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Abstract

Purpose of Review.—Anatomical segmentation has played a major role within clinical 

cardiology. Novel techniques through artificial intelligence-based computer vision have 

revolutionized this process through both automation and novel applications. This review discusses 

the history and clinical context of cardiac segmentation to provide a framework for a survey of 

recent manuscripts in artificial intelligence and cardiac segmentation. We aim to clarify for the 

reader the clinical question of “Why do we segment?” in order to understand the question of 

“Where is current research and where should be?”.

Recent Findings.—There has been increasing research in cardiac segmentation in recent years. 

Segmentation models are most frequently based on a U-Net structure. Multiple innovations have 

been added in terms of pre-processing or connection to analysis pipelines. Cardiac MRI is the 

most frequently segmented modality, which is due in part to the presence of publically-available, 

moderately sized, computer vision competition datasets. Further progress in data availability, 

model explanation, and clinical integration are being pursued.

Summary.—The task of cardiac anatomical segmentation has experienced massive strides 

forward within the past five years due to convolutional neural networks. These advances provide 

a basis for streamlining image analysis, and a foundation for further analysis both by computer 

and human systems. While technical advances are clear, clinical benefit remains nascent. Novel 

approaches may improve measurement precision by decreasing inter-reader variability and appear 

to also have the potential for larger-reaching effects in the future within integrated analysis 

pipelines.
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INTRODUCTION

Anatomical segmentation, or the process of identifying local structures to determine size or 

shape, of medical imaging has a major role throughout clinical cardiology. All modalities of 

cardiac imaging incorporate this segmental information to determine critical measurements 

such as cardiac function, wall thickness, and other metrics of risk assessment. Artificial 

Intelligence (AI) based automated cardiac anatomical segmentation has received extensive 

interest in recent times due to the potential to automate, streamline, or improve assessment 

of medical imaging. At the same time, many of these projects risk falling into the concept 

of the “AI Chasm,” defined by Topol and Keane as scientifically sound or accurate 

algorithms but with limited actual clinical utility.[1, 2] In this review, we provide a context 

of anatomical segmentation, a survey of the past 5 years of publications regarding cardiac 

segmentation and AI, and a perspective on future directions of AI cardiac segmentation 

within clinical cardiology. One of our primary goals is to clarify for the reader the clinical 

question of “Why do we segment?” in order to understand the question of “Where is current 

research and where should be?”.

THE CLINICAL USE OF CARDIOVASCULAR SEGMENTATION:

Traditional Approaches to Cardiac Segmentation

Two-dimensional echocardiography (echo) emerged in the late 1970’s with significant 

advancement in our ability to assess and quantify cardiac structures. Subsequent guidelines 

recognized the importance of the standardization of measurements and generated the 

16-segment model, as well as definitions of standard distances and measurements.[3] 

These segmentation models do not represent precise anatomical contouring, however, 

provide a framework to standardize interpretation which persists to this day. This purpose 

can be divided into multiple steps: 1) the use of standardized segmentation models 

allows for quantification of qualitative observations, 2) this creates the ability to directly 

compare between patients/timepoints, anatomical structures and regions such as coronary 

distributions versus myocardial regions across imaging, and 3) these comparisons between 

patients define clinical diagnoses, predict outcomes, and monitor therapies.[4]

In the early 1990’s, guidelines for standardized views and definitions within multi-modality 

tomographic imaging followed[5] with the explicit recognition of the need to standardize 

interpretation between modalities such as single photon emission computed tomographic 

(SPECT), positron emission tomographic (PET), cardiac magnetic resonance (CMR), and 

cine computed tomographic (CT) imaging. In later years, the current 17 segment American 

Heart Association (AHA) model was standardized within recommendations and also 

included echo.[6] Coronary segmentation underwent a similar growth from the 1975 original 

AHA segmentation[7] to cardiac CT guidelines with only minor modifications,[8] thus 

creating a standard nomenclature to specify locations of disease.

The ability to pursue precise anatomical contouring instead of regional segmentations 

has emerged with improved spatial and temporal resolution but faces unique barriers. 

Guidelines related to segmentation explicitly recognize limitations within anatomical 
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segmentation methods. Increased uncertainty and lack of standardization for certain tasks are 

highlighted within ventricular segmentation by high-detail intra-ventricular structures such 

as trabeculations, papillary muscles, and the moderator band. Echo and CMR guidelines 

agree on the inclusion of the trabeculations and moderator band within the right ventricular 

(RV) cavity but disagree on the inclusions/exclusion for papillary muscles and trabeculae for 

left ventricular (LV) mass quantifications.[9, 10] These differences emphasize the balance 

between anatomical precision provided by specific modalities, as well as consistency with 

historically established ranges and cutoffs.

