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Abstract

Since its initial release in 2000, the human reference genome has covered only the euchromatic 

fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the 

remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 

3.055 billion base pair (bp) sequence of a human genome, T2T-CHM13, that includes gapless 

assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces 

nearly 200 million bp of sequence containing 1,956 gene predictions, 99 of which are predicted to 

be protein coding. The completed regions include all centromeric satellite arrays, recent segmental 

duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex 

regions of the genome to variational and functional studies.

One-Sentence Summary:

Twenty years after the initial drafts, a truly complete sequence of a human genome reveals what 

has been missing.

The current human reference genome was released by the Genome Reference Consortium 

(GRC) in 2013 and most recently patched in 2019 (GRCh38.p13) (1). This reference traces 
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its origin to the publicly funded Human Genome Project (2) and has been continually 

improved over the past two decades. Unlike the competing Celera effort (3) and most 

modern sequencing projects based on “shotgun” sequence assembly (4), the GRC assembly 

was constructed from sequenced bacterial artificial chromosomes (BACs) that were ordered 

and oriented along the human genome via radiation hybrid, genetic linkage, and fingerprint 

maps. However, limitations of BAC cloning led to an underrepresentation of repetitive 

sequences, and the opportunistic assembly of BACs derived from multiple individuals 

resulted in a mosaic of haplotypes. As a result, several GRC assembly gaps are unsolvable 

due to incompatible structural polymorphisms on their flanks, and many other repetitive and 

polymorphic regions were left unfinished or incorrectly assembled (5).

The GRCh38 reference assembly contains 151 Mbp of unknown sequence distributed 

throughout the genome, including pericentromeric and subtelomeric regions, recent 

segmental duplications, ampliconic gene arrays, and ribosomal DNA (rDNA) arrays, all 

of which are necessary for fundamental cellular processes (Fig. 1A). Some of the largest 

reference gaps include human satellite (HSat) repeat arrays and the short arms of all five 

acrocentric chromosomes, which are represented in GRCh38 as multi-megabase stretches 

of unknown bases (Figs. 1B and 1C). In addition to these apparent gaps, other regions of 

GRCh38 are artificial or are otherwise incorrect. For example, the centromeric alpha satellite 

arrays are represented as computationally generated models of alpha satellite monomers to 

serve as decoys for resequencing analyses (6), while sequence assigned to the short arm of 

Chromosome 21 appears falsely duplicated and poorly assembled (7). When compared to 

other human genomes, GRCh38 also shows a genome-wide deletion bias that is indicative of 

incomplete assembly (8). Despite finishing efforts from both the Human Genome Project (9) 

and GRC (1) that improved the quality of the reference, there was limited progress towards 

closing the remaining gaps in the years that followed (Fig. 1D).

Long-read shotgun sequencing overcomes the limitations of BAC-based assembly and 

bypasses the challenges of structural polymorphism between genomes. PacBio’s multi-

kilobase, single-molecule reads (10) proved capable of resolving complex structural 

variation and gaps in GRCh38 (8, 11), while Oxford Nanopore’s >100 kbp “ultra-long” 

reads (12), enabled complete assemblies of a human centromere (ChrY) (13) and, later, an 

entire chromosome (ChrX) (14). However, the high error rate (>5%) of these technologies 

posed challenges for the assembly of long, near-identical repeat arrays. PacBio’s most recent 

“HiFi” circular consensus sequencing offers a compromise of 20 kbp read lengths with an 

error rate of 0.1% (15). Whereas ultra-long reads are useful for spanning repeats, HiFi reads 

excel at differentiating subtly diverged repeat copies or haplotypes (16).

To finish the last remaining regions of the genome, we leveraged the complementary aspects 

of PacBio HiFi and Oxford Nanopore ultra-long read sequencing to assemble the uniformly 

homozygous CHM13hTERT cell line (hereafter, CHM13) (17). The resulting T2T-CHM13 

reference assembly removes a 20-year-old barrier that has hidden 8% of the genome from 

sequence-based analysis, including all centromeric regions and the entire short arms of five 

human chromosomes. Here we describe the construction, validation, and initial analysis of a 

truly complete human reference genome and discuss its potential impact on the field.
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Cell line and sequencing

As with many prior reference genome improvement efforts (1, 8, 17–20), including the 

T2T assemblies of human chromosomes X (14) and 8 (21), we targeted a complete 

hydatidiform mole for sequencing. Most CHM genomes arise from the loss of the maternal 

complement and duplication of the paternal complement postfertilization and are, therefore, 

homozygous with a 46,XX karyotype (22). Sequencing of CHM13 confirmed nearly 

uniform homozygosity, with the exception of a few thousand heterozygous variants and a 

megabase-scale heterozygous deletion within the rDNA array on Chromosome 15 (23) (figs. 

