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ABSTRACT:
Three-dimensional (3D) echo decorrelation imaging was investigated for monitoring radiofrequency ablation (RFA)

in ex vivo bovine liver. RFA experiments (N¼ 14) were imaged by 3D ultrasound using a matrix array, with in-

phase and quadrature complex echo volumes acquired about every 11 s. Tissue specimens were then frozen at

�80 �C, sectioned, and semi-automatically segmented. Receiver operating characteristic (ROC) curves were con-

structed for assessing ablation prediction performance of 3D echo decorrelation with three potential normalization

approaches, as well as 3D integrated backscatter (IBS). ROC analysis indicated that 3D echo decorrelation imaging

is potentially a good predictor of local RFA, with the best prediction performance observed for globally normalized

decorrelation. Tissue temperatures, recorded by four thermocouples integrated into the RFA probe, showed good

correspondence with spatially averaged decorrelation and statistically significant but weak correlation with measured

echo decorrelation at the same spatial locations. In tests predicting ablation zones using a weighted K-means cluster-

ing approach, echo decorrelation performed better than IBS, with smaller root mean square volume errors and higher

Dice coefficients relative to measured ablation zones. These results suggest that 3D echo decorrelation and IBS

imaging are capable of real-time monitoring of thermal ablation, with potential application to clinical treatment of

liver tumors. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0011641
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I. INTRODUCTION

Radiofrequency ablation (RFA), a method in which

alternating electric current causes ion agitation in tissue

resulting in heating and coagulative necrosis, is a common

treatment for nonresectable liver tumors, including hepato-

cellular carcinoma (HCC) and colorectal metastases,1–3 and

has been considered the most widely used method of image-

guided local thermal ablation for HCC up to 5 cm diameter.4

Although RFA can provide survival rates comparable to sur-

gical resection, frequency of local tumor recurrence after

RFA can be higher than surgery.5,6 Real-time monitoring of

ablation progress may help to avoid incomplete RFA treat-

ments and resulting local recurrence of tumors and is an

active area of research.3,7

Magnetic resonance imaging has been used for monitoring

thermal ablation by real-time magnetic resonance thermome-

try, although this approach can be costly and inconvenient.8

Another ablation monitoring method is computed tomography-

guided RFA, which provides better edge detection of ablated

lesions,9 but also has downsides such as long procedure time,

radiation exposure, potential contrast-induced nephropathy,

and higher cost.10

Ultrasound guidance of RFA has advantages of lower

cost, portability, and real-time operation. Pulse-echo ultra-

sound guidance methods for RFA and other thermal ablation

approaches have included conventional B-mode (brightness

mode) imaging,11 contrast-enhanced B-mode imaging,12

echo energy-based methods such as integrated backscatter

imaging,13 and cross correlation-based methods such as

elastography,14,15 thermal strain imaging,16–19 and thermal

expansion imaging.20 The latter methods quantify strain

within pulse-echo scan lines, caused by applied mechanical

stress,14,15 temperature dependence of sound speed,16–19 and

local expansion of tissue from heating and coagulation.20

However, while thermal ablation is under way, many poten-

tial pulse-echo ultrasound monitoring methods are limited

by inconsistent, transient heat-induced changes in tissue

reflectivity,21 pulse-echo signal decorrelation22 due to vapor

bubble activity and tissue state changes,21 and complex

dependence of tissue acoustic and viscoelastic properties on

temperature.17,23,24

Echo decorrelation imaging, a computationally efficient

method that spatially maps heat-induced changes in ultra-

sound echoes over millisecond time scales,21,25 can poten-

tially provide feedback on ablation progress while RFA

energy is being delivered. In this method, echo changes are

first quantified by the local decorrelation of beamformed

pulse-echo scan lines, then tracked over the duration of ther-

mal ablation to generate cumulative echo decorrelation

maps. Implementations of echo decorrelation imaging using

two-dimensional (2D) ultrasound data have proven success-

ful for monitoring RFA of ex vivo21 and in vivo25 tissue asa)Electronic mail: doug.mast@uc.edu
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well as microwave ablation,26 bulk ultrasound ablation,27

and high-intensity focused ultrasound (HIFU).28–31

Because RFA and similar bulk thermal ablation meth-

ods treat large volumes of heterogeneous tumor tissue

simultaneously, 2D imaging is insufficient to monitor abla-

tion progress during RFA treatments. This issue may be

even more significant when treating multiple neighboring

tumors simultaneously. To fully characterize ablation

throughout the targeted ablation volume, real-time three-

dimensional (3D) monitoring during the ablation process

would be useful to confirm treatment success, while avoid-

ing overtreatment causing complications.7,32

Here, 3D echo decorrelation imaging is implemented

and tested on RFA of ex vivo bovine liver tissue. These tests

employed 3D ultrasound imaging using a clinical ultrasound

scanner that achieves volumetric frame rates comparable to

2D ultrasound. However, compared to 2D echo decorrela-

tion imaging, this 3D configuration requires sparser spatial

sampling of the image volume, as well as acquisition of

much larger echo data sets, thus limiting both spatial and

temporal resolution. The research reported here aimed to

test whether, given these limitations, 3D echo decorrelation

imaging can successfully predict local tissue ablation from

echo data acquired while ablation is progress. Receiver

operating characteristic (ROC) curve analysis was used to

quantify the success of local ablation prediction. Secondary

analyses correlated local echo decorrelation with corre-

sponding local tissue temperatures and tested the feasibility

of predicting ablation volumes using weighted K-means

clustering on 3D echo decorrelation and integrated backscat-

ter (IBS) maps. Toward optimization of real-time thermal

ablation monitoring, these analyses were performed and

compared for three alternative definitions of echo decorrela-

tion employing different normalization approaches, as well

as for IBS.

