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A B S T R A C T   

Cardiovascular disease is a leading cause of death in cancer survivors. It is critical to apply new predictive and 
early diagnostic methods in this population, as this can potentially inform cardiovascular treatment and sur-
veillance decision-making. We discuss the application of artificial intelligence (AI) technologies to cardiovascular 
imaging in cardio-oncology, with a particular emphasis on prevention and targeted treatment of a variety of 
cardiovascular conditions in cancer patients. Recently, the use of AI-augmented cardiac imaging in cardio- 
oncology is gaining traction. A large proportion of cardio-oncology patients are screened and followed using 
left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS), currently obtained using echo-
cardiography. This use will continue to increase with new cardiotoxic cancer treatments. AI is being tested to 
increase precision, throughput, and accuracy of LVEF and GLS, guide point-of-care image acquisition, and 
integrate imaging and clinical data to optimize the prediction and detection of cardiac dysfunction. The appli-
cation of AI to cardiovascular magnetic resonance imaging (CMR), computed tomography (CT; especially cor-
onary artery calcium or CAC scans), single proton emission computed tomography (SPECT) and positron 
emission tomography (PET) imaging acquisition is also in early stages of analysis for prediction and assessment 
of cardiac tumors and cardiovascular adverse events in patients treated for childhood or adult cancer. The op-
portunities for application of AI in cardio-oncology imaging are promising, and if availed, will improve clinical 
practice and benefit patient care.   

1. Introduction 

Among the ~17 million cancer survivors in the United States, car-
diovascular disease is a leading cause of death [1–5]. Cancer patients 
and survivors are at risk of cardiovascular toxicity, and many already 
have underlying cardiovascular issues that can complicate cancer ther-
apy and impair outcomes. Prediction and early recognition of cardio-
vascular diseases in this population are crucial and can potentially 

inform treatment and surveillance decision-making. Furthermore, as 
survival and the number of potentially cardiotoxic cancer therapies 
expand, so does the demand for high-throughput, yet high-quality, 
focused imaging modalities to serially monitor cardiovascular function 
and structure in these patients [2,6,7]. Additionally, cancer patients are 
often excluded from clinical trials and in general tend to be treated in a 
more conservative manner versus non-cancer patients [8]. Novel, more 
efficient methods of obtaining these data, such as with the use of AI, are 
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desirable to aid in the assessment of cardiac function in the cardio- 
oncology patient population. By extracting hidden patterns and evi-
dence from large amounts of healthcare data, artificial intelligence has 
the potential to generate novel predictors and indices in cardio-oncology 
patients. The field of AI-assisted precision cardio-oncology is therefore 
evolving toward greater personalization and precision, with a strong 
emphasis on early prevention and tailored treatment prior to, during, 
and after cancer treatment. 

Artificial intelligence (AI) refers to computer programs that are 
capable of performing tasks associated with human intelligence, such as 
pattern recognition and problem-solving. AI has emerged as a rapidly 
advancing field that is beginning to have an impact on clinical practice, 
particularly regarding identification of established data patterns, which 
can then be used to predict new outcomes. Within the field of cardio-
vascular medicine, researchers are discovering that AI has a potential 
role in cardiac imaging, with applications ranging from image classifi-
cation and reconstruction to segmentation and quantification automa-
tion, all of which have the potential to impact workflow, diagnostic 
accuracy, measurement reproducibility, and ultimately patient 
prognosis. 

Here we focus on such AI technologies applied to cardiovascular 
imaging in cardio-oncology with a strong emphasis on prevention and 
tailored treatment of a variety of cardiovascular conditions for cancer 
patients (Table 1). We discuss AI in echocardiography as the most 
common form of imaging in cardio-oncology, and much work is also 
being done applying AI to echocardiography in cardiology. We then 
propose the use of AI-augmented cardiovascular magnetic resonance 
(CMR), computed tomography (CT) (with a focus on coronary artery 
calcium (CAC) scans), single positron emission computed tomography 
(SPECT), and positron emission tomography (PET) imaging. We also 
suggest AI-augmented multimodality imaging to assess intracardiac tu-
mors. This article is one of a series of publications on AI in cardio- 
oncology, complementing our manuscript on the application of AI to 
electrocardiography and biologically relevant models in precision 
cardio-oncology for the prediction and modeling of cardiovascular 
adverse events in cancer survivors. In our companion manuscript, titled 
“Artificial Intelligence Opportunities in Cardio-Oncology: Overview 
with Spotlight on Electrocardiography,” we delve deeper into this 
relatively new field of cardio-oncology especially describing therapies of 
special interest and the types of cancers for which they are used [9]. 

1.1. Cardiovascular imaging 

The rapid growth of advanced multimodality cardiovascular imaging 
has generated massive amounts of data that have transformed cardio-
vascular care. The steps that slow down the process include timing and 
the accuracy with which these images are interpreted [10]. Artificial 
intelligence applications in cardiovascular imaging have demonstrated 
enormous promise in terms of diagnostic support and image interpre-
tation [11]. Acquiring high-quality imaging to feed into AI algorithms 
for image interpretation presents a unique set of challenges. This re-
quires image registration and segmentation. Registration is used to align 
multiple images, correct artifacts, rotate the image, and ensure that all 
images have the same orientation in order to create a consistent and 
complete source of information [34]. Segmentation is the process of 
extracting content from images by identifying landmarks, segmenting 
them into meaningful segments, and identifying regions of interest. In 
the literature, advanced AI-driven segmentation techniques have been 
described for a variety of imaging modalities and clinical applications 
[12,13]. After registering and segmenting the appropriate structures, 
automated measurements can be taken [14–16]. Numerous large na-
tional and international multicenter imaging databases have been 
established, and images have been pre-registered and segmented, 
making them suitable for machine learning applications [17,18]. Other 
smaller studies have been conducted manually at individual centers or 
using retrospective imaging data from observational studies or 

Table 1 
Potential utility of artificial intelligence in imaging in cardio-oncology.  