S1 to S2). Local ancestry analysis shows the majority of the CHM13 genome is of European 

origin, including regions of Neanderthal introgression, with some predicted admixture (23) 

(Fig. 1A). Compared to diverse samples from the 1000 Genomes Project (1KGP) (24), 

CHM13 possesses no apparent excess of singleton alleles or loss-of-function variants (25).

We extensively sequenced CHM13 with multiple technologies (23), including 30× PacBio 

circular consensus sequencing (HiFi) (16, 20), 120× Oxford Nanopore ultra-long read 

sequencing (ONT) (14, 21), 100× Illumina PCR-Free sequencing (ILMN) (1), 70× 

Illumina / Arima Genomics Hi-C (Hi-C) (14), BioNano optical maps (14), and Strand-seq 

(20) (table S1). To enable assembly of the highly repetitive centromeric satellite arrays and 

closely related segmental duplications, we developed methods for assembly, polishing, and 

validation that better utilize these available datasets.

Genome assembly

The basis of the T2T-CHM13 assembly is a high-resolution assembly string graph (26) 

built directly from HiFi reads. In a bidirected string graph, nodes represent unambiguously 

assembled sequences and edges correspond to the overlaps between them, due to either 

repeats or true adjacencies in the underlying genome. The CHM13 graph was constructed 

using a purpose-built method that combines components from existing assemblers (16, 27) 

along with specialized graph processing (23). Most HiFi errors are small insertions or 

deletions within homopolymer runs and simple sequence repeats (16), so homopolymer runs 

were first “compressed” to a single nucleotide (e.g., [A]n becomes [A]1 for n > 1). All 

compressed reads were then aligned to one another to identify and correct small errors, and 

differences within simple sequence repeats were masked. After compression, correction, and 

masking, only exact read overlaps were considered during graph construction, followed by 

iterative graph simplification (23).

In the resulting graph, most components originate from a single chromosome and have an 

almost linear structure (Fig. 2A), which suggests few perfect repeats greater than roughly 

10 kbp exist between different chromosomes or distant loci. Two notable exceptions are 

the five acrocentric chromosomes, which form a single connected component in the graph, 

and a recent multi-megabase HSat3 duplication on Chromosome 9, consistent with the 9qh+ 

karyotype of CHM13 (fig. S3). Minor fragmentation of the chromosomes into multiple 

components resulted from a lack of HiFi sequencing coverage across GA-rich sequences 

(16). These gaps were later filled with a prior ONT-based assembly (CHM13v0.7) (14).
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Ideally, the complete sequence for each chromosome should exist as a walk through the 

string graph where some nodes may be traversed multiple times (repeats) and some not at all 

(errors and heterozygous variants). To help identify the correct walks, we estimated coverage 

depth and multiplicity of the nodes (23), which allowed most tangles to be manually 

resolved as unique walks visiting each node the appropriate number of times (Figs. 2B 

and fig. S4). In the remaining cases, the correct path was ambiguous and required integration 

of ONT reads (Figs. 2C and 2D). Where possible, ONT reads were aligned to candidate 

traversals or directly to the HiFi graph (28) to guide the correct walk (fig. S5), but more 

elaborate strategies were required for recent satellite array duplications on chromosomes 6 

and 9 (23). Only the five rDNA arrays, constituting approximately 10 Mbp of sequence, 

could not be resolved with the string graph and required a specialized approach (described 

below). An accurate consensus sequence for the selected graph walks was computed from 

the uncompressed HiFi reads (23), resulting in the CHM13v0.9 draft assembly.

For comparative genomics of the centromere (29, 30), we repeated this process on an 

additional X chromosome from the Coriell GM24385 cell line (NIST ID: HG002). The 

resulting T2T-HG002-ChrX assembly shows comparable accuracy to T2T-CHM13 (23) 

(figs. S6 to S8).

rDNA assembly

The most complex region of the CHM13 string graph involves the human ribosomal DNA 

arrays and their surrounding sequence (Fig. 2D). Human rDNAs are 45 kbp near-identical 

repeats that encode the 45S rRNA and are arranged in large, tandem repeat arrays embedded 

within the short arms of the acrocentric chromosomes. The length of these arrays varies 

between individuals (36), and even somatically, especially with aging and certain cancers 

(37). A typical diploid human genome has an average of 315 rDNA copies, with a standard 

deviation of 104 copies (36). We estimate that the diploid CHM13 genome contains 

approximately 400 rDNA copies based on ILMN depth of coverage (23) (fig. S9), or 409 ± 9 

(mean ± s.d.) rDNA copies by ddPCR (fig. S10).