II. MATERIALS AND METHODS

A. Ablation Experiments

As fixtures for RFA experiments with 3D ultrasound

imaging, a cuvette (100 mm height, 82 mm width, 82 mm

depth) and matching stand were designed and 3D-printed

with polylactic acid (PLA) filament [Fig. 1(a)]. A window for

placement of an ultrasound array [Fig. 1(b), G] was sealed

with a Tegaderm film adhesive membrane (3M Health Care,

St. Paul, MN). The top of the cuvette was partially closed

with a lid integrating a 6 cm guide [Fig. 1(b), C], through

which the RFA needle (RITA StarBurst XLi-enhanced device

with micro-infusion, AngioDynamics, Latham, NY) was

inserted straight into the tissue. A lock attached to the

RFA needle [Fig. 1(b), B] insured insertion to a depth of

60 mm from the lid’s inner surface. As shown in Fig. 1(b),

the resulting location of the RFA probe tip was 52 mm from

the window and imaging probe surface (z or range direc-

tion), centered on the ultrasound array’s axis at 42 mm from

the cuvette sides (y or azimuth direction), and 40 mm from

the inner bottom surface of the cuvette (elevation direction),

with positioning uncertainty of about 1 mm. Behind the

guide, a small slit in the box lid enabled the connection of

the RFA generator’s electrical ground to a grounding pad,

cut from clinical dispersive electrodes (RITA
VR

Thermopads,

AngioDynamics, Manchester, GA) specified for use with

FIG. 1. (Color online) Experimental setup and data acquisition. (a)

Photograph of the setup with labeled components the RFA probe (A), probe

lock (B), needle guide (C), grounding wire (D), tissue specimen (E), cuvette

(F), 4Z1c array (G), and 3-D printed fixture (H). (b) Illustration of the trans-

ducer, probe, and tissue geometry with the same labeled components. (c)

Illustration of tissue sectioning. Left, tissue block showing parallel surface

cuts for distance reference (dashed black lines), the RFA needle track (solid

red line), ablated region (gray circle), and cuts between parallel sections

(dotted red lines). Right, tissue sections spanning the ablated region, show-

ing cross-sections of the ablated region (gray circles) and the RFA needle

track (red circles). (d) Configuration for acquisition and processing of image

data, showing a sketch of the frustum-shaped echo volume (green), the

cuvette boundaries (blue), the coordinate system with origin centered on the

array surface (z, range; y, azimuth; x, elevation), and timing of echo volume

acquisition and processing.
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the same generator and ablation probe. The stand integrated

mounts for the ultrasound transducer and the cuvette,

designed to keep both secured in the intended geometry

while also enabling rapid switching between ablation

experiments.

Fresh whole bovine liver was obtained from a local

slaughterhouse and kept in ice inside a cooler while trans-

porting to the laboratory for ablation experiments. The liver

was stored in a sealed bag on the benchtop for less than

30 min to acclimate to room temperature (between 20 �C
and 25 �C). Liver tissue was then cut into roughly cubic

specimens fitting the width and length of the cuvette with

height 70–90 mm and placed into the cuvette, with a ground-

ing pad bounding the tissue edge distal to the ultrasound

array. After securing the stand in place using a 3D position-

ing arm, the cuvette containing bovine liver was placed and

locked onto it. To minimize air bubbles within the tissue,

phosphate-buffered saline (0.01 M, pH 7.4 at 25 �C, Sigma

Life Science P3813, St. Louis, MO) was poured into the

cuvette while the tissue was manually manipulated, allowing

saline to penetrate empty blood vessels. The RFA probe was

inserted through the lid’s integrated needle guide into the

tissue and secured with another 3D positioning arm [Fig. 1(a)].

The RFA probe was deployed to 2 cm diameter and a

grounding wire was connected to the grounding pad through

the opening on the lid.

For ablation exposures (N¼ 14), the RFA generator

(RITA
VR

1500X RF Generator, AngioDynamics, Manchester,

GA) was set to nominal power 150 W and target temperature

105 �C. Duration for maintaining this target temperature,

averaged between three thermocouples located within tips of

the RFA probe tines, was set to 5 min in the RFA generator.

The resulting duration of each ablation procedure was about

10 min, including approximately 2 min of initial heating,

5 min of tissue being held at the target temperature, and

2 min of cooldown.