Imaging in cardio- 
oncology 

Utility before 
cancer treatment 

Utility during 
cancer treatment 

Utility after 
cancer treatment 

Echocardiography Establishment of 
baseline cardiac 
assessment using 
automated LVEF 
and GLS 
measurements. 
Predicting CV 
outcomes with 
ML algorithms to 
guide decision- 
making. AI- 
guided echo 
acquisition can 
expand the use of 
echo to primary 
care and 
oncology settings 

Follow-up cardiac 
assessment using 
automated LVEF 
and GLS 
measurements to 
predict CV 
outcomes with ML 
algorithms to guide 
decision-making; 
AI-guided echo 
acquisition can 
expand the use of 
echo to primary 
care, oncology, and 
other settings 

Follow-up 
cardiac 
assessment using 
automated LVEF 
and GLS 
measurements to 
predict CV 
outcomes using 
ML algorithms to 
guide decision- 
making; AI- 
guided echo 
acquisition can 
expand the use 
of echo to 
primary care, 
oncology, and 
other settings 

AI can facilitate 
the detection of 
subtle 
abnormalities in 
TTE that may not 
be visually seen 
by an 
interpreting 
cardiologist to 
improve 
prognostic/ 
diagnostic 
accuracy 

AI can facilitate the 
detection of subtle 
changes in TTE that 
may not be visually 
seen by an 
interpreting 
cardiologist to 
improve 
prognostic/ 
diagnostic accuracy 

AI can facilitate 
the detection of 
subtle changes in 
TTE that may not 
be visually seen 
by an 
interpreting 
cardiologist to 
improve 
prognostic/ 
diagnostic 
accuracy 

Cardiovascular 
magnetic 
resonance 
imaging 

AI approaches 
applied to CMR 
can facilitate 
efficient 
diagnostic 
performance for 
cardiac 
amyloidosis, 
simulating CMR 
reading by 
experienced 
operators 

AI approaches 
applied to CMR can 
facilitate efficient 
diagnostic 
performance for 
cardiac 
amyloidosis, 
simulating CMR 
reading by 
experienced 
operators 

AI approaches 
applied to CMR 
can facilitate 
efficient 
diagnostic 
performance for 
cardiac 
amyloidosis, 
simulating CMR 
reading by 
experienced 
operators 

Successful 
application of AI 
to CMR tissue 
characterization 
using radiomics 
and texture 
analysis can 
improve 
prognostic and 
diagnostic 
accuracy of 
subtle 
abnormalities in 
the myocardium 

Application of AI to 
CMR to address 
etiological concerns 
can be key to 
identifying 
cardiovascular 
toxicity and can be 
crucial to inform 
decisions to cease or 
continue cancer 
therapy or initiate 
immunosuppression 

Successful 
application of AI 
to CMR tissue 
characterization 
using radiomics 
and texture 
analysis can 
improve 
diagnostic 
accuracy of 
imaging scar, 
wall thickening  
differentiation, 
and 
inflammation 

Computed 
tomography 
(CAC) 

Chest CT 
obtained for 
planning cancer 
treatments can be 
automated to 
assess CAC which 
is a robust target 
for primary 
cardiovascular 
risk reduction 

Chest CT previously 
obtained for 
planning cancer 
treatments can be 
automated to assess 
CAC which is a 
robust target for 
primary 
cardiovascular risk 
reduction 

Chest CT 
previously 
obtained for 
planning cancer 
treatments can 
be automated to 
assess CAC 
which is a robust 
target for 
primary 
cardiovascular 
risk reduction 

Cancer 
surveillance 
chest CT can be 

Cancer surveillance 
chest CT can be 
automated to assess 

Cancer 
surveillance 
chest CT can be 

(continued on next page) 
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randomized trials [19,20]. 

2. Echocardiography 

Transthoracic echocardiography (TTE) is an essential tool in cardio- 
oncology to assess ventricular, atrial, valvular, and pericardial structure 
and function in patients with current or past cancer. Currently, the 
echocardiographic assessment of left ventricular ejection fraction 
(LVEF) and global longitudinal strain (GLS) plays a central role in the 
diagnosis and monitoring of cardiotoxicity from cancer therapy [21]. 
However, there are limitations of the current workflow, such as length of 
analysis, inter-operator and inter-observer variability that can result in 
man-made variation and limited reproducibility. Furthermore, conven-
tional assessment of LVEF and GLS can only reflect cardiotoxicity in the 
myocardium based on traditional definitions and may miss more subtle 
signs of dysfunction. 