To assemble these highly dynamic regions of the genome, and overcome limitations of the 

string graph construction (23) (fig. S11), we constructed sparse de Bruijn graphs for each 

of the five rDNA arrays (38) (fig. S12). ONT reads were aligned to the graphs to identify 

a set of walks, which were converted to sequence, segmented into individual rDNA units, 

and clustered into “morphs” according to their sequence similarity. The copy number of each 

morph was estimated from the number of supporting ONT reads, and consensus sequences 

were polished with mapped HiFi reads. ONT reads spanning two or more rDNA units were 

used to build a morph graph representing the structure of each array (fig. S12).

The shorter arrays on Chromosomes 14 and 22 consist of a single primary morph arranged 

in a head-to-tail array, whereas the longer arrays on Chromosomes 13, 15, and 21 exhibit 

a more mosaic structure involving multiple, interspersed morphs. In these cases, the ONT 

reads were not long enough to fully resolve the ordering, and the primary morphs were 

artificially arranged in consecutive blocks reflecting their estimated copy number. These 

three arrays capture the chromosome-specific morphs but should be treated as model 
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sequences. The final T2T-CHM13 assembly contains 219 complete rDNA copies, totaling 

9.9 Mbp of sequence.

Assembly validation and polishing

To evaluate concordance between the reads and the assembly we mapped all available 

primary data, including HiFi, ONT, ILMN, Strand-seq, and Hi-C, to the CHM13v0.9 draft 

assembly to identify both small and structural variants (see reference (31) for a complete 

description). Manual curation corrected 4 large and 993 small errors, resulting in the 

CHM13v1.0 assembly, and identified 44 large and 3,901 small heterozygous variants (31). 

Further telomere polishing and addition of the rDNA arrays (23) resulted in a complete, 

telomere-to-telomere assembly of a human genome, T2T-CHM13v1.1.

The T2T-CHM13 assembly is consistent with previously validated assemblies of 

chromosomes X (14) and 8 (21), and the sizes of assembled satellite arrays match ddPCR 

copy-number estimates for those tested (fig. S10 and tables S2 and S3). Mapped Strand-

seq (figs. S13 and S14) and Hi-C (fig. S15) data show no signs of misorientations or 

other large-scale structural errors. The assembly correctly resolves 644 of 647 previously 

sequenced CHM13 BACs at >99.99% identity, with the 3 others reflecting errors in the 

BACs themselves (figs. S16 to S19).

Mapped sequencing read depth shows uniform coverage across all chromosomes (Fig. 3A), 

with 99.86% of the assembly within three standard deviations of the mean coverage for 

either HiFi or ONT (HiFi coverage 34.70 ± 7.03, ONT coverage 116.16 ± 16.96, excluding 

the mitochondrial genome). Ignoring the 10 Mbp of rDNA sequence, where most of the 

coverage deviation resides, 99.99% of the assembly is within three standard deviations (23). 

Alignment-free analysis of ILMN and HiFi copy number data also show concordance with 

the assembly (figs. S20 and S21). This is consistent with uniform coverage of the genome 

and confirms both the accuracy of the assembly and the absence of aneuploidy in the 

sequenced CHM13 cells.

Coverage increases or decreases were observed across multiple satellite arrays (Figs. 3B 

to 3D). However, given the uniformity of coverage across these arrays, association with 

specific satellite classes, and the sometimes opposite effect observed for HiFi and ONT, we 

hypothesize that these anomalies are related to biases introduced during sample preparation, 

sequencing, or basecalling, rather than assembly error (23) (figs. S22 to S26 and table S4). 

While the specific mechanisms require further investigation, prior studies have noted similar 

biases within certain satellite arrays and sequence contexts for both ONT and HiFi (32, 33).

Being the most difficult regions of the genome to assemble, we performed targeted 

validation of long tandem repeats to identify any errors missed by the genome-wide 

approach. The assembled rDNA morphs, being only 45 kbp each, were manually validated 

via inspection of the read alignments used for polishing. Alpha satellite higher-order 

repeats (HOR) were validated using a purpose-built method (34) (fig. S27 and table S5) 

and compared to independent ILMN-based HOR copy number estimates (fig. S28). All 

centromeric satellite arrays, including beta satellite (BSat) and human satellite (HSat) 
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repeats, were further validated by measuring the ratio of primary to secondary variants 

identified by HiFi reads (35) (fig. S29).

