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N E T W O R K  S C I E N C E

Multiscale topology characterizes dynamic tumor 
vascular networks
Bernadette J. Stolz1*, Jakob Kaeppler2, Bostjan Markelc2,3, Franziska Braun4, Florian Lipsmeier5, 
Ruth J. Muschel2, Helen M. Byrne1, Heather A. Harrington1,6*

Advances in imaging techniques enable high-resolution three-dimensional (3D) visualization of vascular net-
works over time and reveal abnormal structural features such as twists and loops, and their quantification is an 
active area of research. Here, we showcase how topological data analysis, the mathematical field that studies the 
“shape” of data, can characterize the geometric, spatial, and temporal organization of vascular networks. We pro-
pose two topological lenses to study vasculature, which capture inherent multiscale features and vessel connec-
tivity, and surpass the single-scale analysis of existing methods. We analyze images collected using intravital and 
ultramicroscopy modalities and quantify spatiotemporal variation of twists, loops, and avascular regions (voids) 
in 3D vascular networks. This topological approach validates and quantifies known qualitative trends such as 
dynamic changes in tortuosity and loops in response to antibodies that modulate vessel sprouting; furthermore, 
it quantifies the effect of radiotherapy on vessel architecture.

INTRODUCTION
The advent of high-resolution imaging techniques has driven the 
development of reconstruction algorithms, which generate exquisitely 
detailed three-dimensional (3D) renderings of biological tissues, 
such as tumor vascular networks (1, 2). Tumor vasculature is highly 
dysfunctional as vessels tend to be very leaky, the direction of blood 
flow can change over time, and the structure of the vessel network 
looks markedly different from that of normal vessels (3). Visualiza-
tion of tumor vasculature in 3D and over time offers a detailed 
picture of abnormal structural changes such as twists and loops (3–8). 
The quantification of the 3D architecture is important because 
vessel structure affects vessel function (i.e., delivery of oxygen, 
nutrients, and therapies). Existing analyses have quantified structural 
features—including vessel density, number of vessels and branching 
points (9), fractal dimension (10), and lacunarity (11)—and high-
lighted their relevance for predicting disease progression (12, 13) 
and response to treatment (8). Such spatially averaged summaries 
lose information from detailed 3D renderings and do not account 
for vessel connectivity or higher-order topological features such as 
loops and voids; the latter correspond to avascular tumor regions 
characterized by hypoxia and necrosis and associated with reduced 
patient survival and poor responses to therapy (3). Therefore, more 
detailed, automated, and reproducible methods for quantifying vessel 
networks are needed, which may provide future benefit to basic 
research, clinical assessments, treatment planning, and monitoring.

For large studies (14), machine learning algorithms are excellent 
at quantifying 3D microscopy features [e.g., images obtained from 
adipose tissue (15)]. Here, we use existing image processing methods, 
based on machine learning, to reconstruct 3D vascular networks 

from high-resolution spatial data. We then use these 3D segmented 
networks to quantify, compare, and interpret the spatial organiza-
tion of tumor vasculature and responses to treatment. The novelty 
of our approach lies in the deep quantification of the vascular 
networks and not the collection and segmentation of the experimental 
data. In more detail, we present a topological framework that quan-
tifies different notions of connectivity in reconstructed 3D vascular 
networks (e.g., quantifying loops and voids), complements, extends, 
and surpasses existing descriptors (see figs. S23 and S28) by providing 
a multiscale summary of these topological features.

Mathematically, one can describe tumor vasculature as a spatial 
network, i.e., nodes embedded in 3D space, connected by edges that 
represent blood vessel segments. An emerging mathematical field 
that uses topological and geometric approaches to quantify the 
“shape” of data is topological data analysis (TDA) (16, 17). A central 
method in TDA is persistent homology (PH) (16–20). PH computes 
features called topological invariants of the data at different spatial 
scales; features that persist over a wide range of spatial scales are 
generally considered better to represent robust topological signals 
in the data. TDA has been successful in neuroscience, specifically 
analyzing functional brain network data [for a small selection of 
examples, see (21–25)]. Improved computations in PH (20) have 
increased the scope of its applications to include structural and 
spatial data, such as brain arteries (26), neurons (27), airways (28), 
stenosis (29), zebrafish patterns (30), contagion dynamics (31), and 
spatial networks (24, 32–34). More recently, interest has emerged 
for applications of TDA to patient-specific data in oncology (35), 
and PH has been successfully applied to classify synthetic data from 
mathematical models of angiogenesis, the process in which tumor 
blood vessels form from existing ones (36). The characteristics of 
tumor vascular networks that we study here using PH features are 
tortuosity (4) (or “bendiness”), loops (4), and size of avascular 
regions (3).

Tortuosity has been quantified previously using standard mea-
sures in tumor vessels (37, 38) and using TDA in aging vasculature 
(26). Here, we propose a normalized topological tortuosity descriptor. 
To our knowledge, this is the first time that loops and voids (which 
may correspond to avascular tumor regions) have been quantified 
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in vasculature. The leap from a single 2D slice to 3D reconstruction 
presents opportunities for quantifying 3D connectivity that would 
otherwise be impossible. As we describe later, these topological 
approaches are inherently multiscale and quantify global connectivity 
of the data that surpasses standard descriptors. Such quantification 
could serve as a biomarker for characteristics of vascular networks 
and their response to vascular targeting treatments.

We showcase our topological approach by analyzing 3D vascular 
networks reconstructed from microscopy images from two differ-
ent studies: intravital data and ultramicrospy data (8) (see Fig. 1 and 
corresponding table). In the intravital dataset, the same vascular 
networks are observed over time, providing a time course. The low 
penetration depth of intravital imaging means that only part of the 
vasculature can be imaged. The intravital dataset contains control 
(untreated) tumors and tumors subjected to either vascular targeting 
agents or radiation therapy. The agents consist of antibodies DC101 
(37) and anti-Dll4 (39), which decrease and increase vessel sprouting, 
respectively (9, 12, 40, 41). The irradiated tumors receive either a 
single dose [1 × 15 gray (Gy)] or fractionated doses (5 × 3 Gy) of 
radiation therapy. Although radiation therapy is commonly used to 
treat tumors, observations of structural changes in the vasculature 
have remained inconsistent (42). The second dataset, imaged using ultra-
microscopy (8), gives 3D reconstructions of the entire tumor vascu-
lature. The dataset includes multiple time points (snapshot data), 
where we obtain one time point per tumor. The data include control 
tumors and tumors treated with bevacizumab (43), a drug that inhibits 
angiogenesis and is thought to (transiently) normalize (3) tumor 
vasculature, i.e., reduce structural and functional abnormalities. See 
the “Data preprocessing” section in Materials and Methods for 
details on network binarization, skeletonization, pruning, and testing 
to reconstruct the networks that we analyze (1, 2, 8, 44, 45). We 
show example images of the vessel networks extracted from the 
ultramicroscopy dataset in Fig. 2.

Standard measures and existing descriptors
To describe the architecture of abnormal tumor vasculature, several 
morphological characteristics have been used. The most common 
one, microvascular density (MVD), is often used to compare 2D 
tumor sections. A high MVD has been shown to independently 

predict death from several types of cancer (46). Other descriptors 
often used in the literature include vessel volume, number of 
branching points, vessel diameter, vessel length, and vessel tortuosity 
(38). However, none of these features can recapitulate the complex-
ity of the entire vascular network. With the advent of personalized 
medicine, different imaging modalities such as magnetic resonance 
imaging (MRI), dynamic contrast–enhanced MRI, and computed 
tomography are often used to aid with patient diagnosis and treat-
ment personalization. A common feature to these approaches is 
that the resulting images are 3D volumes (37). Hence, the morpho-
logical descriptors should capture the complexity of the 3D vascular 
network, not just the single-vessel-scale characteristics.