Numerous studies have thus evaluated the interpretation of echo-
cardiograms using AI [22–24]. Within cardio-oncology, artificial intel-
ligence algorithms may play an important role in echocardiography, 
with uses ranging from image classification and reconstruction, auto-
mation in segmentation and quantification, to risk prediction with 
integration of demographic and medical data, all of which can poten-
tially impact efficiency, accuracy in diagnosis, reproducibility in mea-
surements, and ultimately patient prognosis (Fig. 1, Table 2). AI 
methods such as machine learning could improve the efficiency of 
obtaining cardiac function measurements and early diagnoses without 
compromising reliability. 

Machine learning uses computer algorithms that are capable of 
learning and adapting without explicit instructions, by analyzing and 
inferring patterns in data using advanced statistical models to determine 
output. For example, automated LVEF measurements utilizing AI- 
assisted point-of-care echocardiography at the time of oncology or 
infusion center appointments have the potential to significantly 
streamline care for patients who require serial LVEF assessments. In the 
FAST-EFs, a multicenter study of 255 patients, automated left ventric-
ular (LV) measurements were feasible, rapid, and reproducible 
compared to visual and manual Simpson's biplane method. The average 
analysis time for automatic LV measurements was 8 ± 1 s/patient, and 
there was no inter- or intra-observer variability [25]. Automated strain 
measurements have been less well studied. In a study of 152 patients 
with human epidermal growth factor receptor-2 (HER2)-positive breast 
cancer treated with anti-HER2 therapy and anthracyclines, automated 
ejection fraction and GLS were obtained via AI assistance; these mea-
surements were in close agreement (median standard deviation of strain 
values 1.2%) with standard software-derived values on serial echocar-
diographic monitoring [26]. Some vendors have also developed point- 
of-care tools that integrate strain through fully automated or offline 
strain measurements. 

In current clinical practice, echocardiograms are obtained by trained 
sonographers and overread by echocardiographers. Recent work has 
evaluated nurses without training in echocardiography or sonography 
guided by AI-algorithms to obtain echocardiograms [28]. If the guiding 
and measurement algorithms proved to be robust, the ability to obtain 
LVEF and GLS at the bedside before chemotherapy infusions by 
oncology nurses with some cardiology oversight may be the future of a 

Table 1 (continued ) 

Imaging in cardio- 
oncology 

Utility before 
cancer treatment 

Utility during 
cancer treatment 

Utility after 
cancer treatment 

automated to 
assess CAC which 
is a robust target 
for 
cardiovascular 
risk reduction 

CAC which is a 
robust target for 
cardiovascular risk 
reduction 

automated to 
assess CAC 
which is a robust 
target for 
cardiovascular 
risk reduction 

Single proton 
emission 
computed 
tomographya 

ML algorithms 
can be applied to 
SPECT to provide 
additional 
neutrality 
(supplementing 
subjective 
assessments by 
reading 
clinicians) in 
processing data 
relating to 
myocardial 
perfusion 

ML algorithms can 
be applied to SPECT 
to provide 
additional 
neutrality 
(supplementing 
subjective 
assessments by 
reading clinicians) 
in processing data 
relating to incident 
myocardial 
perfusion 

ML algorithms 
can be applied to 
SPECT to 
provide 
additional 
neutrality 
(supplementing 
subjective 
assessments by 
reading 
clinicians) in 
processing data 
relating to 
evolving or 
incident 
myocardial 
perfusion 

Combining ML 
algorithms with 
SPECT can 
improve 
prediction 
accuracy in the 
determination of 
baseline cardiac 
abnormalities for 
high-risk patients 

Combining ML 
algorithms with 
SPECT can improve 
prediction accuracy 
in the 
determination of 
short-term adverse 
cardiac effects 
especially for high- 
risk patients 

Combining ML 
algorithms with 
SPECT can 
improve 
prediction 
accuracy in the 
determination of 
long-term 
adverse cardiac 
effects especially 
for high-risk 
patients 

Positron emission 
tomographya 

MACE and 
myocardial 
ischemia can be 
challenging to 
predict and might 
gain from ML to 
clarify baseline 
risk assessment 

MACE and 
myocardial 
ischemia can be 
challenging to 
predict and might 
gain from ML to 
clarify evolving 
cardiac injury and 
ongoing prognosis 

Using ML 
algorithms in 
conjunction with 
cardiac PET can 
augment the 
detection of 
damage to 
coronary arteries 
post-radiation 

– AI can automate 
PET scan 
assessment of new 
inflammation 
resulting from 
cancer 
immunotherapy 

AI can automate 
PET scan 
assessment of 
persistent 
inflammation 
resulting from 
cancer 
immunotherapy 

Multimodality 
imaging 

Automation of 
detection and 
characterization, 
including 
analysis of size, 
shape, and 
textural patterns, 
of tumors can 
define and refine 
the diagnosis 
through 
incorporation of 
data from CT, 
MRI, FDG-PET 
and large image 
databases 

Monitoring 
response to 
treatment by 
tracking size and 
texture of tumors, 
and presence of any 
additional tumors, 
can be automated, 
with incorporation 
of data from CT, 
MRI, FDG-PET and 
large image 
databases 

Post-treatment 
monitoring can 
be automated for 
surveillance of 
size, texture, and 
presence of 
recurrent or 
additional 
tumors, through 
incorporation of 
data from CT, 
MRI, FDG-PET 
and large image 
databases 

Incorporation of 
AI algorithms can 
help determine 
prognosis and 
treatment of 
masses in or near 
the heart 

Incorporation of AI 
algorithms can help 
optimize prognosis 
and treatment of 
masses in or near 
the heart 