Computer Vision and Semantic Segmentation

The goal of Computer Vision was succinctly described in Simon Prince’s classic book as “to 

extract useful information from images.”[11] This has conceptually existed since the 1960’s 

but has experienced massive recent advances with the development of convolutional neural 

networks (CNN), exponential increases in computational processing power as described by 

Moore’s law,[12] and increasingly available large image datasets.[13] As a brief introduction 

to terminology relevant within artificial-intelligence based computer vision, neural networks 

are mathematical algorithms which enable machine learning. These structures are loosely 

based on the human brain, and in fact, the basis was initially described by McCullough and 

Pitts in 1943, not in the context of programming, but as a means to model neuronal activity.

[14] These networks are collections of artificial “neurons”, which receives a set of inputs, 

passes these inputs through “hidden layers” which perform mathematical processes on the 

input, to result in a discrete output or set of outputs. By providing data of matched inputs 

and outputs, the hidden layers are “trained” by incremental adjustment of the hidden layers 

in order to “learn” the association between the input and output. By combining multiple 

neurons together, high accuracy of these networks for even complex tasks can obtained 

as long as the computing power to train and execute the networks are sufficient. The 

relations, functions, and quantity of the different elements of the neural network determine 

the network architecture, which in turn plays a major role in its success for a particular 

task.[15]

Within computer vision, there are multiple potential tasks, which include 

image classification, localization, detection, and modification.[16] Cardiac imaging 

characterization, particularly for assessing form and function, most frequently fall under 

the concept of “semantic segmentation”. This task classifies objects in an image to concepts, 

mapping each pixel in the original image to a set of constrained values, and is particularly 

well suited for CNNs. A convolution is a function which is performed in a stepwise fashion 

across an image which can used to detect imaging features. These features can be simple, 

such as a horizontal or vertical edge, or a gradient; by combinations of simple features, 

more complex features can be created to identify and classify everyday objects, such as cars, 

animals, or faces.[17] Within medical imaging-related semantic segmentation, the network 

receives the image pixels as inputs and pixel-wise labels as outputs to train the model, 

and the CNN analyzes the anatomical features to assign labels (e.g. myocardium, aorta, 

chambers, valve, everything else).[18]
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The overarching term for architectures that utilize series of convolutions in order to produce 

the output is a CNN; however, structural changes may improve computational efficiency 

and accuracy. Specific well-known architectures for semantic segmentation exist.[19] Fully 

convolutional networks (FCN) utilize an encoder-decoder structure by downsampling in 

the encoder, which is an efficient way to create feature maps for semantic segmentation, 

with upsampling in the decoder to recover resolution to the level of the original image. 

This provided a significant efficiency benefit, as pixels of the same label typically localize 

together within a segmentation, but had difficulty creating smooth segmentation edges 

due to the degradation of resolution in during the downsampling.[20] Skip connections 

between the different resolution levels of the encoder and decoder arms was added in 

the U-Net structure, which has been extremely popular and broadly used. This allowed 

for retention of higher resolution information, which helped resolve the issue with edge 

resolution.[21] Other modifications have included the addition of non-segmentation modules 

such as residual layers which improve the ability to train networks with more layers[22] and 

different types of convolutions which improve spatial context (dilated/atrous convolutions).

[23, 24] Architectures are provided to give clinical readers recognition of common methods; 

however detailed discussion of the architectures are outside of the scope of this article and 

can be found in these excellent reviews.[25–28]

Defining the Challenges in Human Evaluation of Medical Imaging

In order to define the optimal direction of artificial intelligence-based cardiac segmentation, 

we need to define the problems with human vision. Human vision’s limitations may be 

best conceptualized as inherent limitations and tradeoffs in realms of physical perception 

and time/attention. Attention-wise, with an infinite amount of time, human viewers could 

scrutinize all portions of an image systematically; however, clearly the needs of clinical 

practice make this impossible. In human evaluation of medical imaging, attention fatigue is 

combatted by efficiency-based techniques such as search patterns and standard frameworks. 

Even with these techniques, weaknesses persist. For example, inattentional blindness where 

priming to search for a specific finding makes us less likely to see unrelated findings but 

clinically relevant findings, such as incidental malignancy.[29] Computational approaches 

do not have the same limitations with regard to fatigue, boredom, or distraction.

From a perception standpoint, edge detection and motion tracking are typically considered 

relatively simple tasks for human observers,[30–34] whereas detection of contrast 

differences are weaker, requiring high contrast-to-noise (CNR) ratios of 3–5 per the Rose 

Criterion.[35] The primary challenge to anatomical contouring is less the ability to identify 

the appropriate location of the contours and more the time and effort required to draw 

them. Within this context, semi-automatic and automatic methods have been successful. 