Existing analyses of blood vessel networks have quantified struc-
tural features and shape, including vessel density, number of vessels 
(i.e., number of edges), and branching points (i.e., number of nodes) 
(9). To highlight the additional insight generated by our TDA 
descriptors, we calculate existing descriptors (at each time point), 
specifically the number of branching points, mean vessel diameter, 
mean vessel length, and length-to-diameter ratio for both the intra-
vital data and ultramicroscopy data. For the intravital data, we 
report two existing tortuosity measures (for details, see Materials 
and Methods). The first tortuosity descriptor is the chord-length 
ratio (clr) (2, 45), which is the ratio of the distance between the 
branching or end points of the vessel and the path length of the 
vessel, where a value of one corresponds to a straight vessel and zero 
is tortuous. The second tortuosity descriptor is the sum-of-angles 
metric (SOAM) (13), which is computed by summing the angles of 
regularly sampled tangents along a blood vessel skeleton, where a 
value of zero corresponds to a straight vessel and tortuous vessels 
correspond to larger values. For both datasets, we calculate the 
number of vessel segments and number of branching points [both 
as computed in (2, 44)]. For the ultramicroscopy data, we aditional-
ly report the above descriptors as previously computed in (8) as well 
as necrotic tumor volume, tumor volume, and vital tumor volume 
all as computed in (8). All existing descriptors are normalized by 
day 0 of observation/treatment and computed from the freely available 
python code package unet-core (44). Note that to compare with 
existing descriptors, we compress our TDA descriptors and therefore 
lose information.

Implanted 
tumor

Intravital 

Ultramicroscopy 

Control/vascular targeting agent/radiotherapy

- Live 3D imaging
- Window chamber 
- Longitudinal

- Static 3D imaging
- Whole tumor 
- Optical sectioning
  with laser
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Experiments Modality Imaging

- DC101 (intravital)
- Anti-Dll4 (intravital)
- Bevacizumab (ultramicroscopy)

- Single dose
  (intravital)
- Fractionated dose
  (intravital)

Fig. 1. Description of datasets. We illustrate the treatments and imaging techniques used to generate the experimental data that we analyze. Both datasets consist 
of 3D stacks of tumor vasculature images from mice undergoing different treatments (vascular targeting agents and radiotherapy). Intravital data were collected from 
live animals observed over several days. Ultramicroscopy data (8) were obtained from multiple tumors excised at different times after treatment (one time point 
per tumor). These data are not directly comparable since they were generated from two different mouse models (see Table 1) using different experimental setups 
(see Materials and Methods).
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Topological data analysis
Here, we present topological descriptors to quantify vascular network 
characteristics across different spatial scales and over time. We first 
explore appropriate multiscale lenses of the data, called filtrations, 
which feed into PH computations.

We propose two filtrations for tumor vascular networks: The ra-
dial filtration quantifies topological features with respect to distance 
from the tumor center; the -complex (47) filtration (see the “Topo-
logical data analysis” section in Materials and Methods) quantifies 

avascular tumor regions that are devoid of blood vessels. Recall that 
the data are embedded in 3D space. The network nodes are branch-
ing points (i.e., points where vessels branch) and vessel nodes (i.e., 
other points sampled along vessels). In the radial filtration, we 
determine the center of mass of the 3D nodes and grow a sphere 
from the center outward in uniform steps. Inspired by a filtration to 
analyze neuronal tree morphologies radially from the root of a neuron 
(27), the radial filtration differs from the well-known Vietoris-Rips 
and Čech filtrations since we only consider one ball from the center 

A B

C D

Fig. 2. Example images of extracted vessel networks from multispectral fluorescence ultramicroscopy data colored according to tortuosity measured via clr 
values. We can see a clear difference between the vessel networks of the treated and the untreated tumor on both days 3 and 7 after treatment. Note that the collection 
of lines in the bottom right corner of the images corresponds to text that was present in the skeleton images in the dataset. We removed these artifacts from our extracted 
point clouds. (A) Control tumor, day 3. (B) Control tumor, day 7. (C) Anti–VEGF-A–treated tumor, day 3. (D) Anti–VEGF-A–treated tumor, day 7.

Table 1. Summary of datasets. Summary of datasets analyzed in this study including the number of mice n (see also Fig. 1). For information on the size of the 
images and extracted networks, see table S1. 

Dataset Type Model Experimental conditions

Multiphoton intravital 3D microscopy Dynamic (over multiple days) Mouse colorectal cancer in mice

1. Control (n = 7)

2. DC101 (decreases sprouting, n = 5)

3. Anti-Dll4 (increases sprouting, n = 3)

4. Irradiated (single-dose 15 Gy, n = 5)

5. Irradiated (fractionated-dose 5 × 3 Gy, 
n = 4)

Multispectral fluorescence 
ultramicroscopy Static Human breast cancer in mice 1. Control (n = 18)

2. Bevacizumab (n = 13)
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of the tumor (rather than many balls, for example, grown from 
points sampled on the network). At each step, we determine the 
nodes located inside the growing sphere and connect two nodes 
when there is a vessel between them, resulting in a growing network, 
the radial filtration. We then compute the connected components 
and loops. As the data are 3D, loops that we find in this way are not 
artifacts of projections but genuine features of the vascular net-
works. The radial filtration depends on the choice of tumor center, 
whereas the -complex filtration does not. Note that, in contrast to 
the aforementioned Vietoris-Rips and Čech filtrations as well as the 
-complex, the radial filtration never fills in triangles and contains 
only nodes and edges inferred from the underlying biological net-
work structure. For the -complex filtration (20, 47), we construct a 
sequence of nested simplicial complexes (i.e., collections of nodes, 
edges, triangles, and tetrahedra) on the 3D nodes of the vessel net-
work. Each edge, triangle, or tetrahedron can be assigned a filtration 
value 2, which can be thought of as a proxy for volume. The filtra-
tion value is increased to obtain the filtration on the data until the 
Delaunay triangulation (48) of the 3D nodes of the vessel network is 
constructed. We then compute voids in this filtration.

PH computes topological features such as connected compo-
nents (dimension 0), loops (dimension 1), and voids (dimension 2) 
and how they change across different scales. These multiscale and 
multidimensional topological features are summarized in a barcode 
(49) (see Fig. 3). From these barcodes, we compute interpretable 
topological descriptors in Results. These topological calculations 
extend the toolbox of existing descriptors by quantifying connectivity 
across spatial and temporal scales.

