Skip to main content
. 2022 May 17;14(10):4270–4280. doi: 10.18632/aging.204084

Table 3. Comparison of predictive accuracies of models with training and testing datasets.

Training dataset Testing dataset
Single genes
LDA KNN SVM RF LDA KNN SVM RF
0.667 0.731 0.740 0.999 0.662 0.650 0.641 0.603
0.057 0.049 0.055 0.003 0.093 0.095 0.092 0.102
Combined biomarkers
Gene set Genes LDA KNN SVM RF LDA KNN SVM RF
1 PLA2G2A
WRAP73
0.893
0.026
0.888
0.035
0.899
0.031
1.000
0.000
0.873
0.077
0.859
0.060
0.864
0.055
0.841
0.088
2 DOHH
SLC22A14
0.802
0.026
0.879
0.026
0.882
0.028
1.000
0.000
0.800
0.071
0.852
0.057
0.826
0.070
0.829
0.062
3 OXTR
FURIN
0.860
0.027
0.840
0.038
0.879
0.030
1.000
0.000
0.851
0.061
0.783
0.065
0.808
0.061
0.789
0.073
4 SLC41A3
BBIP1
0.887
0.028
0.889
0.028
0.935
0.022
1.000
0.000
0.881
0.055
0.838
0.060
0.852
0.055
0.799
0.065
5 TBP
TICAM1
0.854
0.041
0.867
0.030
0.881
0.029
1.000
0.000
0.827
0.071
0.815
0.066
0.803
0.070
0.782
0.066
6 MGRN1
PDGFB
ZNF764
0.863
0.025
0.880
0.027
0.894
0.026
1.000
0.000
0.834
0.065
0.827
0.049
0.819
0.067
0.842
0.057
7 PSPC1
MPI
EIF5
0.832
0.046
0.866
0.023
0.889
0.025
1.000
0.000
0.810
0.072
0.854
0.057
0.853
0.060
0.829
0.059
8 WDR6
PFDN6
PSPC1
0.853
0.030
0.856
0.033
0.869
0.027
1.000
0.000
0.843
0.059
0.786
0.069
0.805
0.059
0.798
0.071
9 ADM2
MFSD10
PAFAH1B1
0.834
0.028
0.817
0.034
0.858
0.029
1.000
0.000
0.799
0.070
0.734
0.075
0.771
0.082
0.789
0.060
10 LPIN1
PFDN6
DOHH
0.869
0.036
0.885
0.026
0.927
0.015
1.000
0.000
0.858
0.037
0.860
0.020
0.873
0.048
0.920
0.036

LDA, Linear discriminant analysis; KNN, k-Nearest neighbors; SVM, Support vector machine; RF, Random forest.

ML methods are indicated, and values are the mean (top) and standard deviation (bottom) calculated from 100 reiterations.