The consensus accuracy of the T2T-CHM13 assembly is estimated to be approximately 1 

error per 10 Mbp (23, 31), which exceeds the historical standard of “finished” sequence by 

orders of magnitude. However, regions of low HiFi coverage were found to be associated 

with an enrichment of potential errors, as estimated from both HiFi and ILMN data (31). 

To guide future use of the assembly, we have cataloged all low-coverage, low-confidence, 

and known heterozygous sites identified by the above validation procedures (31). The total 

number of bases covered by potential issues in the T2T-CHM13 assembly is just 0.3% of the 

total assembly length compared to 8% for GRCh38 (Fig. 3A).

A truly complete genome

T2T-CHM13 includes gapless telomere-to-telomere assemblies for all 22 human autosomes 

and Chromosome X, comprising 3,054,815,472 bp of nuclear DNA, plus a 16,569 bp 

mitochondrial genome. This complete assembly adds or corrects 238 Mbp of sequence that 

does not co-linearly align to GRCh38 over a 1 Mbp interval (i.e., is non-syntenic), primarily 

comprising centromeric satellites (76%), non-satellite segmental duplications (19%), and 

rDNAs (4%) (Fig. 1C). 182 Mbp of sequence has no primary alignments to GRCh38 and is 

exclusive to T2T-CHM13. As a result, T2T-CHM13 increases the number of known genes 

and repeats in the human genome (Table 1).

To provide an initial annotation, we used both the Comparative Annotation Toolkit (CAT) 

(39) and Liftoff (40) to project the GENCODE v35 (41) reference annotation onto the 

T2T-CHM13 assembly. Additionally, CHM13 Iso-Seq transcriptome reads were assembled 

into transcripts and provided as complementary input to CAT. A comprehensive annotation 

was built by combining the CAT annotation with genes identified only by Liftoff (23).

The draft T2T-CHM13 annotation totals 63,494 genes and 233,615 transcripts, of which 

19,969 genes (86,245 transcripts) are predicted to be protein coding, with 683 predicted 

frameshifts in 385 genes (469 transcripts) (Table 1, fig. S30, tables S6 to S8). Only 263 

GENCODE genes (448 transcripts) are exclusive to GRCh38 and have no assigned ortholog 

in the CHM13 annotation (tables S9 and S10). Of these, 194 are due to a lower copy 

number in the CHM13 annotation (fig. S31), 46 do not align well to CHM13, and 23 

correspond to known false-duplications in GRCh38 (25) (fig. S32). The majority of these 

genes are non-coding and associated with repetitive elements. Only 4 are annotated as being 

medically relevant (CFHR1, CFHR3, OR51A2, UGT2B28), all of which are due to lower 

copy number, and the only protein coding genes that align poorly are immunoglobulin and 

T-cell receptor genes, which are known to be highly diverse.

In comparison, a total of 3,604 genes (6,693 transcripts) are exclusive to CHM13 (tables S11 

and S12). Most of these genes represent putative paralogs and localize to pericentromeric 

regions and the short arms of the acrocentrics, including 876 rRNA transcripts. Only 48 of 

the CHM13-exclusive genes (56 transcripts) were predicted solely from de novo assembled 

transcripts. Of all genes exclusive to CHM13, 140 are predicted to be protein coding based 
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on their GENCODE paralogs and have a mean of 99.5% nucleotide and 98.7% amino acid 

identity to their most similar GRCh38 copy (table S13). While some of these additional 

paralogs may be present (but unannotated) in GRCh38 (23), 1,956 of the genes exclusive 

to CHM13 (99 protein coding) are in regions with no primary alignment to GRCh38 (table 

S11). A broader set of 182 multi-exon protein coding genes fall within non-syntenic regions, 

36% of which were confirmed to be expressed in CHM13 (42).

Compared to GRCh38, T2T-CHM13 is a more complete, accurate, and representative 

reference for both short- and long-read variant calling across human samples of all 

ancestries (25). Reanalysis of 3,202 short-read datasets from the 1KGP showed that T2T-

CHM13 simultaneously reduces both false-negative and false-positive variant calls due to 

the addition of 182 Mbp of missing sequence and the exclusion of 1.2 Mbp of falsely 

duplicated sequence in GRCh38. These improvements, combined with a lower frequency 

of rare variants and errors in T2T-CHM13, eliminate tens of thousands of spurious variants 

per 1KGP sample (25). In addition, the T2T-CHM13 reference was found to be more 

representative of human copy number variation than GRCh38 when compared against 268 

human genomes from the Simons Genome Diversity Project (SGDP) (42, 43). Specifically, 

within non-syntenic segmentally duplicated regions of the genome, T2T-CHM13 is nine 

times more predictive of SGDP copy number than GRCh38 (42). These results underscore 

both the quality of the assembly and the genomic stability of the cell line from which it was 

derived.