Throughout each procedure, time-dependent tempera-

tures recorded automatically by the RFA generator from

four thermocouples integrated into the RFA probe (three

thermocouples within tine tips, as well as a fourth thermo-

couple extending from the needle tip), were acquired from

the generator’s RS232 port output (baud rate 9600) at a sam-

pling rate of 10 Hz using a custom program written in Cþþ
and run on a laptop computer. Data packets, which also

included output of elapsed time, instantaneous electrical

power, measured tissue impedance, and generator mode

parameters, were acquired by the receiving computer, filling

a buffer after detection of a specific character sequence end-

ing with a “̂C” (end of text) character within the serial data

stream. Temperature values, output as 14-bit integers stored

within two-byte words after scaling by a factor of 10, were

parsed to record time-dependent temperature measurements

from each thermocouple with 0.1 �C precision.

After each ablation procedure, a fitted sliding cover was

inserted into the cuvette’s window and a tightly fitting lid

was placed on the top opening, both of which constrained

expansion of the liver tissue during freezing. The cuvette

was then placed in a �80 �C freezer for at least 12 h. After

removal from the freezer, the window cover and lid were

removed. For use as a height reference, multiple parallel

cuts were made on the tissue surface within the window at

intervals of 5 mm, using a scalpel and ruler.

Frozen tissue specimens were sectioned into parallel sli-

ces, starting from the bottom of the tissue block (lower ele-

vation), using a commercial meat slicer [Fig. (c)]. The

parallel cuts on the vertical tissue block surface (spacing

5 mm) were used as distance references for the observable

top and bottom of the ablation zone, assessed based on gross

discoloration. The average slice thickness for each experi-

ment (typically 3 mm) was found from the number of tissue

sections covering this measured span. The elevational posi-

tion of the RFA needle tip was determined from the bottom-

most tissue section in which the needle track could be

observed; this elevation position within the tissue volume

was registered to the known elevation position of the needle

tip, level with the ultrasound array axis and 40 mm from the

inner bottom surface of the cuvette. Since water content

within the ablation zone was small compared to the sur-

rounding liver parenchyma, expansion of the ablation zone

due to freezing was neglected.

After sectioning, tissue was optically scanned at a reso-

lution of 240 dpi (V550, Epson America, Inc. Long Beach,

CA). Scanned tissue sections were then segmented using a

custom tissue segmentation graphical user interface (GUI).

Within this GUI, the scanned image of each tissue section

was manually translated and rotated to best match a fixed

square outline corresponding to the cuvette’s cross section.

Ablation zones were primarily segmented automatically

using an empirically defined brightness threshold determin-

ing ablated region. In a few trials, manual segmentation was

performed due to ambiguities in image brightness caused by

large vessels near the ablation zone boundaries. A 3D map

of the ablation zone was then reconstructed using nearest-

neighbor interpolation onto a grid with an isotropic step size

of 1 mm for direct comparison to 3D echo decorrelation and

IBS maps.

B. Ultrasound data acquisition

For 3D pulse-echo imaging of tissue during RFA, a

clinical matrix ultrasound phased array (active aperture

19.2� 14.4 mm2; 48� 36 elements; bandwidth 1.5–3.5 MHz)

and imaging system (4Z1c matrix array and Acuson SC2000

scanner, Siemens, Erlangen, Germany) were used with center

frequency 2.8 MHz, imaging depth 110 mm, and frame rate

55 volumes per second. Throughout each ablation experi-

ment, pairs of sequential echo volumes (separated by the

inter-frame time of 18 ms) were acquired and stored by the

scanner, with one pair of volumes stored approximately every

12 s [Fig. 1(d)]. Each volume comprised a 79� � 79� pyramid

with 55� 54 (azimuth� elevation) demodulated, complex

(in-phase/quadrature or IQ) scan lines of length 376 samples

and sampling rate 2.5 MHz. This acquisition size ensured that
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the entire ablated region was within the pyramidal image

volume in all cases.

All processing of image data were performed in MATLAB

(The MathWorks, Natick, MA). Scan conversion from the

scanner’s pyramidal (frustum) coordinate system to a 3D

Cartesian coordinate system was performed using the known

positioning of scan lines. As confirmed with the manufac-

turer, scan lines were spaced in equal increments of sin(hÞ
and sinðuÞ in the azimuth and elevation directions, defined

as angles from the xy and xz planes, respectively.

Corresponding relations between the frustum coordinates

ðr; h;uÞ and Cartesian coordinates (x,y,z) are

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; sin hð Þ ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p ;

sin uð Þ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p : (1)

For scan conversion, coordinates of each sample were first

determined in the pyramidal coordinate system. A Cartesian

grid with isotropic step size of 1 mm was then defined and the

pyramidal coordinates of each grid point were determined.

The sampled volumes of complex echo data were then scan-

converted onto the Cartesian grid using trilinear interpolation

within the pyramidal coordinate system.