Conventional approaches have included thresholding by intensity and clustering methods 

with minimal pre-existing inputs; methods with moderate user-inputs such as region-

growing and classification; or methods with more extensive pre-existing rules/knowledge, 

such as deformable model and atlas-guided methods. More recently, neural networks and 

probabilistic models such as Markov random fields have been introduced to augment 

conventional approaches.[36]
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A SURVEY OF CARDIOVASCULAR SEGMENTATION AND ARTIFICIAL 

INTELLIGENCE

Search Parameters and Results

We performed a survey of papers published within the past 5 years by searching in PubMed 

for “cardiac segmentation” and “artificial intelligence”, limited to non-review articles, with 

300 manuscripts identified (Figure 1). Manuscripts were individually reviewed and limited 

to cardiac anatomical segmentation (i.e. not inclusive of heart sound, electrocardiogram, or 

non-cardiac anatomical segmentation), which resulted in 149 papers (Supplemental Table 

1). These papers were reviewed for their imaging modalities, basis architecture, number of 

patients used for training and testing, source of patient data, anatomy assessed, purpose 

of segmentation, and whether or not the code was explicitly released as noted in the 

manuscript. Information was not available for all papers due to either not being reported 

in the manuscript or limited access to the manuscript, and therefore we primarily report 

metrics as a percentage of the total manuscripts which were assessable within each aspect.

The number of AI-based cardiac segmentation manuscripts has been increasing significantly 

over time, with the lowest in 2016 (n=11) and increases to 48 in 2019 and 45 in 2020. 

Slightly over half of the manuscripts were published in clinically-oriented journals (54%), 

with a significant remaining portion published in technically-oriented journals. A large 

portion of the technically oriented journals were in IEEE journals (26%), in particular IEEE 

Transactions on Medical Imaging. Within the articles, the plurality focused on cardiac MRI 

segmentation (49%), both individually and combined with other modalities, followed by 

CT-based segmentation (27%) and echocardiography (13%). While most papers introduced 

novelties within their neural network architectures, the most frequent underlying architecture 

was U-Net (37%) followed by FCN (12%), though a significant portion (14%) did not report 

a basis architecture or stated that the architecture was an original CNN. Approximately one 

quarter of the papers explicitly released their code, with a direct reference in the manuscript.

Notable innovations were made in specific manuscripts. One recent paper incorporated 

a Monte-Carlo dropout in conjunction with a U-Net to provide uncertainty estimates for 

the segmentation.[37] This approach may help obviate unpredictable failure, and provide 

clinicians some degree of understanding of the expected quality of images. Other approaches 

combined images from separate views,[38] separate modalities,[39, 40] and different 

contrasts[41] to improve accuracy of segmentation or advantageous transfer of information 

from one modality to another. Serial processing such as image quality upscaling prior 

to segmentation,[42] or pipelines such as image processing pipelines,[43] quality control 

pipelines,[44] radiomics pipelines,[45] or even integration with robotics frameworks for 

procedures[46] were noted. Also, while diagnoses directly suggested by left ventricular 

mass or anatomy were proposed, we found segmentation that leads to indirect diagnosis of 

diseases such as pulmonary hypertension as a particularly intriguing approach as well.[47]

One particularly notable paper which balances technical innovation with a strong clinical 

application is presented by Augusto et al.[48] In this paper, the research team sought to 

automate the measurement of maximal wall thickness (MWT) measurements. A U-Net 
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based model was used to segment the inner and outer myocardial contour, and subsequently 

solve a Laplace equation to determine the true MWT. The advance from anatomical 

segmentation to creational of a MWT line is conceptually simple but represents an important 

advance. Training a model to precisely mimic segmentations drawn by humans limits the 

maximal performance of the model to equal to or below the human-generated training data, 

and thus the segmentation model becomes a matter of convenience, rather than progress. 

The use of a segmentation model to define the potential borders of line enables the 

machine performance to become “superhuman” by “outworking” human observers. That 

is, by contouring every slice in the short axis stack, and solving the Laplace equation for 

every slice in order to identify the MWT, the model is systematic to a degree that would 

be infeasible for humans to perform during clinical reads. The authors highlight that with 

more precise wall thickness measurements, the sample size needed for clinical trials could 

be significantly smaller (2.3 times smaller to detect a 2 mm difference), which is a concrete 

benefit of using this measure.

Training and Testing Data Sources

The source of training and testing data varied, with slightly more than half (56%) reporting 

use of local institution-specific data, and a similar portion (52%) utilizing external datasets 

(a small proportion used both). The publicly available datasets varied in modality and 

implementation. Given the high proportion of MRI manuscripts, the most frequently used 

dataset (29% of the manuscripts using external data) was the Medical Image Computing and 

Computer Assisted Interventions (MICCAI) 2017 Automated Cardiac Diagnosis Challenge 

(ACDC), dataset which consisted of MRI images from the University Hospital of Dijon.