Loss of information
Given the sheer size of these data (see the “Computational differ-
ences between datasets” section in the Supplementary Materials for 
the variation in size), they cannot be processed, analyzed, and 
summarized without some loss of information. At the processing 
stage, the reconstruction of 3D networks from 2D slices in the ultra-
microscopy dataset (8) had original image stacks taken with a 

resolution of 5.1 m, thus limiting the loss of information in the 
z direction while reconstructing the image stack. We used existing 
segmentation and skeletonization algorithms (1, 2, 45) and existing 
code that computes skeletonization and standard metrics (2,  44) 
(see Materials and Methods for details on data, processing, and test-
ing to minimize segmentation errors). Data analysis quantities 
depend on the segmentation and preprocessing of the data. For 
biological networks, noise contamination and its consequences on 
data analysis are an active area of research (50). A strength of TDA 
is that its output has been proven to be robust to small amounts of 
noise in data, which are given by stability theorems (51). However, 
the TDA output will change if the resulting network changes 
substantially, as will existing morphological descriptors. The TDA 
filtration step sizes are discrete and coarse to ensure that computa-
tions are feasible for this dataset (e.g., 500 filtration steps for the 
radial filtration); therefore, small features may be “stepped over,” and 
some fine information may be lost between filtration steps. As will 
be described later (see Results and the “Computational differences 
between datasets” section in the Supplementary Materials), the 
topological tortuosity measure depends on the short bars in the 
barcode. For the ultramicroscopy data, we may have required more 
filtration steps or finer data resolution in the x-y plane to compute 
topological tortuosity; however, we were limited by computational 
resource and processing of experimental data. Furthermore, because 
of the size of the reconstructed ultramicroscopy networks (e.g., 
ranging from 12,500 to 118,000 branching points; see the “Compu-
tational differences between datasets” section in the Supplementary 
Materials), we had to subsample points from the network (see the 
“Data preprocessing” section in Materials and Methods for details). 
All these factors may affect the computation of small connected 
components (see discussion of tortuosity descriptor in Results and 
the Supplementary Materials).

Gain of information
The PH algorithm used for the TDA computations is underpinned 
by stability theorems (51), which ensure that the computed topological 

A  Data C  Topological summary

E.g., radial filtration

Vo
id

s
C

on
ne

ct
ed

 
co

m
po

ne
nt

s
Lo

op
s

Radius

Radius
10

-Complex filtration value

D  Topological descriptors

Size of voids

Tortuosity

Number and distribution  
of loops

B  Filtration
Barcodes

Dimension 0

Dimension 1

Dimension 2

Fig. 3. Schematic illustration of TDA for vascular network data. (A) We reconstruct the 3D vascular network from image stacks. (B) We apply the radial filtration and 
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a spatial parameter such as radial distance to the tumor center (radial filtration) or the scale at which we view the data (-complex filtration). Every line in a barcode 
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(highlighted in red) and compute connected components and loops as the sphere grows from the tumor center outward. In the barcodes, the bars start at the radius 
(measured from the tumor center) where the corresponding connected component or loop first enters the sphere. For a connected component, its corresponding bar 
ends at the radius at which it merges with another component, i.e., it connects to another part of the vascular network within the growing sphere. A bar representing a 
loop finishes at the final radius of the filtration. For voids, we study the data at different scales using the -complex filtration (see the “Topological data analysis” section 
in Materials and Methods), and the range of a bar represents the scale values where the void is detectable. Its length is a proxy for the volume of the void. (D) We extract 
interpretable topological descriptors of the data from barcodes.
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features are stable with respect to small perturbations to the data. 
Moreover, the algorithm will output the same topological barcode 
(summarizing the multiscale descriptors) even if it is rerun or 
computed multiple times on the same dataset; therefore, it is both 
accurate and reproducible. In contrast, manual counting is prone 
to human errors and is often limited to 2D slices, as done by 
Shayan et al. (52), limiting detection to features (e.g., vessel seg-
ments, branching points, and loops) in the plane. Rather than 
manual counting or standard descriptors, the mathematical frame-
work that we use (theory and algorithms) enables quantification of 
loops and voids in 3D. Furthermore, this topological quantification 
is automated, systematic, and performed across spatial scales. To 
compare this multiscale TDA to standard descriptors (which are 

single scale) requires its compression; TDA gives additional infor-
mation that surpasses manual counting and existing descriptors. 
Therefore, topological descriptors offer a substantial improvement 
on both manual counts and standard descriptors.

RESULTS
Topology gives descriptors of tortuosity, loops, and voids
We developed interpretable, quantitative descriptors of tortuosity 
(26) (bendiness), loops, and voids (see Figs. 3D and 4) based on 
the calculated topological summaries of 3D tumor vasculature. The 
connected components (dimension 0) of the radial filtration 
characterize the tortuosity: A vessel with high tortuosity will intersect 
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Fig. 4. Topological descriptors extracted from tumor blood vessel networks treated with vascular targeting agents with known effects. (A) Intravital data results. 
We normalized all descriptors with respect to values on the day on which treatment is administered or, for controls, the day on which observations commence (day 0). 
Data were collected from controls (beige) and tumors treated with the vascular targeting agent DC101 (37) (dark pink) or the vascular targeting agent anti-Dll4 (39) (light 
pink). (i) Tortuosity was computed as the ratio of short bars in dimension 0 barcodes of the radial filtration (≤10% of maximal radius used) to the number of vessel 
segments. (ii) Loops are the number of bars in dimension 1 barcodes of the radial filtration per vessel segment. (iii) Spatiotemporal resolution of the number of loops per 
vessel segment. We illustrate the changes in the median number of loops (normalized by day 0) in radial intervals around the tumor centers over the days of observation. 
We point to the day following treatment with vascular targeting agents with a cartoon drug. (B) Ultramicroscopy data results. Because of the snapshot nature of the data 
(one time point per tumor), all reported topological descriptors are raw values. Data were collected from controls (beige) and tumors treated with bevacizumab (purple). 
(i) We computed the number of vessel loops per vessel segment. (ii) We determined the size of voids (avascular regions) by computing the median length of bars in the 
dimension 2 barcodes of the -complex filtration.
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the growing sphere multiple times and generate many small com-
ponents that quickly connect as the sphere radius increases and 
manifest in the barcode as multiple short bars. The topological 
tortuosity measure proposed for brain arteries (26) was based on 
analyzing data with a simpler tree structure and used information 
on medium scale bars in the dimension 0 barcode, whereas tumor 
vessel networks may have multiple components, vary strongly in 
size, and are more tortuous than brain arteries. To ensure that the 
tortuosity descriptor did not mistakenly count separate vessels as a 
single tortuous vessel and was not confounded by network size (i.e., 
that the descriptor captured topological connectivity), we normal-
ized the descriptor. To enable our descriptor to capture high tortu-
osity, we focused on short bars in dimension 0 barcodes rather than 
medium scale bars. Specifically, the tortuosity descriptor proposed 
here was defined as the ratio of the number of short bars (≤10% of 
maximal radius used in the radial filtration) in dimension 0 barcodes 
to the number of vessel segments (see Materials and Methods). 
Note that considering bars with length of ≤10% of maximal radius 
as being “short” is a modeling choice. The loop descriptor was 
computed from the number of bars in dimension 1 barcodes of the 
radial filtration and divided by the number of vessel segments. We 
further used the radial filtration to determine how the number of 
loops per vessel segment changes over time in annuli at different 
distances from the tumor center. PH of the -filtration allowed us to 
identify voids, i.e., avascular tumor regions, and their volume in the 
vessel networks. Long bars in the corresponding barcodes (dimen-
sion 2) represent large voids, while short bars represent small voids. 
The void descriptor measures the median persistence value or bar 
length in the barcodes.

Validation of topological descriptors on two datasets
We validated the topological descriptors on data from studies in 
which tumors were treated with different agents with known effects 
on tumor vasculature: vascular targeting agents DC101 and anti-Dll4 in 
the intravital data and bevacizumab in the ultramicroscopy data 
(see Fig. 4). We found significant differences in our topological 
descriptors between control and treatment groups of both datasets 
despite that (i) the biology in the two studies was different, e.g., 
treatments, tumor types, and mouse models (see the “Datasets” 
section in Materials and Methods for description), which can influ-
ence the degree of tumor vascularization and blood vessel structure 
(53), and (ii) the imaging modalities are not straightforward to 
compare (intravital is time course data, can be normalized, and has 
high spatial resolution in the x-y plane but low penetration depth, 
whereas ultramicroscopy is snapshot data at lower spatial resolution 
but across the whole tumor). While these technical differences led 
to discrepancies in computational feasibility and interpretation (see 
the “Computational differences between datasets” and “Tortuosity 
in the ultramicroscopy data” sections in the Supplementary Materi-
als), we successfully completed computations and showed that our 
topological descriptors are interpretable for both datasets (see also 
the “Alternative results figures and statistical analysis” and “Addi-
tional results and statistical analysis” sections in the Supplementary 
Materials for statistical analysis).