Acrocentric chromosomes

T2T-CHM13 uncovers the genomic structure of the short arms of the five acrocentric 

chromosomes, which, despite their importance for cellular function (44), have remained 

largely unsequenced to date. This omission has been due to their enrichment for satellite 

repeats and segmental duplications, which has prohibited sequence assembly and limited 

their characterization to cytogenetics, restriction mapping, and BAC sequencing (45–47). 

All five of CHM13’s short arms follow a similar structure consisting of an rDNA array 

embedded within distal and proximal repeat arrays (Fig. 4). From telomere to centromere, 

the short arms vary in size from 10.1 Mbp (Chr14) to 16.7 Mbp (Chr15), with a combined 

length of 66.1 Mbp.

Compared to other human chromosomes, the short arms of the acrocentrics are unusually 

similar to one another. Specifically, we find that 5 kbp windows align with a median 

identity of 98.7% between the short arms, creating many opportunities for interchromosomal 

exchange (Fig. 4). This high degree of similarity is presumably due to recent non-allelic 

or ectopic recombination stemming from their colocalization in the nucleolus (46). 

Additionally, considering an 80% identity threshold, no 5 kbp window on the short arms 

is unique and 96% of the non-rDNA sequence can be found elsewhere in the genome, 

suggesting the acrocentrics are dynamic sources of segmental duplication.

CHM13’s rDNA arrays vary in size from 0.7 Mbp (Chr14) to 3.6 Mbp (Chr13) and 

are in the expected arrangement, organized as head-to-tail tandem arrays with all 45S 

transcriptional units pointing towards the centromere. No inversions were noted within 

Nurk et al. Page 7

Science. Author manuscript; available in PMC 2022 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the arrays and nearly all rDNA units are full length, in contrast to some prior studies 

that reported embedded inversions and other non-canonical structures (47, 48). Each array 

appears highly homogenized, and there is more variation between rDNA units on different 

chromosomes than within chromosomes (fig. S33), suggesting that intra-chromosomal 

exchange of rDNA units via non-allelic homologous recombination is more common than 

inter-chromosomal exchange.

Many 45S gene copies on the same chromosome are identical to one another, while 

the identity of the most frequent 45S morphs between chromosomes ranges from 99.4–

99.7%. A Chromosome 15 rDNA morph shows the highest identity (98.9%) to the current 

KY962518.1 rDNA reference sequence, originally derived from a human Chromosome 21 

BAC clone (47). As expected, the 13 kbp 45S is more conserved than the intergenic spacer 

(IGS), with all major 45S morphs aligning between 99.4–99.6% identity to KY962518.1. 

Certain rDNA variants appear chromosome-specific, including single-nucleotide variants 

within the 45S and its upstream promoter region (fig. S34). The most evident variants are 

repeat expansions and contractions within the tandem “R” repeat that immediately follows 

the 45S and the CT-rich “Long” repeat located in the middle of the IGS. The most frequent 

morph in each array can be uniquely distinguished by these two features (fig. S35).

From the telomere to the rDNA array, the structure of all five distal short arms follows 

a similar pattern involving a symmetric arrangement of inverted segmental duplications 

and ACRO, HSat3, BSat, and HSat1 repeats (Fig. 4); however, the sizes of these repeat 

arrays varies among chromosomes. Chromosome 13 is missing the distal half of the inverted 

duplication and has an expanded HSat1 array relative to the others. Despite their variability 

in size, all satellite arrays share a high degree of similarity (typically >90% identity) both 

within and between acrocentric chromosomes. Chromosomes 14 and 22 also feature the 

expansion of a 64-bp Alu-associated satellite repeat (“Walu”) within the distal inverted 

duplication (49), the location of which was confirmed via FISH (fig. S36). The distal 

junction (DJ) immediately prior to the rDNA array includes centromeric repeats (CER) and 

a highly conserved and actively transcribed 200 kbp palindromic repeat, which agrees with 

previous characterizations of the rDNA flanking sequences (46, 50).