Incorporation of 
AI algorithms 
can help 
optimize 
prognosis and 
treatment of 
masses in or near 
the heart 

AI = artificial intelligence; CAC = coronary artery calcification; CMR = cardiac 
magnetic resonance; CT = computed tomography; CV = cardiovascular; CVD =
cardiovascular disease; FDG-PET = Fluorodeoxyglucose (FDG)-positron emis-
sion tomography; GLS = global longitudinal strain; LVEF = left ventricular 
ejection fraction; MACE = major adverse cardiovascular events; ML = machine 
learning; MRI = magnetic resonance imaging; PET = positron emission to-
mography; SPECT = single-photon emission computerized tomography; TTE =
transthoracic echocardiography. 

a Use of SPECT and PET in cardio-oncology is currently limited and may 
expand in the future. 
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fully integrated and collaborative approach to cardio-oncology care. An 
essential component of the success of this workflow, however, is the 
necessity to maintain engagement between cardiologists and the 
oncology team to best care for the cardio-oncology patients. Other AI 
guided echocardiographic findings such as detecting intracardiac 
masses, pericardial effusions, and utilizing inferior vena cava imaging 
for right atrial pressure estimation may prove helpful in the cardio- 
oncology population and are topics of ongoing investigations. 

Abundant imaging markers embedded in echocardiograms or other 
medical data can be identified by AI to define new functional indices and 
improve diagnostic and prognostic accuracy. This information may be 
currently overlooked or not fully utilized due to the limitation of 
computational power and our understanding of imaging markers. A 
deep learning model (EchoNet) trained on a data set of more than 2.6 
million echocardiogram images from 2850 patients was used to identify 
local cardiac structures, estimate cardiac function, and predict systemic 
risk factors such as age and weight [22]. Machine learning algorithms 
incorporating speckle-tracking echocardiographic data have also been 
applied for automated discrimination of pathological remodeling in 
hypertrophic cardiomyopathy from physiological hypertrophy seen in 
athletes [29]. This suggests that AI can be utilized to identify and 
distinguish echocardiographic changes in patients with cancer therapy- 
related cardiac dysfunction compared to healthy hearts that may not be 
seen by visual inspection of the interpreting cardiologist. This theory 
was investigated using machine learning algorithms to discover patterns 
of strain features most strongly associated with cardiotoxicity in a lon-
gitudinal prospective cohort study of 248 breast cancer patients 
receiving doxorubicin chemotherapy. Machine learning algorithms were 
able to identify cardiac mechanics abnormalities related to a decline in 
LVEF in this population [27]. Finally, there is hope in the future capa-
bility of AI (using machine learning and natural language processing, 
techniques used to mine clinical documentation) to integrate all medical 
data including imaging to predict prognosis. 

Finally, applying AI to picture archiving and communication systems 
[30] allows for further cost-reduction and improvements in process ef-
ficiency via personalized workstation image arrangement, automated 
electronic medical record data entry, and report preparation. Advances 
in AI image interpretation have now made it possible for automated re- 
analysis of stored Picture Archiving and Communication System (PACS) 
images, which may translate into more accurate reporting and a 

reduction in inter- and intra-observer variability [30]. 

3. Cardiac magnetic resonance imaging 

Cardiovascular magnetic resonance imaging offers gold standard 
assessment of ejection fraction and non-invasive tissue characterization 
which can yield some of the most practically important information to 
address treatment decisions in particular with regard to the use of 
ongoing potentially cardiotoxic cancer therapy [31]. Studies have sug-
gested that left ventricular function and global longitudinal strain are 
better assessed using CMR than 2D echocardiography. CMR also gives 
better views of the right ventricle, which can be injured during cancer 
therapy [32,33]. In addition, cardiovascular magnetic resonance imag-
ing can yield important information to address etiological concerns 
[31]. For patients with cancer who receive a diagnosis of cardiovascular 
disease during or after cancer therapy, the importance of teasing out the 
underlying etiology of the cardiovascular diagnosis is of vital signifi-
cance and crucial to decision-making regarding cessation or continuance 
of cancer therapy. 

Multiple roles for AI in CMR are currently being explored [34–36] 
(Table 2). Fully automated cardiac localization and image plane plan-
ning/acquisition is now a commercial reality and can substantially 
decrease scan and analysis time while also correctly identifying image 
artifacts, applying fixes, or triggering repeat image acquisitions. AI ap-
plications in parallel and real-time imaging and compressed sensing 
have allowed for more rapid image acquisition without compromising 
diagnostic accuracy. The successful application of AI to CMR tissue 
characterization using radiomics and texture analysis has improved 
diagnostic accuracy of scar imaging, wall thickening differentiation, and 
inflammation [35]. 

It is certain that many applications of AI to CMR will apply to cardio- 
oncology. CMR is increasingly utilized for the evaluation of cardiotox-
icity and cardiac pathology in oncology patients. Deep learning algo-
rithms have been applied to CMR to enable accurate and fully automated 
analysis of LV volumes and function [36]. Feature tracking, tagging and 
fast-strain-encoded CMR techniques are emerging means to assess 
myocardial strain using CMR [34]. CMR is also preferred for detailed 
tissue characterization and/or scar detection, the non-invasive interro-
gation of cardiac masses, and perfusion imaging. Machine learning has 
been applied to improve efficiency in magnetic resonance 

Fig. 1. Opportunities for the application of artificial intelligence to echocardiography in Cardio-Oncology include automation of left ventricular function assessment 
and strain, as well as real-time AI-guided image acquisition particularly with point-of-care tools at the bedside, in the examination room, or in low resource settings. 
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fingerprinting, an emerging tool that allows for quantification of several 
tissue specific parameters such as T1, T2, and T2* relaxation times in a 
simultaneous, unified and streamlined, single multi-parametric scan 
[37]. 