C. Echo decorrelation computation

For monitoring the thermal ablation process in three

dimensions, echo decorrelation imaging was extended to

3D. All computations of echo decorrelation and IBS maps

were performed within a spherical region of interest with

diameter 4 cm (corresponding to the targeted ablation zone

diameter of 2 cm plus a 1 cm radial margin), centered at the

known position of the RFA needle tip. This computation

starts with zero-lag, spatially windowed cross correlation

between sequential complex echo volumes I0 and I1,

R01 r; nð Þ ¼ hI0 r; nð Þ�I1 r; nð Þi

¼
ð ð ð

w r � r0ð Þ I0 r0; nð Þ�I1 r0; nð Þ dV0; (2a)

w rð Þ ¼ e�r2=2r2

; (2b)

where temporal indices n sequentially number each acquired

echo volume pair, r is a position vector within an echo vol-

ume, I0ðrÞ� is the complex conjugate of echo volume I0, and

dV’ is a differential volume element corresponding to the

vector integration variable r’. In the following, angle brack-

ets denote the same operation of convolution with a

Gaussian window with width parameter r. Choice of this

width parameter specifies size of the 3D correlation window

employed (e.g., full width at half maximum 2:355r), so that

larger r values reduce spatial resolution of echo decorrela-

tion images but increase averaging of spatially random

variations.33

Corresponding zero-lag, spatially windowed autocorre-

lations of complex echo volumes are defined as

R00 r;nð Þ ¼ jI0 r;nð Þj2
D E

; R11 r;nð Þ ¼ jI1 r;nð Þj2
D E

; (3)

b2 r; nð Þ ¼ R00 r; nð ÞR11 r; nð Þ: (4)

Locally normalized echo decorrelation33,34 is then

given as a normalized correlation coefficient subtracted

from unity divided by inter-frame time s,

DL r; nð Þ ¼
1

s
1�
jR01 r; nð Þj2

b2 r; nð Þ

 !
¼

b2 r; nð Þ � jR01 r; nð Þj2

s½b2 r; nð Þ�
:

(5)

This definition of decorrelation is equivalent to some

used in previous studies of focused ultrasound ablation29,31

and in computational analysis of echo decorrelation imag-

ing, which has related echo decorrelation to decoherence of

the scattering medium reflectivity.33,34 Normalization by the

inter-frame time s accounts for observed increases in echo

decorrelation vs temporal lag, consistent with expected con-

tinuous heat-induced changes in tissue structure.

Since echo decorrelation as defined by Eq. (5) can

become large due to electronic noise within hypoechoic

regions, a globally normalized echo decorrelation can also

be defined, normalized by a spatial mean of the autocorrela-

tion product within the imaged ROI,

DG r; nð Þ ¼
b2 r; nð Þ � jR01 r; nð Þj2

s½b2 nð Þ�
: (6)

Echo decorrelation as defined by Eq. (6) tends to be

larger in regions with greater tissue reflectivity. As a com-

promise between artifacts associated with tissue echogenic-

ity in the definitions of Eqs. (5) and (6), a combined echo
decorrelation parameter has also been defined,21,25–28,30,35

Dc r; nð Þ ¼ D r; nð Þ ¼ 2
b2 r; nð Þ � jR01 r; nð Þj2

s½b2 r; nð Þ þ b2 nð Þ�

2
4

3
5: (7)

By any of these definitions, echo decorrelation repre-

sents local deviations between a pair of complex (IQ) image

volumes per unit inter-frame time, here s¼ 18 ms. The

resulting echo decorrelation maps are zero in regions with

no change in pulse-echo image data and maximum in

regions where local echo changes were greatest. To track all

measured changes in echo volumes, cumulative echo decor-

relation is defined as the temporal maximum decorrelation at

each position r, for each of these definitions [Eqs. (5)–(7)].

For comparison, relative IBS images were defined as

the decibel-scaled ratio between the square root of the image

autocorrelation product, b r; nð Þ at the current and first

recorded image volume pairs,21,25

IBS r; nð Þ ¼ 10 � log10

b r; nð Þ
b r; 1ð Þ

 !
; (8)

thus, mapping increases in local echogenicity relative to the

tissue before RFA. IBS images were computed from the
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same pulse-echo image data and accumulated in the same

manner as echo decorrelation images.

B-Mode images were constructed from logarithmically

scaled envelopes 10 � log10½ I1 rð Þ
�� ��� of the IQ scan lines and

displayed using a 65 dB dynamic range. For displaying

decorrelation and IBS maps, duplex B-mode/echo decorrela-

tion and B-mode/IBS images were constructed by overlay-

ing the grayscale B-mode image with a pseudocolor image

of the log10-scaled echo decorrelation per millisecond or the

decibel-scaled integrated backscatter, respectively.

Transparency of the echo decorrelation and IBS overlays

were proportional to the logarithmically scaled parameters

mapped over a defined dynamic range.

D. Data analysis

For direct comparison of 3D echo decorrelation and

IBS images with ablated tissue histology, ROC curve analy-

sis was utilized as previously performed for 2D echo decor-

relation imaging.21,25,27,35 Segmented maps of ablated tissue

across all 14 trials were compared voxel-by-voxel with mea-

sured echo decorrelation and IBS parameters within a spher-

ical ROI of radius 20 mm centered at the tip of the RFA

needle. This choice of ROI included both the targeted abla-

tion zone of radius 10 mm and an additional 10 mm margin,

beyond which the tissue was assumed to be unablated. ROC

curves plot true-positive ratio vs false-positive ratio for pre-

diction of local ablation, as a parametric function of the

parameter threshold. Area under the ROC curve (AUC) is 1

for perfect prediction of all ablated voxels and 0.5 for pre-

diction equivalent to chance. Optimal thresholds for ablation

prediction for all predictors were defined as those corre-

sponding to the point nearest the top left-hand corner of the

ROC plot,36 simultaneously maximizing the sensitivity and

specificity of the predictor.