Extending from the rDNA array to the centromere, the proximal short arms are larger in 

size and show a higher diversity of structures including shuffled segmental duplications (42), 

composite transposable element arrays (49), satellite arrays (including HSat3, BSat, HSat1, 

HSat5), and alpha satellite arrays (both monomeric and HORs) (30). Some proximal BSat 

arrays show a mosaic inversion structure that was also observed in HSat arrays elsewhere 

in the genome (30) (fig. S37). The proximal short arms of chromosomes 13, 14, and 21 

appear to share the highest degree of similarity with a large region of segmental duplication 

including similar HOR subsets and a central and highly methylated SST1 array (Fig. 4). This 

coincides with these three chromosomes being most frequently involved in Robertsonian 

translocations (51). Alpha satellite HORs on chromosomes 13/21 and chromosomes 14/22 

also share high similarity within each pair, but not between them (52, 53). Non-satellite 

sequences within these segmental duplications often exceed 99% identity and show evidence 

of transcription (29, 42, 49). Using the T2T-CHM13 reference as a basis, further study 
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of additional genomes is now needed to understand which of these features are conserved 

across the human population.

Analyses and resources

A number of companion studies were carried out to characterize the complete sequence of a 

human genome, including comprehensive analyses of centromeric satellites (30), segmental 

duplications (42), transcriptional (49) and epigenetic profiles (29), mobile elements (49), 

and variant calls (25). Up to 99% of the complete CHM13 genome can be confidently 

mapped with long-read sequencing, opening these regions of the genome to functional 

and variational analysis (23) (fig. S38 and table S14). We have produced a rich collection 

of annotations and omics datasets for CHM13, including RNA-Seq (30), Iso-Seq (21), 

PRO-Seq (49), CUT&RUN (30), and ONT methylation (29) experiments, and have made 

these datasets available via a centralized UCSC Assembly Hub genome browser (54).

To highlight the utility of these genetic and epigenetic resources mapped to a complete 

human genome, we provide the example of a segmentally duplicated region of the 

Chromosome 4q subtelomere that is associated with facioscapulohumeral muscular 

dystrophy (FSHD) (55). This region includes FSHD region gene 1 (FRG1), FSHD region 

gene 2 (FRG2), and an intervening D4Z4 macrosatellite repeat containing the double 

homeobox 4 (DUX4) gene that has been implicated in the etiology of FSHD (56). Numerous 

duplications of this region throughout the genome have complicated past genetic analyses of 

FSHD.

The T2T-CHM13 assembly reveals 23 paralogs of FRG1 spread across all acrocentric 

chromosomes as well as chromosomes 9 and 20 (Fig. 5A). This gene appears to have 

undergone recent amplification in the great apes (57), and approximate locations of FRG1 
paralogs were previously identified by fluorescence in situ hybridization (58). However, only 

9 FRG1 paralogs are found in GRCh38, hampering sequence-based analysis.

One of the few FRG1 paralogs included in GRCh38, FRG1DP, is located in the centromeric 

region of Chromosome 20 and shares high identity (97%) with several paralogs (FRG1BP4–

10) (23) (fig. S39 and tables S15 and S16). When mapping HiFi reads, absence of the 

additional FRG1 paralogs in GRCh38 causes their reads to incorrectly align to FRG1DP 
resulting in many false-positive variants (Fig. 5B). Most FRG1 paralogs appear present in 

other human genomes (Fig. 5C), and all except FRG1KP2 and FRG1KP3 have upstream 

CpG islands and some degree of expression evidence in CHM13 (Fig. 5D, table S17). Any 

variants within these paralogs, and others like them, will be overlooked when using GRCh38 

as a reference.

Future of the human reference genome

The T2T-CHM13 assembly adds five full chromosome arms and more additional sequence 

than any genome reference release in the past 20 years (Fig. 1D). This 8% of the genome 

has not been overlooked due to its lack of importance, but rather due to technological 

limitations. High accuracy long-read sequencing has finally removed this technological 

barrier, enabling comprehensive studies of genomic variation across the entire human 

Nurk et al. Page 9

Science. Author manuscript; available in PMC 2022 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genome, which we expect to drive future discovery in human genomic health and disease. 

Such studies will necessarily require a complete and accurate human reference genome.

CHM13 lacks a Y chromosome, and homozygous Y-bearing CHMs are non-viable, so 

a different sample type will be required to complete this last remaining chromosome. 

However, given its haploid nature, it should be possible to assemble the Y chromosome from 

a male sample using the same methods described here, and supplement the T2T-CHM13 

reference assembly with a Y chromosome as needed.

Extending beyond the human reference genome, large-scale resequencing projects have 

revealed genomic variation across human populations. Our reanalyses of 1KGP (25) and 

SGDP (42) datasets have already shown the advantages of T2T-CHM13, even for short-read 

analyses. However, these studies give only a glimpse of the extensive structural variation 

that lies within the most repetitive regions of the genome assembled here. Long-read 

resequencing studies are now needed to comprehensively survey polymorphic variation and 

reveal any phenotypic associations within these regions.