4. Cardiac computed tomography 

Cardiac CT provides a platform for promising AI application, 
including CAC scoring on ECG-gated non-contrast chest CT (Table 2). 
CAC has a well-defined role in screening patients for coronary artery 
disease [49] and for assessing the risk of major adverse cardiovascular 
events (MACE). Dedicated CAC scoring utilizes an ECG-gated chest CT 
exam which may incur extra cost and resource. Fortunately, CAC scoring 
can be reliably assessed from non-gated chest CT scans and has high 
reproducibility and excellent concordance with ECG-gated cardiac CT. 
Detection of CAC on non-contrast CT scans used in cancer surveillance 
may be used in cardiovascular risk assessment and potentially improve 
adherence and uptake of cardiovascular prevention strategies. 
Currently, there is a reliance on staff trained to perform CAC scoring and 
interpret CAC qualitatively by a categorical method (none, mild, mod-
erate, or severe coronary artery disease). Artificial intelligence is a 
promising tool for not only for opportunistic detection of atherosclerotic 
disease in this population, but also implementation of more qualitative 
methods which may be more accurate and reproducible. 

Multiple methods of automated CAC scoring using have been vali-
dated as highly accurate [50]. AI- based detection (using convolutional 
neural networks) and measurement of CAC scoring was studied in one 
group of breast cancer patients [51]. A standard CAC scoring algorithm 
was applied to the data originally used to train the algorithm. Each 
patient was assigned to one of the five standard CAC risk categories (0, 
1–10, 11–100, 101–400, and >400). The performance of the automated 
calcium scoring was evaluated against manual CAC score measurement. 
Automated CAC scoring using AI showed high reproducibility (linearly 
weighted kappa 0.85; 95% CI: 0.77–0.93), high agreement for CAC score 
categories against the test set (proportional agreement of 0.87; 95% CI: 
0.79–0.92) and an even higher intraclass correlation coefficient (ICC) 
for continuous CAC (ICC 0.95; 95% CI: 0.93–0.97). In another obser-
vational study of 315 consecutive, non-contrast CT scans, AI-based semi- 
automatic and automatic software were obtained for three CAC scores 
(Agatston score, volume score, mass score) and number of calcified le-
sions which had excellent correlation and agreement [52]. 

Table 2 
Machine learning artificial intelligence techniques applied to imaging modal-
ities in cardio-oncology.  

Imaging in cardio- 
oncology 

Artificial intelligence techniques Reference 

Echocardiography Machine learning (ML)-enabled software 
(AutoLV, TomTec-Arena 1.2, TomTec 
Imaging Systems, Unterschleissheim, 
Germany) 

[25] 

Deep learning (DL), convolutional neural 
network (CNN), image segmentation 

[26] 

DL, CNN, artificial intelligence (AI)-guided 
image acquisition software (Caption 
Guidance) 

[28] 

CNN, DL model (EchoNet) [22] 
Ensemble ML model with three different 
ML algorithms (support vector machine 
(SVM), random forest (RF), and artificial 
neural network (ANN)) 

[29] 

Supervised ML algorithm (least absolute 
shrinkage and selection operator (LASSO) 
methods with bootstrap resampling) 

[27] 

Cardiovascular 
magnetic resonance 

Fast strain-encoded CMR imaging (fast- 
SENC) using MyoStrain analysis software, 
feature tracking (FT) 

[31] 

SVM with Gaussian radial basis function 
(RBF) kernel (RBF-SVM), texture analysis, 
segmentation 

[35] 

DL-based algorithm within the Circle 
Cardiovascular Imaging Inc. software, 
segmentation 

[36] 

DenseNet-121 (CNN), FT [34] 
AI – Workstation EWS Cardiac Analysis 
Software, Philips Achieva 3.0 T TX 

[43] 

Video-based echocardiography model, 2D- 
CNN based model, 3D-CNN based model 

[44] 

DL, ML [45] 
AI enhanced electrocardiogram, deep 
neural network (DNN) 

[46] 

AI-based myocardial texture analysis, SVM [47] 
Cardiac computed 

tomography 
Computer-aided detection (CAD), 
CADstream, Merge, Hartland, WI, USA 

[49] 

Supervised ML: k-nearest neighbor (kNN), 
linear classifier (LC), SVM, RF, boosting, 
ANN 
DL, CNN 

[50] 

DL algorithm, CNN [51] 
AI-based, automatic coronary artery 
calcium (CAC) scoring software 

[52] 

End-to-end DNN, three-dimensional (3D) 
CNN 
model, Tri2D-Net 

[53] 

DL algorithm [54] 
Four CAD systems: 
CAD 1 (Lung VCAR version 11.3–10.11; GE 
Healthcare, Milwaukee, Wis): automatic 
segmentation 
CAD 2 (ImageChecker CT version 8.3.12; 
R2 Technologies, Sunnyvale, Calif) 
CAD 3 (Syngovia Via Va 20; Siemens 
Medical Solutions, Forchheim, Germany): 
Anatomical Intelligence 
CAD 4 (Cornell Via; Cornell University, 
Ithaca, NY) 