Our tortuosity descriptor and the number of loops per vessel 
segment succeeded in capturing increased sprouting in the vascular 
networks induced by anti-Dll4 (see Fig. 4A, i and ii, and figs. S4A, S6, 
and S7) and confirmed the transient phenomenon of vascular nor-
malization (3) induced by DC101 (see Fig. 4A, i and ii). Specifically, 

the tortuosity descriptor captured vascular normalization 2 days 
after treatment, in agreement with the literature (3), and our loop 
descriptor showed vessel normalization 2 to 4 days after treatment 
for loops, which has not been reported before.

For the ultramicroscopy data, care is needed when interpreting 
the proposed tortuosity descriptor since these networks are less 
resolved in the x-y plane, information loss may occur due to 
computational limitations of filtration step size, and the number 
of vessel segments reduces markedly following treatment with 
bevacizumab. These three factors lead to a counterintuitive increase 
in tortuosity after treatment since small vessels are stepped over by 
the radial filtration without a finer spatial resolution (either in data 
or computation). Visual inspection (see Fig. 2) does not show tortuous 
vessels. If we consider the non-normalized tortuosity descriptor, we 
observe a decrease in tortuosity compared to control (see Fig. 5Biii 
and fig. S2). However, as the non-normalized tortuosity descriptor 
is strongly influenced by network size, it does not capture the desired 
information (for a more detailed discussion of the tortuosity de-
scriptor in the ultramicroscopy data, see also the “Tortuosity in 
the ultramicroscopy data” section in the Supplementary Materials).

Topological loop and void descriptors surpass 
standard measures
Throughout our analysis, we computed the topological descriptors 
indexed by a filtration value, which corresponds to tracking the 
evolution of connectivity at different spatial scales. Therefore, stan-
dard (spatially averaged) morphology descriptors are not directly 
comparable with topological (spatially resolved) descriptors. Perform-
ing a comparison required us to compute the topological descriptor 
for the entire network, losing spatial information encoded in the 
barcode (see Fig. 4). We report a comparison between standard and 
topological descriptors and their correlations in Fig. 5. Topological 
descriptors provided complementary information to standard 
statistical measures and surpassed them by providing multiscale 
information of spatial location of tortuosity and connectivity infor-
mation captured with the loop descriptor (see correlations in Fig. 5A, i, 
and fig. S23). The tortuosity of the intravital dataset appeared 
qualitatively consistent with the conventional tortuosity measure 
mean SOAM across the network (see Fig. 5A, ii, and fig. S15). Our 
results suggested that the discriminatory power of the tortuosity 
descriptor for this dataset lies between SOAM and mean clr (see 
Materials and Methods; Fig. 5A, ii and iii; and figs. S6, S14, and 
S15). Compared to standard measures calculated on the intravital 
vascular networks (see Fig. 5A, iv to vii, and figs. S8 to S13), the effect 
of the treatments on the number of loops highlighted either more sig-
nificant and discriminatory differences from day 2 after treatment 
onward (average vessel diameter, maximal vessel diameter, and maxi-
mal vessel length) or higher significance on day 3 (number of vessel 
segments, number of branching points, and average vessel length). 
In comparison to the length-diameter ratio, the number of loops 
captured a more prolonged change in network structure that was 
still discernible on day 4 after treatment.

In the ultramicroscopy data, our loop descriptor further confirmed 
transient normalization effects of bevacizumab visible 1 to 7 days 
after treatment (see Fig. 4B, i), whereas the void descriptor captured 
sustained effects of bevacizumab on angiogenesis (see Fig. 4B, ii). 
While the topological descriptors showed known effects, these 
trends could not be explained by changes in standard measures, 
such as tumor volume (see Fig. 5B and fig. S24) and, therefore, 
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Fig. 5. Heatmaps displaying pairwise Pearson correlation coefficients between different vascular descriptors (standard and topological). Vascular descriptors 
were derived from the (A) intravital data and (B) ultramicroscopy data. The dendrograms (Ai and Bi) represent complete linkage clustering using the Euclidean distance 
measure. We compute standard vascular descriptors for comparison (see Section Standard measures and existing descriptors in Introduction and Section Additional re-
sults and statistical analysis in SI). We highlight the topological measures in orange including both the number of loops and number of loops per vessel segment to 
highlight the effect of the normalization. For the ultramicroscopy data, we mark those descriptors that we report from (8) with the word “old” (as opposed to the same 
descriptors that we calculate as in (2,45)). We present existing tortuosity descriptors (Aii and iii) and standard measures on the data (Aiii - vi, Biv). While the proposed topo
logical tortuosity descriptor is a good measure for intravital data (see Fig. 4), care must be taken with the ultramicroscopy data (Bii and iii, see Section Tortuosity in the 
ultramicroscopy data in SI for details).
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represented genuine structural changes in the degree of vasculariza-
tion. The avascular regions captured by the void descriptor did not 
correlate with any existing standard measures (Fig. 5B, i), suggesting 
that these topological descriptors provide additional quantification 
of network connectivity. The differences between the treatment 
groups in the ultramicroscopy dataset were significant for all topo-
logical descriptors on days 1 and 3 after treatment (see fig. S4). The 
void descriptor was ideally suited for this dataset as it contains the 
full tumor rather than a slice as in the intravital data (see fig. S21).

Spatiotemporal variation of vascular networks captured  
by loop descriptor
In contrast to the ultramicroscopy data (see fig. S26), we found 
spatiotemporal variation in the number of loops in response to 
different treatments in the intravital data (see Fig. 4A, iii). We 
divided the radial filtration into different spatial intervals (corre-
sponding to spherical shells around the tumor center) and observed 
the median number of vessel loops per vessel segment over time in 
each shell, normalized by day 0 of treatment. We again confirmed 
known mechanisms of action for vascular targeting agents DC101 
and anti-Dll4; anti-Dll4 increased sprouting predominantly from 
blood vessels close to the tumor periphery, thereby leading to the 
formation of loops (see orange/red/brown colored sectors in Fig. 4A, 

iii), whereas DC101 reduced the number of loops across the entire 
vessel network (see blue colored sectors in Fig. 4A, iii).

Topological descriptors quantified unknown effects 
of radiation therapies
Our topological descriptors quantified and, furthermore, elucidated 
the unknown effects of single- and fractionated-dose irradiation 
treatments on vascular networks (see Fig. 6 and figs. S4, S17, and 
S18). Reductions of tortuosity and the number of loops from single-
dose irradiation were apparent only on day 1 after treatment and 
showed great variation across different tumors over time. Spatially, 
the effect of single-dose irradiation manifested in a decrease in the 
number of loops in the whole tumor only on day 1 after treatment 
and thereafter remained stable only very close to the tumor center; 
by contrast, the number of loops increased again in most parts of the 
vessel network (see Fig. 6, iii). Beneficial effects of fractionated-dose 
irradiation became apparent after a time lag of 2 (tortuosity) or 
3 days (loops, with statistically significant difference to controls on 
day 4; see fig. S4) after initial treatment. Spatially, the number of 
loops decreased below the tumor surface but increased in the tumor 
periphery from day 2 after initial treatment onward (see Fig. 6, iii, 
after the start of fractionated irradiation treatment). Trends in 
tortuosity and the number of loops revealed changes in network 
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structure and differ from those seen for the approximate tumor 
radius (see fig. S22).