To optimize ablation prediction with respect to trade-

offs between spatial resolution and stochastic averaging,33,34

AUC for combined echo decorrelation [Eq. (7)] was com-

puted as a function of the correlation window width parame-

ter r over the range 1–8 mm. The maximum AUC was

obtained for r¼ 3 mm, and this value of r was used in all

subsequent analysis. Notably, AUC for combined echo

decorrelation was insensitive to choice of this parameter,

such that the difference between minimum and maximum

AUC was about 0.04 over the investigated range.

Using MATLAB, AUC values were compared to the null

hypothesis (AUC¼ 0.5) and the statistical significance was

calculated by a one-tailed Z test employing a general model

for the AUC standard error (one-tailed, significance criterion

p< 0.05).37 Statistical significance of differences between

AUC values for all normalizations of echo decorrelation and

IBS was calculated using R (pROC package, R Foundation for

Statistical Computing, Vienna, Austria) and the method of

DeLong et al.38 (two-tailed paired tests, significance criterion

p< 0.05). For assessments of statistical significance, an effec-

tive number of independent ablation predictions Neff was

determined from the total number of predicted voxels Ntotal

and the maximum hexagonal packing density of spheres with

diameter d¼ 2.355 r,25 resulting in Neff¼
ffiffiffi
2
p

(1/d)3Ntotal,

where l¼ 1 mm is the isotropic step size of the Cartesian grid

employed. To account for this estimated number of

independent predictions, Z statistics were scaled by the factor

(Neff/Ntotal)
1/2 and effective p values (significance criterion

p< 0.05, two-tailed) were then determined using the cumula-

tive distribution function of the standard normal distribution.

To assess the dependence of echo decorrelation and IBS

parameters on local tissue temperature, measurements from four

thermocouples integrated into the RFA probe were correlated

with echo decorrelation and IBS values at the known thermo-

couple locations. This temperature dependence was visualized

using histogram plots of predictor values vs co-located mea-

sured temperature and quantified by linear regression between

logarithmically scaled predictors and local temperature.

Statistical significance of predictor-temperature relationships

was assessed based on the cumulative distribution function of

the Pearson correlation coefficient r.
The potential utility of these imaging methods for pre-

dicting ablation zone margins and volumes was assessed

using weighted K-means clustering.39 This approach was

designed to provide an unsupervised segmentation of abla-

tion zones based on objective data, while incorporating a
priori knowledge that tissue nearer the RFA probe tip is

more likely to be ablated. Voxels within the computational

ROI of 20 mm radius, centered at the tip of the RFA probe,

were characterized by two features for each image-based

predictor: (1) the logarithmically scaled predictor (log10-

scaled decorrelation/ms or IBS) and (2) Euclidean distance r
from the RFA probe tip, across all trials. Each feature was

scaled using linear min-max normalization, such that scaled

values ranged between 0 and 1. Clustering in this 2D feature

space was then performed for K¼ 2 clusters, with the inner

cluster (smaller distance from the probe tip) classified as

ablated and the outer cluster classified as unablated.

To initiate the K-means iteration, centroids for the two

clusters were initialized as points within the feature space

considered most and least likely to be ablated, respectively.

The initial centroid for the ablated cluster was placed with

feature (1) at the maximum predictor value within a small

spherical region around the RFA probe tip (r� 0.2 mm)

and feature (2) at the normalized Euclidean distance 0.

The initial centroid for the unablated cluster was chosen

with feature (1) at the minimum predictor value within the

spherical shell 19.8� r� 20 mm and feature (2) at the nor-

malized Euclidean distance 1.

To iteratively update the two clusters, Euclidean distan-

ces from the two centroids were computed for all points

within the 2D feature space and data points were assigned to

their nearer centroid. The two centroids were then updated

within each respective cluster to place feature (1) at its

mean value and feature (2) at its mean value multiplied by a

weight w. This weight was intended to account for the skew-

ness of feature (2), i.e., the much higher prevalence of vox-

els at higher distances from the probe tip. These iterations

were repeated until the average volume prediction error
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across all trials was less than 10%, up to a maximum of 15

iterations.

Predicted ablation zone volumes, defined as the

summed volume of all voxels within the ablated cluster,

were compared to measured ablation zone volumes for each

experiment (N¼ 14). To find an appropriate weight for min-

imization of volume prediction error, the clustering process

was repeated for a vector of weights 0.4�w� 1 with step

size 0.05 and the root mean square (RMS) error of volume

prediction was assessed across all 14 trials. For the final

choice of weight w, RMS error in ml, normalized RMS error

(expressed as a percentage of RMS measured volume), and

correlation coefficients of predicted vs measured volumes

were computed.

To assess agreement of predicted and measured ablation

zone margins, Dice coefficients40 were computed between

the ablation zones segmented manually from scanned tissue

sections and those predicted by weighted K-means cluster-

ing of predictor values and distances from the RFA probe

tip. Dice coefficients were compared between predictors

using two-tailed, paired Student t tests with the significance

criterion p� 0.05.