Although CHM13 represents a complete human haplotype, it does not capture the full 

diversity of human genetic variation. To address this bias, the Human Pangenome Reference 

Consortium (HPRC) (59) has joined with the T2T Consortium to build a collection of 

high-quality reference haplotypes from a diverse set of samples. Ideally, all genomes 

could be assembled at the quality achieved here, but automated T2T assembly of diploid 

genomes presents a difficult challenge that will require continued development. Until this 

goal is realized, and any human genome can be completely sequenced without error, the 

T2T-CHM13 assembly represents a more complete, representative, and accurate reference 

than GRCh38.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Summary of the complete T2T-CHM13 human genome assembly.
(A) Ideogram of T2T-CHM13v1.1 assembly features. Bottom to top: gaps/issues in GRCh38 

fixed by CHM13 overlaid with the density of genes exclusive to CHM13 in red; segmental 

duplications (SDs) (42) and centromeric satellites (CenSat) (30); and CHM13 ancestry 

predictions (EUR, European; SAS, South Asian; EAS, East Asian; AMR, Ad Mixed 

American). (B) Additional (non-syntenic) bases in the CHM13 assembly relative to GRCh38 

per chromosome, with the acrocentrics highlighted in black, and (C) by sequence type (note 

that the CenSat and SD annotations overlap). (D) Total non-gap bases in UCSC reference 

Nurk et al. Page 22

Science. Author manuscript; available in PMC 2022 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genome releases dating back to September 2000 (hg4) and ending with T2T-CHM13 in 

2021.
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Fig. 2. High-resolution assembly string graph of the CHM13 genome.
(A) Bandage (60) visualization, where nodes represent unambiguously assembled sequences 

scaled by length, and edges correspond to the overlaps between node sequences. Each 

chromosome is both colored and numbered on the short (p) arm. Long (q) arms are labeled 

where unclear. The five acrocentric chromosomes (bottom right) are connected due to 

similarity between their short arms, and the rDNA arrays form five dense tangles due to 

their high copy number. The graph is partially fragmented due to HiFi coverage dropout 

surrounding GA-rich sequence (black triangles). Centromeric satellites (30) are the source 

of most ambiguity in the graph (gray highlights). (B) The ONT-assisted graph traversal for 

the 2p11 locus is given by numerical order. Based on low depth-of-coverage, the unlabeled 

light gray node represents an artifact or heterozygous variant and was not used. (C) The 
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multi-megabase tandem HSat3 duplication (9qh+) at 9q12 requires two traversals of the 

large loop structure (the size of the loop is exaggerated because graph edges are of constant 

size). Nodes used by the first traversal are in dark purple and the second traversal in light 

purple. Nodes used by both traversals typically have twice the sequencing coverage. (D) 

Enlargement of the distal short arms of the acrocentrics, showing the colored graph walks 

and edges between highly similar sequences in the distal junctions (DJs) adjacent to the 

rDNA arrays.
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Fig. 3. Sequencing coverage and assembly validation.
(A) Uniform whole-genome coverage of mapped HiFi and ONT reads is shown with 

primary alignments in light shades and marker-assisted alignments overlaid in dark shades. 

Large HSat arrays (30) are noted by triangles, with inset regions are marked by arrowheads 

and the location of the rDNA arrays marked with asterisks. Regions with low unique marker 

frequency (light green) correspond to drops in unique marker density, but are recovered 

by the lower-confidence primary alignments. Annotated assembly issues are compared for 

T2T-CHM13 and GRCh38. (B–D) Enlargements corresponding to regions of the genome 

featured in Fig. 2. Uniform coverage changes within certain satellites are reproducible and 

likely caused by sequencing bias. Identified heterozygous variants and assembly issues are 

marked below and typically correspond with low coverage of the primary allele (black) and 

elevated coverage of the secondary allele (red). % microsatellite repeats for every 128 bp 

window is shown at the bottom.
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Fig. 4. Short arms of the acrocentric chromosomes.
Each short arm is shown along with annotated genes, percent of methylated CpGs (29), 

and a color-coded satellite repeat annotation (30). The rDNA arrays are represented by a 

directional arrow and copy number due to their high self-similarity, which prohibits ONT 

mapping. Percent identity heatmaps versus the other four arms were computed in 10 kbp 

windows and smoothed over 100 kbp intervals. Each position shows the maximum identity 

of that window to any window in the other chromosome. The distal short arms include 

conserved satellite structure and inverted repeats (thin arrows), while the proximal short 

arms show a diversity of structures. The proximal short arms of Chromosomes 13, 14, and 

21 share a segmentally duplicated core, including small alpha satellite HOR arrays and 

a central, highly methylated, SST1 array (thin arrows with teal block). Yellow triangles 

indicate hypomethylated centromeric dip regions (CDRs), marking the sites of kinetochore 

assembly (29).
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Fig. 5. Resolved FRG1 paralogs.
(A) Protein-coding gene FRG1 and its 23 paralogs in CHM13. Only 9 are found in GRCh38. 

