cue phase, generalization between tasks using the same image cue (“Motor Imagery” and 

“Spoken Grasps”) was observed. During the action phase, weak (*) or no generalization was 

observed.
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Table 1

illustrates the number of recording sessions for each task Variation.

Area╲Task Go task Go/No-Go task Spoken Grasps Spoken Colors

SMG 6 9 5 5

PMV 6 6 5 5

S1 6 7 5 5
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB R2020b MathWorks http://www.mathworks.com

Psychophysics Toolbox extension for MATLAB (2018) http://psychtoolbox.org/

Other

Neuroport System Blackrock Microsystems http://blackrockmicro.com/
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