[62] 

Nuclear cardiac 
imaging 

SVM, ML DL, CNN [48] 
ML, ensemble boosting with LogitBoost 
(using decision 
stumps and RF) 

[56] 

ML, boosted ensemble algorithm, 
LogitBoost, Waikato 
Environment for Knowledge Analysis 
(WEKA) platform 

[17] 

DL, deep CNN [59] 
Multimodality imaging 

of masses 
ML, supervised ML, RF, SVM, regression, 
logistic regression, DL, unsupervised DL, 
CNN, deep CNN, automated segmentation 
algorithm, AI-based monitoring, Computer 

[61]  

Table 2 (continued ) 

Imaging in cardio- 
oncology 

Artificial intelligence techniques Reference 

Aided Nodule Assessment and Risk Yield 
(CANARY), texture analysis 
CAD, computer-aided diagnosis [63] 
Unsupervised clustering [64] 
Unsupervised DL, deep belief network 
(DBN) 

[65] 

Supervised feature selection algorithm [66] 
Automatic segmentation, brain tumor 
image analysis (BraTumIA) 

[67] 

Supervised ML: ANN, SVM, decision tree, 
RF, Naive Bayes classifier, fuzzy logic, and 
kNN 
Unsupervised ML: clustering and 
association rule-learning algorithms 
Reinforcement machine learning 
DL: recurrent neural network (RNN), CNN, 
and DNN 
Cognitive computing 

[68] 

AI = artificial intelligence; ANN = artificial neural network; CAD = computer- 
aided detection; CMR = cardiovascular magnetic resonance, CNN = convolu-
tional neural network; DL = deep learning; DNN = deep neural network; FT =
feature tracking; kNN = k-nearest neighbor; ML = machine learning; RF =
random forest; SVM = support vector machine. 
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Using AI, a highly reliable and actionable cardiovascular disease risk 
profile can be achieved in subjects undergoing treatment planning or 
follow-up of cancer from their existing non-contrast chest CT. A deep 
learning cardiovascular risk prediction model trained on 30,286 low 
dose CT scans from the National Lung Cancer Trial was able to identify 
patients with high cardiovascular mortality (AUC of 0.768), thereby 
converting the low dose CT scan for lung cancer screening to a tool for 
cardiovascular risk assessment [53]. The implementation of AI CAC 
tools on low dose CT scans for lung cancer, will potentially allow for 
more accurate evaluation of CAC and determination of cardiovascular 
risk, a comprehensive preventative approach [54]. Another known risk 
for premature coronary artery disease in oncology patients is exposure 
to high dose chest radiation. Coronary artery dose-volume parameters 
have been evaluated to predict risk of calcification in patients who have 
received radiation therapy [55]. Larger studies addressing the accuracy 
of AI-based CAC and atherosclerotic disease assessment from planning 
chest CT in breast cancer patients are also forthcoming. These results 
could be extrapolated to patients with other malignancies who undergo 
non-gated CT chest for treatment planning or surveillance. 

5. Nuclear cardiac imaging 

AI has recently been used to assess prognostic markers in nuclear 
cardiology (Table 1). Risk prediction using machine learning applied to 
PET scans was more effective at identifying patients at high risk of 
myocardial ischemia and/or MACE than logistic regression, using the 
SCORE risk model based on European Society for Cardiology guidelines 
[56]. As patients who have received certain cancer treatments (i.e. chest 
radiotherapy) are at a higher risk of MACE and cardiac ischemia, this 
combined technique could be useful for monitoring ischemic heart dis-
ease in cancer patients. Additionally, cardiac PET in another study was 
used to illustrate that coronary flow reserve (CFR) inversely correlates 
with radiation dose to particular coronary regions such as the left 
anterior descending artery (R = − 0.5, p = 0.002) [57]. These results 
suggest that cardiac PET may identify damage to coronary arteries 
following radiation therapy. Application of AI to cardiac PET scans to 
evaluated myocardial perfusion in cardio-oncology patients is therefore 
an emerging avenue. 

Immune checkpoint inhibitors (ICIs) are monoclonal antibodies to a 
variety of immune checkpoint regulators. ICIs induce cytotoxic T-cells 
that were previously dormant to recognize and target cancer cells. Flu-
orodeoxyglucose F 18 (18F-FDG)-PET scans of twenty patients treated 
with programmed cell death protein 1 (PD-1) inhibitors, cytotoxic T- 
lymphocyte-associated protein 4 (CTLA-4) inhibitors or combination 
therapy were analyzed before and after therapy with ICIs [58]. These 
patients showed marked increases in 18F-FDG PET uptake in the 
ascending, descending, and abdominal aortas, aortic arch, and iliac ar-
teries, suggesting increased inflammatory activity in large arteries likely 
secondary to activated local T cells, which can contribute to destabili-
zation of atherosclerotic plaques [58] and contribute to MACE. AI could 
be used to track changes in the distribution of tagged 18F-FDG over time. 
If these changes could be characterized and correlated with chemo-
therapy treatments and cardiovascular outcomes, preventative mea-
sures could be taken to reduce these changes in future patients. 