Vascular architecture evolution linked to increasing 
topological complexity
Last, when comparing all five treatment groups in the intravital 
data, we found significant differences for tortuosity on day 2 after 
treatment (see fig. S19), followed by significant differences in the 
number of loops on day 3 after treatment (see fig. S20). We hypothesize 
that vascular targeting agents and radiotherapy first show effects on 
the level of tortuosity before changes manifest in more complex 
network structures such as vessel loops. Biologically, this can be 
explained by treatments having an immediate effect on individual 
vessels, while visible changes in network connectivity associated 
with angiogenesis take longer to occur.

DISCUSSION
In the present work, we showcased the application of an interpretable 
and powerful, multiscale topological method to analyze highly 
resolved images. Our approach represents a much needed paradigm 
shift in the analysis of images of biological tissues, closing the 
current gap between the level of detail in data from modern imaging 
modalities, which are highly resolved over space and time, and 
coarse quantitative descriptors commonly extracted from these images. 
We quantified, validated, and uncovered aspects of network con-
nectivity in tumor vasculature by exploiting the three-dimensionality 
of state-of-the-art data across different scales, from small vessel 
loops to large voids, information that is inaccessible using standard 
summaries. Our topological descriptors characterize tortuosity and 
vessel loops (radial filtration) and tumor vascularization (-complex 
filtration) in a novel way, giving unprecedented quantification, in 
terms of spatial location and connectivity, of dynamic changes in 
the network architecture of tumor blood vessels during disease 
progression and treatment. In addition to validating the known 
dynamic effects of vascular targeting agents on vessel density, we 
also provided novel quantification of their spatial location effects on 
the vasculature. Hitherto, we offered a multiscale topological 
characterization of the effects of radiotherapy on vasculature.

When performing PH, the choice of filtration and its interpretation 
can reveal different information about a system [see (33) for an 
exploration of different filtrations for applications]. For example, 
the plane-sweeping filtration is well suited to cases for which there 
is a clear direction in the data [e.g., brain arteries (26)]. Here, we 
used points sampled from the vessels in 3D space and then con-
structed the radial filtration and the -filtration, both of which are 
robust with respect to rotation. However, the barcode will change 
with deformation (e.g., loops being stretched) as PH computes 
information about both geometry and topology. We made the 
simplifying assumption for the radial filtration that the tumors are 
spherical, as is often done in modeling; however, this does not hold 
if the tumor is ellipsoid in shape. For different tumor geometries, 
the vessels may not be radially oriented, so a future extension could 
be to consider an ellipsoid filtration (54). Similarly, our estimated 
tumor center is only an approximation of the true tumor center, 
and results could differ when choosing an alternative starting point, 
although we expect this difference to be small since the filtration 
radius increases uniformly throughout the analysis and our spatio-
temporal summaries are computed over large intervals. Another 

possible extension is to consider slightly different points for the tumor 
center and to generate a collection of persistence diagrams for each 
tumor. The descriptors extracted from these diagrams would, 
however, need to be averaged per tumor.

An important aspect of analyzing spatial network data is the 
robustness of results. PH is stable to noise with respect to perturbation 
of individual points in the dataset, such as small changes in network 
edge lengths or small changes in the location of vessel nodes. How-
ever, the theoretical PH stability results with respect to bottleneck 
distance do not hold when entire edges are added or deleted, which 
may arise due to segmentation or imaging noise. Since we computed 
the median and standard deviation of topological descriptors, we ex-
pect our results to be robust to both sources of noise.

The filtrations we used in this work cannot be applied to all types 
of tumors; for example, a recent study predicting the survival of 
glioblastoma motivated a new topological statistic for analyzing shape 
that effectively analyzes multiple directions of sublevel sets (55). 
However, given the multiscale nature of our topological descriptors, 
we expect them to scale readily to human tumors, given a level of 
imaging detail similar to that used here. It should be possible to use 
photoacoustic imaging (56, 57) to construct accurate vascular 
network outlines in experimental settings in living human subjects 
with superficial cancers (e.g., breast and skin cancers). For such 
images of human tumors, we would use the same pipeline for 
segmentation, TDA computations, and to generate descriptors. For 
larger networks, we may use the subsampling step before TDA analy-
sis, as we did here for the ultramicroscopy data.

We found that the utility of different topological descriptors 
(i.e., dimensions) may depend on imaging resolution. Our results 
indicated that the high planar resolution of intravital data better 
captures tortuosity, resulting in more short connected components 
in the radial filtration, whereas it is less appropriate for measuring 
voids because of the shallow imaging depth. Conversely, the deep z 
direction of ultramicrosopy enables quantification of voids (i.e., 
higher-dimensional homology features), while comparably low 
planar resolution may not suffice to generate the small features in 
dimension 0 needed to quantify tortuosity. We demonstrated that 
loops were well quantified for both modalities. We specifically chose 
descriptors that are simple summaries of PH barcodes so that we 
can interpret biological differences between networks. In other bio-
logical applications, barcodes have been successfully analyzed by their 
vectorization, for example, by using persistence images (58) or per-
sistence landscapes (59, 60) and classifying them using methods from 
machine learning; see, for example, (22, 36, 61–64). Here, this type of 
transformation is not suitable because of the variation of initial vas-
culature within a treatment group and small sample size common 
to mouse model experiments. In the future, we will investigate more 
computationally efficient and interpretable topological invariants, 
such as the Euler characteristic and Betti numbers, which can be 
computed directly via the Euler characteristic rather than via a 
filtration and also provide quantitative information about vessel 
connectivity. However, the simplified computation will come with 
a loss of information; for example, we will not be able to compute 
our tortuosity descriptor or the size of voids. In other future work, 
we will extract the spatial locations of the tumor and immune cells 
from the images and apply similar topological analyses to these data 
to compare control and treated tumors.

Our topological descriptors provide global and multiscale quan-
tification of vascular connectivity and represent a first step toward 
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understanding the relationship between the structure and function 
of the vasculature. For example, high tortuosity of vessels has been 
observed to reduce blood flow (65), and a future extension will be to 
develop directed topology approaches for tackling such directed 
vascular networks. Even with the state-of-the-art data used here, 
ethical constraints preclude the collection of more data, thereby 
limiting the strength of the biological conclusions that can be 
drawn. If more data were available, our topological descriptors 
could be fed directly into machine learning algorithms and analy-
ses. Since our datasets were obtained from two different studies, we 
were unable to directly compare them. The data were generated on 
different scales, and therefore, the values differ substantially, with 
respect to regions of interest and spatial resolution. In future work, 
it would be informative to cross-validate the descriptors by per-
forming intravital imaging followed by ultramicroscopy imaging on 
the same mice with small tumors to validate the method on the same 
vessel networks, exclude any influences from different imaging mo-
dalities, and work toward topological data integration. At this time, 
analysis of the same tissue with both imaging modalities is logistically 
impossible. We propose that the topological descriptors be tested 
with different imaging modalities used in the clinic to determine 
their practical use for monitoring the response of tumors to therapy.