[49] Notably, MICCAI/STACOM challenges including the Sunnybrook Cardiac MR 2009 

Left Ventricle Segmentation Challenge[50] (17% of external data), and the Left Ventricle 

Segmentation Dataset and Challenge from 2011[51] (11% of external data) were also 

well-represented, with the UK-Biobank cardiac MRI dataset growing in popularity in more 

recent years[52] (11% of external data). Models most frequently focused on structure and 

function of the left ventricular myocardium and blood pool (50%), while right ventricle, and 

atrial segmentation was less popular. Outside of myocardial segmentation for cardiology and 

cardiac-imaging specific purposes, there was a notable group of applications based around 

anatomical planning for radiation oncology radiotherapy, though this was lower in frequency 

(9%). Applications outside of myocardial segmentation were even less common, however, 

epicardial adipose tissue,[53] coronary arterial lumen,[54] and invasive coronary imaging 

was also noted.[55]

It is notable that the most frequently used datasets are relatively small (100 training cases 

for the ACDC and MICCAI/STACOM 2011 datasets, 45 for the Sunnybrook MICCAI 

2009 dataset), emphasizing the availability of data as a key bottleneck. In some ways, the 

popular use of smaller datasets has brought forth extra creativity in data augmentation, 

which should have durable benefits as limited training set sizes within medical imaging will 

continue into the near future. At the same time, we are beginning to see larger datasets 

in cardiovascular imaging, which can further advance the field. The UK Biobank and UK 

Digital Heart datasets contain >48,000 and ≈1200 patients’ CMRs respectively,[56, 52] and 

the Cardiac Acquisition for Multi-structure Ultrasound Segmentation (CAMUS) dataset[57] 
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or the EchoNet-Dynamic dataset which contains 500 and 10,030 patients’ echocardiograms 

respectively. These datasets highlight the vanguard of training with larger training sets.[58]

FUTURE DIRECTIONS IN CARDIAC SEGMENTATION

Segmentation as the Primary Problem or a Pipeline Task

The popularity of the ACDC dataset highlights the major role that competition events and 

leaderboards have had in pushing forward the field of computer vision both within and 

outside of medical imaging. Within the primary publication, they summarize the accuracy 

of the top segmentation models from the ACDC competition.[49] These models had similar 

accuracy (by Dice score and Hausdorff distance) to inter/intra expert reader variability, and 

therefore a strong argument could be made that the problem is solved to within human 

accuracy. Areas of high-error rates were seen in the base and apex, which inherently have 

more uncertainty due to partial volume effects and variability in anatomical structure.

We view these “competition” datasets as providing a major benefit to medical computer 

vision. The competition approach with pre-labeled datasets help break down barriers 

between clinical imaging experts and non-medical computer vision experts, and provide 

a cross-pollination where non-medical computer vision experts benefit from access to 

expert labels in a curated dataset which would be otherwise inaccessible due to privacy 

protections, and clinical imaging experts benefit from additional computer vision expertise 

to determine top architectures in an appropriate context for medical imaging. This functions 

as a decentralized way to enable multidisciplinary collaboration, which is essential for 

accurate and clinically relevant models. Acknowledging the success of segmentation 

accuracy relative to human expert contours raises questions about how these models can 

be innovated further to enhance clinical benefit, affect prognostic and diagnostic assessment, 

and improve delivery of care. Further collaboration will be needed in order to optimally 

direct the field of medical computer vision.

Next Steps in Data Availability

In order to further progress towards clinical relevance and connection to clinical outcomes, 

issues regarding access to larger quantities of diverse data are growing in relevance. These 

needs are balanced against ethical implications regarding patient protection, codification of 

bias, data security, and ethical application of models. The ethical concerns are now being 

formally addressed.[59] We believe that these concerns will continue to grow with the field 

of machine learning in cardiac imaging. With respect to data availability, while the small 

ACDC dataset reported excellent results, larger datasets, have already begun to provide 

dividends within deep learning. In particular, the UK Biobank with expected enrollment of 

100,000 patients with at least 10,000 follow up scans can be expected to provide unique 

benefits related to the data quantity and availability.[52] In general, large publicly-available 

datasets can face barriers related to protection of patient privacy, however, a new approach 

called “Federated Learning,” whereby the transfer of partially trained models instead of data 

is performed. These models can be trained on local datasets, and then transferred back to a 

secondary site for further training or a central site for aggregation, to avoid public release 

of patient data.[60, 61] This is particularly important for obtaining diversity within training 
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datasets, both in the demographic (less-frequent racial/ethnic groups) as well as diagnostic 

(less frequent disease groups) as use of biased datasets will result in biased models.[62]