Machine learning adds objectivity to the reading of myocardial 
perfusion SPECT imaging [17] (Table 2). In 2619 consecutive patients 
referred for exercise or pharmacological stress testing, physician diag-
nosis was compared with machine learning predictions and automated 
perfusion quantification indexes (stress and ischemic total perfusion 
deficit) [17]. Visual analysis of SPECT by physicians was scaled between 
0 and 4, while coronary artery disease likelihood was also reported 0–2 
(low to high) [17]. Automated perfusion quantification indices were 
generated by traditional imaging software to correspond with the shape 
of the myocardium [17]. Ejection fraction, systolic and diastolic vol-
umes at stress and rest were assessed by the software [17]. The studied 
population had a 9.1% 3-year MACE rate with a total annual MACE rate 

of 3% [17]. Prediction of MACE using machine learning combined with 
both clinical and imaging data variables was superior to the existing 
visual or automated perfusion quantification assessments [17]. The 
enhanced predictive valve and objective assessment powered by AI are 
particularly important for longitudinal monitoring of cancer patients 
undergoing cardiotoxic therapies. 

The ability of deep learning to predict obstructive cardiac disease 
from myocardial perfusion imaging (MPI) against prediction by 
computer-calculated total perfusion deficit (TPD) alone was assessed in 
1638 patients with known coronary artery disease who underwent stress 
testing and coronary artery angiography [59]. The obstructive disease 
was defined as greater than or equal to 70% blockage in any artery or left 
main artery stenosis greater than or equal to 50%. Overall, deep learning 
was more sensitive in predicting obstructive coronary artery disease 
than TPD alone. With deep learning set to the same specificity as TPD, 
sensitivity using deep learning was higher at 82.3%, compared to 79.8% 
for TPD without deep learning. Per vessel, sensitivity increased 5.4% 
using deep learning instead of TPD. TPD is considered as an equivalent 
standardized surrogate for expert reading in the detection of coronary 
artery disease [59]. 

6. Special cases for multimodality imaging 

6.1. Cardiac masses 

Cardiac primary tumors are extremely rare (0.001–0.3% in autopsy 
series, most commonly myxomas), however, the prevalence of metas-
tasis is much higher, and has been detected in up to 9.1% of patients 
with known malignancies [60]. Of importance, in cardio-oncology in 
particular, is the differentiation of cardiac tumors and thrombi. Artificial 
intelligence has not been applied to cardiac masses but a significant 
body of literature exists in the application of AI to other tumors (see 
review [61]) (Table 2). 

Artificial intelligence can optimize the use of cardiac imaging for 
masses at multiple levels, including detection, characterization, and 
monitoring. The imaging assessment of cardiac masses includes the 
analysis of the size, shape and textural patterns of the tumor. Artificial 
intelligence is especially robust in recognizing complex patterns in an 
image, including some not detected by the human eye. Based on deep 
learning in particular, leading to differentiation of healthy and 
cancerous tissue, AI is able to precisely measure the size and shape of the 
mass, and delineate its margins [49]. Artificial intelligence is able to 
identify regions with suspicious patterns on CT alone or with additional 
information from FDG-PET and present them to the readers [62]. AI can 
furthermore help to characterize the mass: by incorporating the 
knowledge of large image databases and including clinical, genetic, 
pathology data, AI can refine the diagnosis of the mass [63–66]. Addi-
tionally, algorithms can be incorporated, helping to determine the 
prognosis of the mass and to optimize its treatment. Once the diagnosis 
has been made, imaging patterns such as the variability of the imaging 
signal, reflecting the heterogeneity of the mass may play a role in the 
prognosis [66]. Finally, AI can help monitor the response to treatment, 
tracking the size, the texture, and the presence of additional tumors 
[67]. 

6.2. Cardiac amyloidosis 

Cardiac amyloidosis is caused by the buildup of misfolded proteins in 
the myocardium, resulting in restrictive cardiomyopathy that can lead 
to heart failure, conduction system dysfunction, and cardiac mortality 
[44]. The major subtypes of cardiac amyloidosis are transthyretin 
(ATTR) amyloidosis resulting from misfolded transthyretin protein and 
light chain (AL) amyloidosis resulting from deposition of misfolded 
immunoglobulin light chains [44]. Early detection is paramount for 
cardiac amyloidosis in order to initiate treatment prior to advanced 
progression of disease. 
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Machine learning and deep learning approaches have been applied to 
CMR and have shown great diagnostic performance (AUC 0.982) for 
diagnosing cardiac amyloidosis, simulating cardiovascular magnetic 
resonance reading by experienced operators [45]. Research is also 
ongoing for other imaging modalities. Artificial intelligence-enhanced 
electrocardiography can enhance early detection of cardiac amyloid-
osis [46]. AI-based myocardial texture analysis using echocardiography 
has aided in diagnostic specificity [47]. Models combining electrocar-
diographic data with echocardiographic data have also demonstrated 
promising results [44]. Additionally, the potential role for artificial in-
telligence to improve image analysis, disease diagnosis, and risk pre-
diction in cardiac amyloidosis is also emerging for nuclear cardiology 
[48]. 

6.3. Myocarditis 

Immune checkpoint inhibitors (ICIs) are novel therapeutics used to 
treat cancer by activating immune cells, particularly T lymphocytes, to 
more readily target cancer cells. At the same time, ICIs can also arm the 
immune system against healthy tissues [38]. The activity of some ICIs 
display cross-reactivity with cardiac proteins such as titin, which leads 
to inflammation of heart tissue (myocarditis) [39]. Myocardial changes 
associated with ICI treatment are often initially subclinical without 
overt symptoms, leading to difficulty with making a clear diagnosis. 
Additionally, it can be difficult to determine whether early cardiotoxic 
changes are a result of pre-existing cardiac damage [40]. Elucidation of 
an accurate diagnosis is important in determining whether to continue 
use of an ICI in cancer treatment. Further, myocarditis during or after 
treatment with ICIs can be treated effectively with immunosuppression 
to prevent further cardiac damage if an accurate diagnosis is made [40]. 