We conclude by noting that the topological perspective for analyz-
ing and preserving the multiscale nature of data is broadly applica-
ble to other spatial networks (32) and biological systems, where it 
can also be used to quantify perturbations to network topology. 
Such networks not only arise across many different biomedical 
applications but are also relevant in other biological settings ranging 
from leaf vessel networks to collagen fibers and signaling networks.

MATERIALS AND METHODS
Experimental procedures for intravital data
Abdominal imaging window implantation
This procedure was based on a previously described method (6). 
Mice were prepared in a surgical unit, administered with inhala-
tional anesthesia and preoperative analgesics. Body temperature 

and respiration rates were monitored throughout the procedure. A 
1-cm cut was made along the abdominal midline approximately 
5 mm underneath the sternum followed by blunt dissection around 
the cut to separate the connective tissue from the skin. A custom-
made imaging window frame (Workshop at the Department of 
Oncology, Oxford University) was fitted underneath the skin. Con-
tinuous sutures were used to secure the skin to the window frame. 
Approximately 2.5 × 105 MC38 cells stably expressing enhanced 
green fluorescent protein (eGFP) in 5 l containing 30% of Matrigel 
and 10% of Evan’s blue dye were injected under the connective 
tissue and above the abdominal muscle layer. The chamber was 
then flushed with water to lyse noninjected cells by osmotic shock, 
tapped dry with sterile cotton swabs, and flooded with saline. A cover 
glass glued on the chamber’s lid was secured onto the window 
frame. The animals were then placed onto a heat mat for post-
operative recovery, and their health and tumor growth were moni-
tored by visual examination.
Treatment regimes
Animals with tumors approximately 100 mm3 in the chamber were 
administered with either anti-mouse vascular endothelial growth 
factor receptor 2 (VEGFR2) antibody [27 mg/kg; clone DC101 (37), 
BioXCell], anti-mouse Dll4 antibody (39) twice per week at a dose 
of 5 mg/kg (in two doses on the initial day of imaging and 3 days 
later), or one of two radiation treatments. For the radiation treat-
ments, mice were anesthetized under inhalation with isoflurane and 
placed in an imaging-guided small animal radiation research 
platform (SARRP) irradiator (Xstrahl Ltd). A Cone Beam CT (com-
puterized tomography) scan of each mouse was obtained, and the 
treatment was planned using MuriPlan (Xstrahl Ltd). The SARRP 
was used to deliver 15 Gy of x-rays (220–kilovolt peak copper-
filtered beam with half-value layer of 0.93 mmCu) to the tumor at 
2 Gy/min. This was given either in a single dose or at five daily frac-
tionations of 3 Gy of x-ray radiation to the tumor. Dosimetry of the 
irradiator was performed as previously described (66).
Intravital two–photon imaging
To visualize the tumor vasculature, we used a transgenic mouse 
model in which the fluorescent protein tdTomato is expressed in 
both normal and tumor endothelial cells (TECs). We used transgenic 
mice bearing a Cre recombinase–tamoxifen receptor fusion protein 
(Cre-ERT2) driven by the VE cadherin promoter. These mice were 
crossed with Gt(ROSA)26Sortm9(CAG-tdTomato)Hze mice so 
that activation of Cre by tamoxifen resulted in EC expression of 
tdTomato (schematic shown in fig. S1). Similarly, TECs, identified 
as CD31-positive cells in allografted tumors, were rendered generally 
over 90% tdTomato positive (fig. S1). For imaging purposes, we only 
used mice with greater than 95% fluorescent EC.

Mice were imaged for 4 days following initial treatment for 
vascular targeting agents and 7 days for radiation treatment with a 
Zeiss LSM 880 microscope equipped with an aesthetic vaporizer 
and respiratory monitoring system. Stage and atmosphere were 
heated to 37°C. To label perfused vessels, Quantum dot-705 solution 
(1 M; Invitrogen) was infused intravenously using a motorized 
pump at a rate of 0.84 l/min. A mode-locked Mai Tai laser tuned 
to 920 nm was used to simultaneously excite eGFP, tdTomato, and 
Qdot705. The Qdot705 signal was acquired through a BP700/100 
filter with a nondescanned detector. Gallium arsenide phosphide 
detectors were used to acquire the signal of tdTomato selected by a 
BP650/45 filter and the eGFP selected by a BP525/50 filter. Images 
were acquired in z-stack tile scans with a pixel size of 0.823 m and 
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Fig. 7. Schematic of tortuosity descriptors. (A) The topological descriptor is 
defined as the number of short bars in the barcode (connected components in 
dimension 0 barcodes with persistence of ≤10% of the maximal radius) normalized 
by the number of vessel segments. In this schematic, there are two vessels. This 
normalization ensures that the connected components in the tortuosity measure 
do not also count different vessel segments. This descriptor is in contrast to the 
topological tortuosity reported in (26), which did not have multiple vessel segments. 
(B) The clr (45) is the ratio between the chord connecting two ends of a curve 
(orange) and the path length of the curve (blue). Clr measures the deviation from a 
straight line. (C) The SOAM measures the sum of angles between consecutive tan-
gents of a curve, so a high score is given to a curve rapidly changing direction.
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an image size per tile of 512 × 512 × 5 in x, y, and z, respectively. A 
water immersion 20× objective made for ultraviolet-visible–infrared 
transmission with a numerical aperture of 1 was used. The segmen-
tation of tumor blood vessels was based on the TECs expressing 
tdTomato. We used intravenous injection of Qdots to distinguish 
perfused from nonperfused tumor vessels, i.e., vessels labeled with 
the infused Qdots and vessels not labeled with it. As further evidence, 
we note that no Qdot-positive, endothelial-negative vessels were 
identified. If the Qdots were in the lymphatics, then they would have 
identified vessels not lined by vascular endothelium; this did not 
happen. All animal experiments were conducted in accordance 
with the U.K. Animals (Scientific Procedures) Act 1986 as amended 
[Amendment Regulations 2012 (SI 2012/3039)], under the authority of 
a U.K. Home Office Project Licence (PPL 30/2922 and PCDCAFDE0), 
with local ethical approval from the University of Oxford Animal 
Welfare and Ethical Review Panel.

Datasets
We analyzed two different tumor blood vessel datasets: data obtained 
by multiphoton intravital 3D imaging (5) (see above for description 
of experimental procedures) and data obtained by ultramicroscopy 
(7). Both datasets consist of 3D stacks of images of tumor blood 
vessels subjected to different experimental conditions.
Dataset I: Multiphoton intravital 3D imaging
The intravital dataset consists of tumor vasculature images that 
were obtained from multiphoton intravital 3D imaging (5) of trans-
genic mice injected with murine colon adenocarcinoma cells (cell 
line MC38). The animals were imaged alive and over several days 
using the experimental procedures described in the “Experimental 
procedures for intravital data” section. The mice were divided into 
groups that were subjected to different experimental conditions:

1) Controls (seven mice).
2) Anti-Dll4–treated tumors (three mice): The mice were treated 

using anti-Dll4 antibodies (39), which block Dll4 signaling and 
thereby increase vessel sprouting. The resulting networks are very 
dense and complex.

3) DC101-treated tumors (five mice): The mice were treated 
using DC101 antibodies (37), which block VEGFR2 signaling and 
thereby reduce vessel sprouting.

4) Single-dose irradiated tumors (five mice): The mice were 
treated with a single dose of 15 Gy on the first day of imaging.

5) Dose-fractionated irradiated tumors (four mice): The mice 
were treated with five doses of 3 Gy over five consecutive days 
followed by 2 days of rest starting on the first day of imaging.