Next Steps in Model Explanation

In order to effectively translate technical advances into clinical application, the ability 

to understand a model’s decision-making process is important. Understanding our tools 

allows us to predict their strengths, weaknesses, and applications. With the use of complex 

architectures, increases in accuracy have often come at the cost of model explicability. That 

is, we know the training input, the model type, and can rate the output, but the actual 

process of “decision-making” is obscured to our understanding. Apart from overfitting 

to training sets, this can result in unexpected failures. There have been advances in 

attempting to explain computer vision models, most notably Grad-CAM, which can create 

an attention-based heatmap for multiple CNN types, in order to show how classification 

tasks are being decided.[63] While this is not directly applicable to semantic segmentation 

models, this movement highlights the growing understanding that both performance and 

interpretability is critical for broader uptake of computer vision model tasks. Within (and 

outside of) medical imaging, there are known examples of “specification gaming” where 

models literally address the stated objective but in ways that are not intended or useful by the 

designers.[64] Examples include identifying increased risk of skin lesion malignancy by the 

presence of a ruler in the picture,[65] or predicting pneumonia by identifying the location 

of a chest X-ray’s acquisition instead of the lungs themselves.[66] These outcomes highlight 

the need for model interpretability as a backstop to unpredictable behavior. These concerns 

are currently being addressed in the regulatory environment, with active international work 

through the International Medical Device Regulators Forum (IMDRF), and the US Food and 

Drug Administration, which continues to iterate on definitions and regulations for Software 

as a Medical Device.[67–69]

Future Directions: Replacement or Assistant

Clinicians recognize that we need help to deliver optimal medical care – The demands 

on our time relative to the accessible patient-related and evidence-related data have never 

been so high. At the same time, the fear of obsolescence has been historically deep-rooted 

in the relationship of the physician to the rapid pace of medical advancement, let alone 

new technology.[70–72] As these segmentation models are incorporated into more complex 

decision-making machines, the question arises of whether or not the resultant product will 

appear in a form more consistent with a clinical-decision support system to a physician, or 

as an autonomous decision-making system structure meant to replace physician judgement.

We believe that even in the face of technological advancement, the most optimal 

combination will remain the partnership of human and machine to bridge the AI chasm. This 

is not discounting the ability of advances in computational power, which will allow more 

efficient solutions. At their heart, the problems of clinical medicine are difficult to define in 

a way that is solvable in a formal quantitative manner while still remaining patient-focused. 

The imperfect nature of patient interviews, symptoms, and subjective experience create an 

environment which resists the development of formal rules. The abstract concept of patient 

preferences creates a unique solution for every case; that is, even death, or major adverse 
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cardiac events, are not necessarily the endpoints that are most important to an individual 

patient. This creates a “wicked world”[73] type of scenario where the difficulty is not in 

solving the problem, but defining the entire question as well as appropriate benchmarks 

of success. The integration of clinician and computer should be the optimal direction, and 

AI-based segmentation provides a foundation for this interaction.

CONCLUSIONS

Visualization of cardiac structures using medical imaging has significantly improved over 

the last thirty years, increasing the relevance of segmentation, but also the amount of manual 

time spent on high-detail anatomy. The use of computer vision technologies to automate 

segmentation has grown out of this need, and while somewhat effective with semi-automatic 

statistical methods, has progressed significantly with the advent of higher computing power, 

data availability, and CNNs. The task of cardiac anatomical segmentation has experienced 

massive strides forward within the past five years, and provides a basis for streamlining 

image analysis, as well as a foundation for further analysis both by computer and human 

systems. Within the recent literature, cardiac MRI is the most common data source and 

U-Net is the most commonly used deep learning semantic segmentation architecture. 

The availability and visibility of datasets remains relevant, highlighted by the significant 

impact of MICCAI/STACOM challenges; however, larger volume datasets are becoming 

more common and will likely have a major effect. While technical advances are clear, 

clinical benefit remains nascent. Novel approaches may improve measurement precision by 

decreasing inter-reader variability and appear to also have the potential for larger-reaching 

effects in the future within integrated analysis pipelines. The future relationship of the 

physician to AI systems is uncertain, however, additional direction is needed for clinically 

relevant development of AI models, within which cardiac segmentation will play a major 

role.
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Sources of Funding:

This work was supported in part by the National Institutes of Health NIH K99 HL157421-01, R01-HL134168, 
R01-HL131532, R01-HL143227, and the Doris Duke Charitable Foundation Grant 2020059.

REFERENCES

1. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nature 
medicine. 2019;25(1):44–56.

2. Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. npj Digital Medicine. 
2018;1(1):40. doi:10.1038/s41746-018-0048-y. [PubMed: 31304321] 

3. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H et al. 
Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. 
American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation 
of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2(5):358–67. doi:10.1016/
s0894-7317(89)80014-8. [PubMed: 2698218] 

Kwan et al. Page 9

Curr Cardiovasc Risk Rep. Author manuscript; available in PMC 2022 September 01.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



4. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA et al. Recommendations 
for chamber quantification: a report from the American Society of Echocardiography’s Guidelines 
and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction 
with the European Association of Echocardiography, a branch of the European Society of 
Cardiology. Journal of the American Society of Echocardiography. 2005;18(12):1440–63. [PubMed: 
16376782] 

5. Bonow R, Gibbons R, Berman D, Johnson L, Rumberger J, Schwaiger M et al. Standardization of 
cardiac tomographic imaging. Circulation. 1992;86(1):338–9. [PubMed: 1617787] 

6. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al. Standardized 
Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart. Circulation. 
2002;105(4):539–42. doi:doi:10.1161/hc0402.102975. [PubMed: 11815441] 

7. Austen WG, Edwards JE, Frye R, Gensini G, Gott VL, Griffith LS et al. A reporting system 
on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading 
of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. 
Circulation. 1975;51(4):5–40. [PubMed: 1116248] 

8. Leipsic J, Abbara S, Achenbach S, Cury R, Earls JP, Mancini GJ et al. SCCT guidelines for the 
interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular 
Computed Tomography Guidelines Committee. Journal of cardiovascular computed tomography. 
2014;8(5):342–58. [PubMed: 25301040] 

9. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al. Recommendations for 
cardiac chamber quantification by echocardiography in adults: an update from the American Society 
of Echocardiography and the European Association of Cardiovascular Imaging. European Heart 
Journal-Cardiovascular Imaging. 2015;16(3):233–71. [PubMed: 25712077] 

10. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG et al. 
Standardized image interpretation and post-processing in cardiovascular magnetic resonance-2020 
update. Journal of Cardiovascular Magnetic Resonance. 2020;22(1):1–22. [PubMed: 31898543] 

11. Prince SJ. Computer vision: models, learning, and inference. Cambridge University Press; 2012.

12. Moore GE. Cramming more components onto integrated circuits. McGraw-Hill New York, NY, 
USA:; 1965.

13. DOMO. Data Never Sleeps 8.0. 2020.

14. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. The bulletin 
of mathematical biophysics. 1943;5(4):115–33.

15. Amato F, López A, Peña-Méndez EM, Vaňhara P, Hampl A, Havel J. Artificial neural networks in 
medical diagnosis. Elsevier; 2013.

16. Brownlee J Deep learning for computer vision: image classification, object detection, and face 
recognition in python. Machine Learning Mastery; 2019.

17. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S et al. Imagenet large scale visual 
recognition challenge. International journal of computer vision. 2015;115(3):211–52.

18. Wu J Introduction to convolutional neural networks. National Key Lab for Novel Software 
Technology Nanjing University China. 2017;5:23.

19. Jordan J An overview of semantic image segmentation. 2018.

20. Long J, Shelhamer E, Darrell T, editors. Fully convolutional networks for semantic segmentation. 
Proceedings of the IEEE conference on computer vision and pattern recognition; 2015.

21. Ronneberger O, Fischer P, Brox T, editors. U-net: Convolutional networks for biomedical image 
segmentation. International Conference on Medical image computing and computer-assisted 
intervention; 2015: Springer.

22. Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance of skip connections 
in biomedical image segmentation. Deep learning and data labeling for medical applications. 
Springer; 2016. p. 179–87.

23. Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv preprint 
arXiv:151107122. 2015.

24. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image 
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. 

Kwan et al. Page 10

Curr Cardiovasc Risk Rep. Author manuscript; available in PMC 2022 September 01.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



IEEE transactions on pattern analysis and machine intelligence. 2017;40(4):834–48. [PubMed: 
28463186] 

25. Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W et al. Deep learning for cardiac image 
segmentation: A review. Frontiers in Cardiovascular Medicine. 2020;7:25. [PubMed: 32195270] 

26. Cai L, Gao J, Zhao D. A review of the application of deep learning in medical image classification 
and segmentation. Annals of translational medicine. 2020;8(11).

27. Asgari Taghanaki S, Abhishek K, Cohen JP, Cohen-Adad J, Hamarneh G. Deep semantic 
segmentation of natural and medical images: a review. Artificial Intelligence Review. 
2021;54(1):137–78. doi:10.1007/s10462-020-09854-1.

28. Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX et al. Deep learning in medical ultrasound analysis: a 
review. Engineering. 2019;5(2):261–75.

29. Williams L, Carrigan A, Auffermann W, Mills M, Rich A, Elmore J et al. The invisible breast 
cancer: Experience does not protect against inattentional blindness to clinically relevant findings in 
radiology. Psychonomic bulletin & review. 2020:1–9.

30. Shapley R, Tolhurst D. Edge detectors in human vision. The Journal of physiology. 
1973;229(1):165–83. [PubMed: 4689964] 

31. Burr DC, Morrone MC, Spinelli D. Evidence for edge and bar detectors in human vision. Vision 
research. 1989;29(4):419–31. [PubMed: 2781732] 

32. Heath M, Sarkar S, Sanocki T, Bowyer K. Comparison of edge detectors: a methodology and initial 
study. Computer vision and image understanding. 1998;69(1):38–54.

33. Anderson SJ, Burr DC. Spatial and temporal selectivity of the human motion detection system. 
Vision research. 1985.

34. Legge GE, Campbell F. Displacement detection in human vision. Vision research. 1981;21(2):205–
13. [PubMed: 7269297] 

35. Rose A Vision: human and electronic. Springer Science & Business Media; 2013.

36. Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annual review of 
biomedical engineering. 2000;2(1):315–37.