III. RESULTS

3D echo decorrelation and IBS images are shown in

Fig. 2 with corresponding ablated tissue histology for two

representative trials. The first row of each panel shows para-

metric images of combined echo decorrelation, locally and

globally normalized echo decorrelation, and IBS superim-

posed on corresponding cross-sections of the B-mode image

volume as well as an optically scanned and segmented sec-

tion of the ablated tissue volume, all at the elevation posi-

tion nearest the RFA needle tip. Inner boundaries of the

cuvette are visible in the B-mode images as bright borders

around the echo volume. The second row of each panel

shows isosurface renderings of the same parameters and the

ablated tissue volume with corresponding perpendicular

cross-sections of the pyramidal B-mode image volume.

Decorrelation isosurfaces are plotted at the value 10�3.0/ms,

while IBS isosurfaces are plotted at the value 4.0 dB.

The parametric images, as well as their isosurface ren-

derings shown in Fig. 2, generally correspond well with

ablation zones seen in the corresponding tissue sections and

isosurface renderings of the segmented 3D ablation zone.

The best correspondence is seen for globally normalized

echo decorrelation [Eq. (6)], which generally shows high

values in voxels in which ablation occurred. Locally nor-

malized and combined echo decorrelation maps [Eqs. (5)

and (7), respectively] were also consistent with the corre-

sponding ablated tissue histology. However, IBS maps [Eq.

(8)] were less consistent, showing some low values within

observed ablation zones. General correspondence can be

seen between echo decorrelation maps and the ablation

zone.

Results of ROC curve analysis, assessing prediction of

local ablation by echo decorrelation and IBS imaging, are

shown in Fig. 3 and Table I. All four image parameters pre-

dicted local ablation significantly better than chance

(p< 10�16). Globally normalized echo decorrelation showed

the highest predictive capability (AUC¼ 0.837), while IBS

showed the lowest predictive capability (AUC¼ 0.719).

AUC for locally normalized echo decorrelation was statisti-

cally equivalent to IBS (p¼ 0.704); all other AUC values

were significantly different from one another (p< 10�5),

with prediction performance of combined echo decorrela-

tion (AUC¼ 0.801) falling between locally and globally

normalized decorrelation. Optimal thresholds for prediction

of local ablation were similar for the three definitions of

echo decorrelation investigated, ranging from �3.71 to

�3.57 (log10D/ms).

Temperatures from four thermocouples integrated into

the RFA probe, together with simultaneous instantaneous

and cumulative combined echo decorrelation averaged

within the computational ROI, are plotted vs time in Fig. 4.

Thermocouples T1, T2, and T3 were located at the nominal

boundary of the expected ablation zone (10 mm from the

RFA needle axis for a probe deployment of 20 mm diame-

ter), while T4 was located outside the expected ablation

zone, 15 mm below the RFA needle tip in the elevation

direction. Thus, T4 generally measured a lower temperature

than the other three thermocouples. During about the first

2 min of RFA treatment, tissue temperature and echo decor-

relation tended to increase together. After the RFA genera-

tor held tissue at the set target temperature of 105 �C (about

2–7 min of treatment), instantaneous and cumulative echo

decorrelation parameters tended to stabilize. After comple-

tion of RFA treatment (about 7–9.5 min), the instantaneous

echo decorrelation tended to decline.

Figure 5 shows a 2D histogram plot of instantaneous

measured values for all four predictors vs time-dependent

measured temperature, evaluated at the locations of the four

integrated thermocouples at all time points within all 14

ablation trials. Also, shown as superimposed dashed lines

are the lines of best fit for log10-scaled echo decorrelation

and dB-scaled IBS vs temperature, computed by linear

regression. All four predictors were significantly but weakly

correlated with tissue temperature (p< 10�15, N¼ 3360).

The correlation coefficient between local predictors and

local temperature was smallest for locally normalized echo

decorrelation (0.435) and largest for globally normalized

echo decorrelation (0.519).

For prediction of ablation zone volumes using the

weighted K-means clustering approach, optimal weights

w typically fell within the range 0.7�w� 0.9 for all four

predictors, with results not highly sensitive to the weight

value. The minimum average volume prediction error, com-

puted across all trials and all four predictors, was near zero

for w¼ 0.8 and was <0.5 ml for 0.7�w� 0.9. All further

analysis employed the weight w¼ 0.8. For each predictor,

Fig. 6 shows scatter plots of the final clusters classified as

ablated and unablated with their respective centroids across

all 14 trials, scatter plots of predicted vs measured ablation

zone volumes across all 14 trials, and cross-sections of
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predicted and measured ablation zones for the same trial and

plane illustrated in Fig. 2 (trial B).

Table II summarizes statistical results for unsupervised

prediction of ablation zones by weighted K-means cluster-

ing. Absolute and normalized RMS errors of predicted vol-

umes ranged from 1.27 ml (23.5%) for globally normalized

echo decorrelation to 2.09 ml (38.9%) for IBS. Correlation

coefficients between predicted and measured ablation zone

volumes across all trials (N¼ 14) were positive but not sta-

tistically significant for all predictors and were substantially

greater for the echo decorrelation parameters (0.269–0.333)

than for IBS (0.110). Mean Dice coefficients between pre-

dicted and measured ablation zones were similar for the

three echo decorrelation parameters (0.662–0.676) but sub-

stantially higher than that for IBS (0.597), a statistically sig-

nificant difference (p< 10�3). The only statistically

significant difference between Dice coefficients for the echo

decorrelation predictors was a marginally higher coefficient

for combined decorrelation, compared to globally normal-

ized decorrelation (p¼ 0.0165).