In each case, we refer to the start of treatment or observation 
as day 0.
Dataset II: Multispectral fluorescence ultramicroscopy data
The ultramicroscopy dataset consists of multispectral fluorescence 
ultramicroscopy (7) images of blood vessels of human breast cancer 
tumors [cell line KPL-4, human epidermal growth factor receptor 2 
(HER2) positive] that were implanted into 31 immunodeficient 
mice. The experiments were carried out by Dobosz et al. (8), Roche 
Diagnostics/Institute for Biological and Medical Imaging, Helmholz 
Zentrum, Munich. The mice were divided into a control group and 
a treatment group:

1) Controls (18 mice).
2) Anti–VEGF-A–treated tumors (13 mice): The mice were 

treated with bevacizumab (43), an antibody that binds to VEGF-A 
and thereby induces normalization (3) of the vessel networks, i.e., 

reduces some of their structural and functional abnormalities and 
lowers their permeability (8).

Treatment was administered once the tumors reached a volume 
of approximately 60 mm3, and controls were observed accordingly. 
To test the effect of treatment on drug delivery at different time 
points, both controls and anti–VEGF-A–treated mice were also 
treated with trastuzumab (67) (anti-HER2 antibody) 6 hours before 
the tumor was extracted and prepared for imaging. Different 
subgroups of tumors were imaged on day 1 (five controls and five 
treated), day 3 (five controls and four treated), day 7 (five controls 
and two treated), and day 14 (three controls and two treated) after 
administration of bevacizumab. For more details on experimental 
conditions, see (8) [note that the dataset in (8) was created under 
the same conditions and overlaps with the data used in this work, 
but the two are not identical, e.g., the dataset in (8) consists of five 
controls and treated mice for days 1, 3, and 7 after treatment each 
but does not include day 14 after treatment]. Imaging was performed 
ex vivo at a spatial resolution of 5.1 m on the x-y plane with images 
taken every 5.1 m in the z direction. Skeletonizations of the images were 
produced by Dobosz et al. (8) using a custom Definiens Developer 
script. For details of how the ultramicroscopy data were skeletonized, 
please see the “Data preprocessing” section in Materials and Methods.

Data preprocessing
Intravital data
Skeleton files were extracted from the imaging data by combining 
two segmentation models and taking their geometric average. The 
skeletons were then pruned [see (45), p. 165, for a full description]. 
The segmentation method used for the intravital dataset was exten-
sively tested against synthetic datasets and against manually seg-
mented intravital microscopy images (45). This method achieved a 
Dice score of 0.97. Moreover, a skeleton error (given in micrometers), 
the distance between skeletons that was computed using the modi-
fied Hausdorff distance, was determined. This skeleton error can be 
interpreted as the average shortest distance between any point on 
the ground truth skeleton and some point on the target skeleton 
and vice versa. With our method, this skeleton error was 5 m com-
pared to ground truth in the synthetic dataset and in the intravital 
dataset, where manually segmented images were considered as 
ground truth. Last, the method used also achieved coverage of 
0.96 to 0.99 both in the synthetic datasets and intravital microscopy 
datasets. This shows that the errors introduced by the segmentation 
method were relatively small.

We extracted blood vessel networks from skeleton files using the 
method VesselTree from unet_core.vessel_analysis in the python 
code package unet-core (44). The extracted networks consist of 
points on vessel branches (multiple points per vessel branch includ-
ing branching points), which represent the network nodes, and the 
vessels that connect them, which constitute the edges of the net-
work. VesselTree also enables us to extract network features such as 
the number of vessel segments (i.e., edges of the network), number 
of branching points (i.e., nodes of the network), vessel diameters, 
vessel lengths, and measures of tortuosity (clr and SOAM) for every 
point. We account for the difference in resolution between the 
z axis and the x-y plane by rescaling the coordinates in the z direc-
tion using a factor of ​​0.83 _ 5 ​​  on the z coordinates before further analysis.

We excluded the following data from our analysis because of 
imaging and/or segmentation quality: control tumor 24_2C, day 4; 
fractionated-dose irradiated tumor 60_1E, day 5 onward. For the 
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radial filtration, because of the very high number of points in some 
of the blood vessel networks, we reduced the data size by including 
all branching points but sampling only every second point from 
every branch in the following networks: control tumor 18_4E, day 3; 
control tumor 18_4E, day 4; control tumor 29_1B, day 3; control 
tumor 29_1B, day 4; control tumor 34_2A, day 4; control tumor 
60_2A, day 4; DC101-treated tumor 51_2C, day 1; DC101-treated 
tumor 54_2D, day 2; anti-Dll4–treated tumor 24_2A, day 3; anti-
Dll4–treated tumor 24_2A, day 4. The days listed refer to the days 
after tumor treatment. For the -complex filtration, we used the full 
set of nodes as input.
Ultramicroscopy data
We preprocessed grayscale skeletonization files provided in the 
ultramicroscopy dataset from individual .tif files (one for every 
x-y plane slice of the vessel network) to .tif stacks in uint8 format 
using the software ImageJ (68). We then converted the .tif stacks to 
.nii format using the function tiff2nii.m from the Matlab toolbox 
(69). We used the .nii files as input for our unet-core (44) in our 
python scripts. Although unet-core was originally trained on multi-
photon intravital 3D imaging, we justify our approach by the fact 
that the skeletonizations are clear, high-contrast images (see Fig. 2 
for extracted networks). Any imaging-specific effects were removed 
by the skeletonization process that was developed specifically for 
this dataset (8). We compared the number of branching points and 
the number of vessel segments extracted by unet-core with similar 
measurements extracted previously by Dobosz et al. (8) and found 
that these are highly correlated (see Fig. 5B and fig. S28).

We note that we obtained 3D coordinates for network nodes. The 
distances between these nodes scale linearly with the true distance in 
micrometers. Since we were only interested in features with respect to 
their relative distance to the tumor center, this was sufficient for our 
purposes. A coordinate set true to distance could be obtained by com-
paring an exemplary output network closely to microscopy images.

For the radial filtration, because of the very high number of points 
in these blood vessel networks (on the order of millions of nodes in 
comparison with on the order of thousands of nodes in the intravital 
data), we reduced the point clouds for all tumors by including all 
branching points but sampling only every fourth point from every 
branch. Despite our reduction approaches, we were not able to run 
our codes on one of the treated tumors from day 14 networks. For 
the -complex filtration, we used the full set of nodes as input.

Topological data analysis
TDA is an umbrella term used for methods that allow the study 
of potentially high-dimensional data using mathematical concepts 
from topology (70). PH (16–19) quantifies global topological struc-
tures (e.g., connectedness, loops, and voids) in data. More details on 
TDA and PH are in the Supplementary Materials.
Homology and simplicial complexes
To compute (persistent) homology from data, we first constructed 
simplicial complexes, which can be thought of as collections of 
generalized triangles. From the constructed simplicial complexes, 
we quantified and visualized the datasets’ connected components 
(dimension 0), loops (dimension 1), and voids (dimension 2) at 
different spatial scales in the data.