Genes are drawn larger than their actual size and the “FRG1” prefix is omitted for brevity. 

All paralogs are found near satellite arrays. Most copies exhibit evidence of expression, 

including CpG islands present at the 5′ start site with varying degrees of methylation. 

(B) Reference (gray) and variant (colored) allele coverage is shown for four human HiFi 

samples mapped to the paralog FRG1DP. When mapped to GRCh38, the region shows 

excessive HiFi coverage and variants, indicating that reads from the missing paralogs are 
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mis-mapped to FRG1DP (variants with >80% coverage shown). When mapped to CHM13, 

HiFi reads show the expected coverage and a typical heterozygous variation pattern for 

the three non-CHM13 samples (variants >20% coverage shown). These non-reference 

alleles are also found in other populations from 1KGP ILMN data. (C) Mapped HiFi read 

coverage for other FRG1 paralogs, with an extended context shown for Chromosome 20. 

Coverage of HiFi reads that mapped to FRG1DP in GRCh38 are highlighted (dark gray), 

showing the paralogous copies they originate from (FRG1BP4–10, FRG1GP, FRG1GP2, 

and FRG1KP4). Background coverage is variable for some paralogs, suggesting copy 

number polymorphism in the population. (D) Methylation and expression profiles suggest 

transcription of FRG1DP in CHM13. In the copy number display (bottom), each length k 
sequence (k-mer) of the CHM13 assembly is painted with a color representing the copy 

number of that k-mer sequence in an SGDP sample. The CHM13 and GRCh38 tracks show 

the copy number of these same k-mers in the respective assemblies. CHM13 copy number 

resembles all samples from the SGDP, whereas GRCh38 underrepresents the true copy 

number.
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Table 1.

Comparison of GRCh38 and T2T-CHM13v1.1 human genome assemblies.

Summary GRCh38 T2T-CHM13 ±%

Assembled bases (Gbp) 2.92 3.05 +4.5%

Unplaced bases (Mbp) 11.42 0 −100.0%

Gap bases (Mbp) 120.31 0 −100.0%

# Contigs 949 24 −97.5%

Ctg NG50 (Mbp) 56.41 154.26 +173.5%

# Issues 230 46 −80.0%

Issues (Mbp) 230.43 8.18 −96.5%

Gene Annotation

# Genes 60,090 63,494 +5.7%

   protein coding 19,890 19,969 +0.4%

# Exclusive genes 263 3,604

   protein coding 63 140

# Transcripts 228,597 233,615 +2.2%

   protein coding 84,277 86,245 +2.3%

# Exclusive transcripts 1,708 6,693

   protein coding 829 2,780

Segmental duplications (SDs)

% SDs 5.00% 6.61%

SD bases (Mbp) 151.71 201.93 +33.1%

# SDs 24097 41528 +72.3%

RepeatMasker

% Repeats 51.89% 53.94%

Repeat bases (Mbp) 1,516.37 1,647.81 +8.7%

   LINE 626.33 631.64 +0.8%

   SINE 386.48 390.27 +1.0%

   LTR 267.52 269.91 +0.9%

   Satellite 76.51 150.42 +96.6%

   DNA 108.53 109.35 +0.8%

   Simple repeat 36.5 77.69 +112.9%

   Low complexity 6.16 6.44 +4.6%

   Retroposon 4.51 4.65 +3.3%

   rRNA 0.21 1.71 +730.4%

GRCh38 summary statistics exclude “alts” (110 Mbp), patches (63 Mbp), and Chromosome Y (58 Mbp). Assembled bases: all non-N bases. 
Unplaced bases: not assigned or positioned within a chromosome. # Contigs: GRCh38 scaffolds were split at three consecutive Ns to obtain 
contigs. NG50: half of the 3.05 Gbp human genome size contained in contigs of this length or greater. # Exclusive genes/transcripts: for GRCh38, 
GENCODE genes/transcripts not found in CHM13; for CHM13, extra putative paralogs that are not in GENCODE. Segmental duplication analysis 
is from (42). RepeatMasker analysis is from (49).
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