IV. DISCUSSION

Echo decorrelation imaging in 2D has previously been

verified for thermal ablation monitoring and con-

trol.21,25–31,35,41 The present study shows the potential of 3D

FIG. 2. (Color online) Representative 2D and 3D B-mode and echo decorrelation images with corresponding tissue histology for two representative trials,

(a) and (b). The first row of each panel shows cross-sections at zero elevation, while the second row shows 3D isosurface renderings superimposed on per-

pendicular cross-sections of the B-mode image volume. Columns show, from left to right, combined echo decorrelation (DC), locally normalized echo decor-

relation (DL), globally normalized echo decorrelation (DG), decibel-scaled IBS, and segmented ablation zones based on optical scans of corresponding tissue

sections (cyan boundaries). Color bars are shown for combined, locally, and globally normalized decorrelation at the upper left, ranging from �4 to �1

(log10-scaled decorrelation per ms), and for IBS at the upper right, ranging from 0 to 8 dB.
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echo decorrelation imaging for monitoring clinical RFA of

liver, as well as similar bulk ablation approaches such as

microwave ablation. All investigated image parameters pre-

dicted local ablation significantly better than chance, as

assessed by ROC curve analysis (p< 10�16). AUC values

observed here fell within ranges previously observed for 2D

imaging of comparable ex vivo RFA and bulk ultrasound

ablation. For locally normalized, globally normalized, and

combined 3D echo decorrelation, AUC covered the range

0.726–0.837, all within the range 0.722–0.919 attained in

previous studies of 2D echo decorrelation imaging.21,27,41

Similarly, AUC for IBS was 0.719, within the range

0.576–0.893 for previous studies of 2D echo decorrelation

imaging.21,41

Notably, AUC for ablation prediction using echo decor-

relation was relatively high in this study, even though echo

decorrelation images were acquired only once every 11 s

and scan line density (55� 54 scan lines, compared to 2D

B-mode imaging with over 100 scan lines in a single plane).

Comparable AUC values have previously been reported by

studies of 2D echo decorrelation imaging of ex vivo RFA

employing higher frame rates, e.g., AUC of 0.855 for 1.2

echo decorrelation frames per second21 and 0.919 for 9

frames per second.41 Similarly, AUC of 0.719 found here

for IBS was comparable to values of 0.592 and 0.893 in the

same two studies.21,41 In these previous two studies of 2D

imaging, echo decorrelation and IBS parameters had been

estimated using a temporal running average, thus improving

reliability of parameter estimates. Here, although no tempo-

ral averaging was performed, relatively high AUC values

for 3D echo decorrelation and IBS imaging suggest that

computations within a 3D Gaussian correlation window

accomplished substantial spatial averaging, as previously

observed in simulations.33

Multiple previous studies of 2D echo decorrelation

imaging for thermal ablation monitoring have employed the

combined echo decorrelation parameter defined here,25–28,41

while other studies have employed an equivalent of the

locally normalized decorrelation parameter defined

here.29,31,34,42 Results of the present study suggest that alter-

native normalizations may also be appropriate for monitor-

ing of RFA. Globally normalized echo decorrelation,

defined by Eq. (6) to incorporate normalization by spatially

averaged echo autocorrelation, showed the best predictive

ability among the four predictors considered (AUC¼ 0.837,

p< 10�12 vs combined echo decorrelation). Globally nor-

malized echo decorrelation also showed the best qualitative

correspondence with local tissue ablation, as seen in Fig. 2

where this parameter corresponded more closely with

observed ablation zones than the other three predictors.

However, the three echo decorrelation normalizations inves-

tigated here resulted in similar monitoring performance in

some respects. Optimal thresholds for local ablation predic-

tion, corresponding to the point on each ROC curve nearest

the top left corner, were close for all three decorrelation

parameters, as seen in Table I.

Correlation coefficients between instantaneous parame-

ter values and local tissue temperature were higher for glob-

ally normalized echo decorrelation (0.519) than for other

predictors (0.435–0.502). Relations between each predictor

and local temperature were statistically significant but weak,

as seen in Fig. 5. This suggests that 3D echo decorrelation

and IBS are not direct predictors of local temperature. This

result is consistent with previous studies finding that tissue

temperature is significantly but weakly correlated with echo

decorrelation and IBS.21,41

Similarly, comparisons between measured ablation zone

volumes and those predicted by weighted K-means segmenta-

tion were similar for all three echo decorrelation normalizations

(normalized RMS errors 23.5%–27.3%), all of which showed

better prediction of ablation volumes compared to IBS (normal-

ized RMS error 38.7%). Dice coefficients between predicted

FIG. 3. (Color online) ROC curves illustrating performance in prediction of

tissue ablation using combined echo decorrelation, locally and globally nor-

malized echo decorrelation, and IBS.

TABLE I. Statistical results for ROC curve analysis for combined echo decorrelation (DC), locally normalized echo decorrelation (DL), globally normalized

echo decorrelation (DG), and IBS. Shown are AUC, threshold for optimal prediction of local ablation, and p values for DeLong’s test comparing AUC

between predictors, with statistically significant values highlighted by bold text.