PH is based on the topological concept of homology [for intuitive 
introductions, see, for example, (23, 71); for more formal introduc-
tions, see (72–74)]. To compute topological invariants, such as 
connected components (dimension 0) and loops (dimension 1), we 

used homology. To obtain homology from a simplicial complex, X, 
we constructed vector spaces whose bases are the 0-simplices, 
1-simplices, and 2-simplices, respectively, of X. There is a linear map 
between 2-simplices and 1-simplices called the boundary map ∂2, 
which sends triangles to the edges on their boundary. Similarly, the 
boundary map ∂1 sends edges to their boundary vertices (or boundary 
points), and ∂0 sends vertices to 0. The action of the boundary map 
∂1 on the simplices is stored in a binary matrix where the entry ai, j 
denotes whether the ith 0-simplex forms part of the boundary of the 
jth 1-simplex. If so, then ai, j = 1; otherwise, ai, j = 0. We computed 
the kernel Ker( · ) and image Im( · ) of the boundary maps to obtain 
the vector spaces H0(X) = Ker (∂0)/ Im (∂1) and H1(X) = Ker (∂1)/ 
Im (∂2). Note that for the radial filtration, we have Im(∂2) = 0 since 
we do not fill in any triangles in the filtration but only have edges 
and vertices. These vector spaces are also referred to as homology 
groups, and their dimensions define the topological invariant that 
we studied called the Betti numbers of X, 0 and 1, which give the 
number of connected components and loops, respectively. We studied 
a vascular network at multiple scales in different ways as will be 
described later in this section. The multiple scales of the data can be 
encoded by a filtration, which is a sequence of embedded simplicial 
complexes X0 ⊆ X1… ⊆ Xend built from the data.
Persistent homology
PH is an algorithm that takes in data via a filtration and outputs a 
topological summary, which visualizes changes in topological fea-
tures such as connectedness (dimension 0) and loops (dimension 1) 
across the filtration. The simplicial complexes are indexed by the 
scale parameter of the filtration. The inclusion of a simplicial com-
plex Xi ⊆ Xj for i ≤ j gives a relationship between the corresponding 
homology groups Hp(Xi) and Hp(Xj) for p = 0,1,2. This relationship 
allowed us to track topological features such as loops along the sim-
plicial complexes in the filtration. Intuitively, a topological feature 
is born in filtration step b when it is first computed as part of the 
homology group Hp(Kb) and dies in filtration step d when that fea-
ture no longer exists in Hp(Kd), i.e., when a connected component 
merges with another component or when a loop is covered by 2- 
simplices. The output from PH is a multiset of intervals [b, d) that 
quantifies the persistence of topological features. Each topological 
feature is said to persist for the scale d − b in the filtration.
Method I: Radial filtration
We applied a radial filtration (33) to the 3D vessel networks, i.e., the 
collection of nodes (both branching points and points along vessel 
branches), their spatial coordinates, and the edges between them. 
We built the filtration starting in the tumor center, which we 
approximated by the center of mass of the points sampled from the 
tumor blood vessels, e.g., the nodes of our networks. We then 
proceeded in the following way. We divided the maximal distance 
of a node in the network to the center of mass into 500 steps and, 
from this, constructed a sequence of uniformly increasing radii. By 
increasing the radial distance stepwise, in each filtration step, we 
included all nodes within the specified radius. If two nodes that 
were connected by an edge were also within the given radius, then 
we added that edge to our filtration. In the barcodes from this filtra-
tion, we could capture tortuosity (from connected components in 
dimension 0 barcodes with persistence of ≤10% of the maximal 
radius used; see Fig. 7A), loops (dimension 1), and their spatial 
distribution. We note that for the intravital (shallow) imaging data, 
the approximated tumor center is defined by the image (vessel nodes) 
viewed through the window chamber. The approximated tumor 



Stolz et al., Sci. Adv. 8, eabm2456 (2022)     10 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

13 of 15

center was calculated on the basis of the vasculature in this small 
segment and hence does not represent the true tumor center.
Method II: -Complex
On 3D data, the -complex (20, 75) filtration builds a sequence of 
nested simplicial complexes (collections of nodes, edges, triangles, 
and tetrahedra) whose final element Kend is the Delaunay triangula-
tion (48), i.e., the triangulation of the 3D convex hull of the data 
points by tetrahedra. We built the filtration on the 3D nodes of 
the vessel networks. Inductively, starting with the highest dimen-
sion (i.e., first tetradedron, then edges), each simplex  in Kend was 
assigned a filtration value given by the square of its circumradius  
in the case that the circumsphere contains no other vertices than the 
vertices of ; otherwise, its filtrations value was given by the mini-
mum of the filtration values of the higher-dimensional simplices of 
which  was a face. To construct the filtration, edges, triangles, and 
tetrahedra were included up to a set filtration value that increased 
stepwise. The effect of the assignment of the filtration values was, 
for example, that, in 2D, the long edge of a slim triangle was only 
included when the whole triangle was included. This avoided the 
formation of cycles for slim triangles. In the barcodes from this 
filtration, we could capture the degree of tumor vascularization 
(from voids, dimension 2).

Existing descriptors
The standard morphological descriptors that we computed from 
the segmented intravital microscopy images were the number of 
vessel segments (i.e., number of edges), number of branching points 
(i.e., number of nodes), maximal vessel diameter, average vessel 
diameter, maximal vessel length, average vessel length, average clr, 
average SOAM, and vessel length/diameter ratio. The standard 
descriptors that we included for the ultramicroscopy dataset were 
the number of vessel segments [both as computed in (8) and 
unet-core (44)], number of branching points [both as computed in 
(8) and unet-core (44)], necrotic tumor volume as computed in (8), 
tumor volume as computed in (8), and vital tumor volume as 
computed in (8).
Tortuosity: SOAM
The SOAM was applied as a measure of tortuosity in blood vessels 
by Bullitt et al. (13). It is the sum of the angles of regularly sampled 
tangents along a blood vessel skeleton and can take values from zero 
(straight vessel) to infinity. For tortuous vessels, the metric increases 
monotonically with vessel length. See Fig. 7B for a schematic.
Tortuosity: clr
The clr (45) of a blood vessel is defined as the ratio of the distance 
between the branching/end points of the vessel and the length of the 
vessel. The measure can take a value of, at most, one (straight vessel) 
and tends to be zero for very tortuous vessels. See Fig. 7C for a 
schematic.
Statistical analysis
We analyzed the statistical significance of differences between treat-
ment groups in the tortuosity values, number of loops per vessel 
segment, and median persistence of voids. We performed a pairwise 
Wilcoxon rank sum test on the ultramicroscopy data for each day 
separately to determine the statistical significance of our topological 
measures (see fig. S4B). We tested at a significance level of 0.05. For 
the intravital data, we performed a Kruskal-Wallis test to determine 
whether at least one treatment group differs significantly from the 
others for the topological descriptors (see figs. S6, S7, and S17 to 
S21) and for standard vasculature measures (see figs. S6 to S16). We 

further applied a pairwise Wilcoxon rank sum test between the con-
trol group and the different treatment regimes for the topological 
descriptors (see fig. S4A). We again tested at a significance level of 
0.05 and did not correct for false discovery rate. To explore correla-
tions between different types of summary descriptors for vascular 
networks, we computed pairwise Pearson correlation values for the 
different descriptors in both datasets separately (see figs. S23 and 
S28). We performed all statistical analyses in R Studio (76), and all 
our tests described above were, by default, two-sided.

Implementation
We implemented the radial filtration in Matlab and used the 
software package javaPlex (77) (note that javaPlex was last updated 
in July 2018; alternatively, the well-maintained GUDHI library (78) 
also allows the user to build their own simplicial complex and/or 
filtration on data using the class SimplexTree) (77) to compute PH 
on our filtration. We divided the distance from the tumor center 
(center of mass) to the farthest away point in the blood vessel 
network into 500 steps to build the radial filtration. We implemented 
the -complex using the GUDHI library (78). All code is freely avail-
able at the following repository: https://github.com/stolzbernadette/
TDA-Tumour-Vasculature.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm2456

View/request a protocol for this paper from Bio-protocol.
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