Of note, CMR is most specific for tracking myocardial changes during 
or after myocarditis [41,42]. In some studies, AI has been used to 
identify early changes suggestive of subclinical myocarditis. In one 
study, early gadolinium enhancement (EGE) was evaluated in addition 
to left ventricular functional parameters using artificial intelligence al-
gorithms applied to CMR images from patients with acute myocarditis 
[43]. In these patients, EGE irregularities were found involving 41 re-
gions in different sites on the myocardium. Findings suggested that the 

application of artificial intelligence algorithms to EGE on CMR could 
play an important role in screening patients suspected to have acute 
myocarditis. This could potentially be extrapolated to the cardio- 
oncology population - using AI to automate the analysis of gadolinium 
enhancement on cardiac MRI to detect early changes associated with 
subclinical myocarditis that may have otherwise gone undetected. 
Prompt recognition of acute myocarditis, whether clinical or subclinical, 
associated with chemotherapy can be critical for early life-saving car-
dioprotective treatment. 

7. Discussion 

Utilization of AI in cardiovascular imaging can streamline and 
optimize the workflow for staff, providers, and the healthcare system, 
and increase the diagnostic power and accuracy of the images. AI is 
being used in multiple fields to streamline complex analyses from 
datasets to glean useful trends and information. Given proper datasets, 
AI can be a useful tool for clinicians to streamline the imaging process. 
Scans guided by AI to help personalize patient care would prove espe-
cially useful in the field of precision cardio-oncology, as cancer therapy- 
induced cardiotoxicity could be assessed in a timely manner with more 
careful monitoring over time (Fig. 2). In the future, an approach 
incorporating genetic, clinical, and imaging data implemented by ma-
chine learning or AI may aid in understanding the mechanistic un-
derpinnings of adverse cardiotoxic effects and predict the prognosis of 
the patients. 

There are some caveats to the field of AI worth noting. AI algorithms 
use large training datasets, as smaller datasets are prone to error espe-
cially when bias is present in the data. Therefore, validation among 
other datasets may be needed, requiring collaborations among in-
stitutions and electronic health records. Further, deep learning analyses 
with neural networks require capable and efficient supercomputing 
machines, both costly and time-consuming. Deep learning with multiple 
layers may also increase the algorithm training time for data acquisition 
without substantial improvement in precision [68]. 

AI is poised to revolutionize cardio-oncology preventive care. Arti-
ficial intelligence algorithms are educated on current data to forecast 
complicated outcomes learned by the algorithm. Artificial intelligence 

Fig. 2. Implementing artificial intelligence in imaging in cardio-oncology clinical practice.  
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has been applied in healthcare for a variety of purposes, including tumor 
diagnosis and staging. However, we must be aware of the potential that 
AI models will reflect, perpetuate, or even promote bias in medicine. To 
ensure that AI models are generalizable to a wide range of people and 
that their implementation does not reflect or perpetuate healthcare 
disparities, great caution must be taken. The potential for algorithms to 
limit resource allocation and attention to racial and ethnic minority 
patients in comparison to Caucasians is a major source of worry, since it 
reflects trends in the data used to train the algorithms [69,70]. This is 
particularly crucial in cardio-oncology, given the increased incidence of 
cardiovascular adverse effects from cancer therapies in racial and ethnic 
minorities, particularly African Americans, compared to Caucasians 
[71–81]. This concern can be potentially overcome by properly 
retraining the algorithms [70] and also addressing underlying sources of 
bias. This, however, raises concerns about the long-term applicability 
and impact of algorithms that are not carefully monitored and iterated to 
account for evidence of bias and the impact of social determinants of 
health. A method based on distributive justice may be able to ease these 
fears of spreading bias and unfairness [69]. With a distributive justice 
approach, prediction models would be trained on datasets that are more 
inclusive of minority populations, ensuring the potential for equitable 
patient outcomes (where these minority groups benefit from the model 
in the same way as their counterparts), equal performance (ensuring 
model accuracy across non-homogenous groups), and equal resource 
allocation (to correct racial disparities) [69]. Consequently, during this 
revolutionary period of innovation in cardio-oncology, it is critical that 
we advocate for inclusion to ensure that gaps in health outcomes are 
improved rather than worsened [82,83]. This concept applies to bias 
regarding racial and ethnic minorities, as well as regarding women. 
Algorithms must be trained on data substantially including women if 
they are to be applied to women. 

Although most current AI models have achieved high accuracy in 
internal validation, external validation using independent cohorts is 
critical before implementation in patient care. Due to the lack of 
benchmarking of datasets and the complexity of regulatory science, 
there is much to do to implement AI models for cardio-oncology. Visible 
or explainable machine learning approaches may offer potential solu-
tions to enhance the characterization of cardio-oncology patient het-
erogeneity compared to traditional “black-box” AI models. National and 
international efforts to standardize clinical and imaging data are also 
needed in the near future to optimize data for use in AI algorithms in 
cardio-oncology. 
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