37. Kim Y-C, Kim KR, Choe YH. Automatic myocardial segmentation in dynamic contrast enhanced 
perfusion MRI using Monte Carlo dropout in an encoder-decoder convolutional neural network. 
Computer methods and programs in biomedicine. 2020;185:105150. [PubMed: 31671341] 

38. Tan LK, McLaughlin RA, Lim E, Abdul Aziz YF, Liew YM. Fully automated segmentation of the 
left ventricle in cine cardiac MRI using neural network regression. Journal of Magnetic Resonance 
Imaging. 2018;48(1):140–52. [PubMed: 29316024] 

39. Blendowski M, Bouteldja N, Heinrich MP. Multimodal 3D medical image registration guided by 
shape encoder–decoder networks. International journal of computer assisted radiology and surgery. 
2020;15(2):269–76. [PubMed: 31741286] 

40. Chartsias A, Joyce T, Papanastasiou G, Semple S, Williams M, Newby DE et al. Disentangled 
representation learning in cardiac image analysis. Medical image analysis. 2019;58:101535. 
[PubMed: 31351230] 

41. Zhang N, Yang G, Gao Z, Xu C, Zhang Y, Shi R et al. Deep learning for diagnosis of 
chronic myocardial infarction on nonenhanced cardiac cine MRI. Radiology. 2019;291(3):606–17. 
[PubMed: 31038407] 

42. Jafari MH, Girgis H, Van Woudenberg N, Moulson N, Luong C, Fung A et al. Cardiac point-of-
care to cart-based ultrasound translation using constrained CycleGAN. International journal of 
computer assisted radiology and surgery. 2020;15(5):877–86. [PubMed: 32314226] 

43. Ruijsink B, Puyol-Antón E, Oksuz I, Sinclair M, Bai W, Schnabel JA et al. Fully automated, 
quality-controlled cardiac analysis from CMR: validation and large-scale application to 
characterize cardiac function. Cardiovascular Imaging. 2020;13(3):684–95. [PubMed: 31326477] 

44. Tarroni G, Oktay O, Bai W, Schuh A, Suzuki H, Passerat-Palmbach J et al. Learning-based quality 
control for cardiac MR images. IEEE transactions on medical imaging. 2018;38(5):1127–38. 
[PubMed: 30403623] 

45. Kay FU, Abbara S, Joshi PH, Garg S, Khera A, Peshock RM. Identification of high-risk left 
ventricular hypertrophy on calcium scoring cardiac computed tomography scans: validation in the 
DHS. Circulation: Cardiovascular Imaging. 2020;13(2):e009678. [PubMed: 32066275] 

Kwan et al. Page 11

Curr Cardiovasc Risk Rep. Author manuscript; available in PMC 2022 September 01.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



46. Garcia JDV, Navkar NV, Gui D, Morales CM, Christoforou EG, Ozcan A et al. A platform 
integrating acquisition, reconstruction, visualization, and manipulator control modules for MRI-
guided interventions. Journal of digital imaging. 2019;32(3):420–32. [PubMed: 30483988] 

47. Dawes TJ, de Marvao A, Shi W, Fletcher T, Watson GM, Wharton J et al. Machine learning of 
three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: 
a cardiac MR imaging study. Radiology. 2017;283(2):381–90. [PubMed: 28092203] 

48. Augusto JB, Davies RH, Bhuva AN, Knott KD, Seraphim A, Alfarih M et al. Diagnosis and risk 
stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: 
a comparison with human test-retest performance. The Lancet Digital Health. 2020;3(1):e20–e8. 
[PubMed: 33735065] 

49. Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P-A et al. Deep learning techniques 
for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? 
IEEE transactions on medical imaging. 2018;37(11):2514–25. [PubMed: 29994302] 

50. Radau P, Lu Y, Connelly K, Paul G, Dick A, Wright G. Evaluation framework for algorithms 
segmenting short axis cardiac MRI. The MIDAS Journal-Cardiac MR Left Ventricle Segmentation 
Challenge. 2009;49.

51. Suinesiaputra A, Cowan BR, Al-Agamy AO, Elattar MA, Ayache N, Fahmy AS et al. A 
collaborative resource to build consensus for automated left ventricular segmentation of cardiac 
MR images. Medical image analysis. 2014;18(1):50–62. [PubMed: 24091241] 

52. Raisi-Estabragh Z, Harvey NC, Neubauer S, Petersen SE. Cardiovascular magnetic resonance 
imaging in the UK Biobank: a major international health research resource. European Heart 
Journal-Cardiovascular Imaging. 2021;22(3):251–8. [PubMed: 33164079] 

53. Commandeur F, Goeller M, Betancur J, Cadet S, Doris M, Chen X et al. Deep learning for 
quantification of epicardial and thoracic adipose tissue from non-contrast CT. IEEE transactions on 
medical imaging. 2018;37(8):1835–46. [PubMed: 29994362] 

54. Hong Y, Commandeur F, Cadet S, Goeller M, Doris M, Chen X et al., editors. Deep learning-based 
stenosis quantification from coronary CT angiography. Medical Imaging 2019: Image Processing; 
2019: International Society for Optics and Photonics.

55. Miyagawa M, Costa MGF, Gutierrez MA, Costa JPGF, Costa Filho CF, editors. Lumen 
segmentation in optical coherence tomography images using convolutional neural network. 2018 
40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC); 2018: IEEE.

56. Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J et al. Anatomically constrained 
neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE 
transactions on medical imaging. 2017;37(2):384–95. [PubMed: 28961105] 

57. Leclerc S, Smistad E, Pedrosa J, Østvik A, Cervenansky F, Espinosa F et al. Deep learning for 
segmentation using an open large-scale dataset in 2D echocardiography. IEEE transactions on 
medical imaging. 2019;38(9):2198–210. [PubMed: 30802851] 

58. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP et al. Video-based AI for 
beat-to-beat assessment of cardiac function. Nature. 2020;580(7802):252–6. [PubMed: 32269341] 

59. Geis JR, Brady AP, Wu CC, Spencer J, Ranschaert E, Jaremko JL et al. Ethics of 
artificial intelligence in radiology: summary of the joint European and North American 
multisociety statement. Canadian Association of Radiologists Journal. 2019;70(4):329–34. 
[PubMed: 31585825] 

60. Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albarqouni S et al. The future of digital health 
with federated learning. NPJ digital medicine. 2020;3(1):1–7. [PubMed: 31934645] 

61. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A et al. Federated learning in 
medicine: facilitating multi-institutional collaborations without sharing patient data. Scientific 
reports. 2020;10(1):1–12. [PubMed: 31913322] 

62. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning 
algorithms using electronic health record data. JAMA internal medicine. 2018;178(11):1544–7. 
[PubMed: 30128552] 

Kwan et al. Page 12

Curr Cardiovasc Risk Rep. Author manuscript; available in PMC 2022 September 01.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



63. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D, editors. Grad-cam: Visual 
explanations from deep networks via gradient-based localization. Proceedings of the IEEE 
international conference on computer vision; 2017.

64. Krakovna V Specification gaming examples in AI. 2018.

65. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM et al. Dermatologist-level 
classification of skin cancer with deep neural networks. nature. 2017;542(7639):115–8. [PubMed: 
28117445] 

66. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization 
performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional 
study. PLoS medicine. 2018;15(11):e1002683. [PubMed: 30399157] 

67. Group ISW. Software as a Medical Device (SaMD): key definitions. Published online December. 
2013;9:9.

68. US Food and Drug Administration. Evaluation of automatic class III designation (de novo) 
summaries. 2016.

69. Food US and Administration Drug. Artificial Intelligence/Machine Learning (AI/ML)-Based 
Software as a Medical Device (SaMD) Action Plan 2021.

70. Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer? The 
American journal of medicine. 2018;131(2):129–33. [PubMed: 29126825] 

71. Antley MA, Antley R. Obsolescence: The physician or the diagnostician role. Academic Medicine. 
1972;47(9):737–8.

72. Dubin SS. Obsolescence or lifelong education: A choice for the professional. American 
Psychologist. 1972;27(5):486.

73. Rittel HW, Webber MM. Dilemmas in a general theory of planning. Policy sciences. 
1973;4(2):155–69.

Kwan et al. Page 13

Curr Cardiovasc Risk Rep. Author manuscript; available in PMC 2022 September 01.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



Figure 1: Summary figure.
Semantic segmentation exists within computer vision, and more recently has used deep 

learning techniques to augment traditional methods. While classical segmentation defined 

clinically relevant regions, anatomical segmentation follows anatomical boundaries, and 

enables more precise definitions of structure and function, which may be integrated into 

analysis pipelines. The 5-year literature survey shows recent growth in AI and cardiac 

segmentation, with MRI as the most common modality. External dataset use was most 

frequent with the ACDC 2017 set, and U-Net was most commonly used for segmentation. 

MRI: Magnetic resonance imaging, CT: Computed Tomography, TTE: Transthoracic 

echocardiography, CXR: Chest X-ray, CNN: Convolutional neural network, FCN: Fully 

convolutional network, ACDC 2017: Medical Image Computing and Computer Assisted 

Interventions (MICCAI) 2017 Automated Cardiac Diagnosis Challenge, MICCAI 2009: 

MICCAI/STACOM Sunnybrook Cardiac MR 2009 Left Ventricle Segmentation Challenge, 

LV Seg 2011: MICCAI/STACOM Left Ventricle Segmentation Dataset and Challenge from 

2011
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