Prediction parameter AUC Optimal threshold p value vs. AUC¼ 0.5 p value vs. DL p value vs. DG p value vs. IBS

DC 0.801 �3.71 [log10D/ms] <10216 <10216 2.42�10211 3.02�1026

DL 0.726 �3.66 [log10D/ms] <10216 – <10216 0.704

DG 0.837 �3.57 [log10D/ms] <10216 – – 4.04�10213

IBS 0.719 2.64 dB <10216 – – –
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and measured ablation zones had means between 0.662

and 0.676 for the echo decorrelation predictors, indicating

substantial agreement,40 and mean 6 standard deviation

0.597 6 0.125 for IBS, indicating moderate to substantial

agreement.40 More sophisticated prediction approaches, e.g.,

employing machine-learning techniques,43 could result in more

accurate estimation of total ablated volume and ablation zone

margins from measured echo decorrelation or IBS data.

FIG. 5. (Color online) Histogram plots of (a) combined, (b) locally normalized, (c) globally normalized echo decorrelation, and (d) IBS versus temperature

at four thermometer sensors for all 14 trials. The color bar shown, identical for all plots, indicates the number of data points (out of 3360 total points) falling

within each histogram bin. Dashed lines show the best fit between predictors and temperature, computed by linear regression.

FIG. 4. (Color online) Time-dependent temperatures read from four thermocouples integrated into the RFA probe, with corresponding log10-scaled com-

bined normalized instantaneous and cumulative echo decorrelation per ms, each spatially averaged over the computational ROI employed. Results for two

representative ablation trials are shown as panels (a) and (b).
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Sources of uncertainty in these measurements included

imprecision of the method employed for tissue sectioning.

Since ablated tissue was sectioned with a slice thickness of

3–4 mm, the resulting reconstructed 3D ablation zone was

coarsely sampled in the elevation direction. This resulted in

uncertainty in estimating the position of the RFA needle tip,

potentially causing registration error along the elevation

direction. Some misalignments likely resulted between

decorrelation and IBS maps and corresponding tissue sec-

tions. In addition, since the ablation zone volume is mea-

sured after freezing of tissue, some error may be caused by

expansion tissue surrounding the ablation zone, changing

the ablation zone shape to some extent. Use of finer section-

ing or 3D interpolation of the mapped ablation zones could

result in better correspondence between predicted and mea-

sured ablation, and thus higher AUC values for all predic-

tors. In addition, assessment of the ablation zone from

ablated tissue histology is limited because the tissue may

contract as it loses water during thermal ablation, as has

been observed by CT imaging during ex vivo microwave

ablation.44

Another source of uncertainty during ultrasound imag-

ing of in vivo and clinical thermal ablation is tissue motion

due to respiration. To mitigate motion-induced decorrela-

tion, echo volumes can potentially be acquired at specific

time points during the breathing cycle, for example at the

end of the exhale phase, either manually or by automatic

gating. It has also been shown in previous experimental and

FIG. 6. (Color online) Prediction of ablation zone volumes and margins using weighted K-means clustering (weight w¼ 0.8). The four columns show results

for each of the four predictors considered, labeled as in Fig. 2. (a) Final clusters comprising predicted ablated and unablated regions predicted by imaging

parameters, with centroids for each. (b) Scatter plots of predicted vs measured ablation zone volume for all 14 trials. (c) Cross-sections of predicted and mea-

sured ablation zones for a representative trial [Fig. 2(b)].

TABLE II. Statistical results for prediction of ablation zone using weighted K-means clustering. Shown for each predictor are the normalized RMS error,

correlation coefficient for predicted vs measured ablation zone volumes across all trials, as well as Dice coefficients (mean 6 standard deviation) for pre-

dicted vs measured ablation zones.

Prediction

parameter

RMS volume

error (ml)

Normalized RMS

volume error (%)

Correlation

coefficient r

Dice coefficient

(mean 6 standard deviation)

DC 1.31 24.3% 0.323 0.676 6 0.0882

DL 1.41 27.3% 0.269 0.670 6 0.0852

DG 1.27 23.5% 0.333 0.662 6 0.0998

IBS 2.09 38.9% 0.110 0.597 6 0.125
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simulation-based studies that motion effects can be compen-

sated by separate measurements of motion-induced decorre-

lation.34,45 Notably, integrated backscatter may be less

sensitive to motion due to its dependence on echo amplitude

rather than echo waveforms, potentially making it more suit-

able for imaging during respiration. Although the predictive

capability of IBS (AUC¼ 0.719) was inferior to globally

normalized echo decorrelation imaging (AUC¼ 0.837) and

previous studies have generally shown better ablation pre-

diction from echo decorrelation than IBS,21,27,41 this poten-

tial insensitivity to motion may be useful in clinical

practice.

During clinical RFA treatment, thermal coagulative

necrosis is typically targeted to a region enclosing an entire

tumor plus a tissue margin. To avoid overtreatment, poten-

tially damaging major liver structures such as the hepatic

artery, or undertreatment, potentially resulting in cancer

recurrence, monitoring ablation progress in 3D is desirable.

Implementation of echo decorrelation imaging as a built-in

feature on clinical ultrasound scanners, with computational

cost comparable to color and power Doppler imaging, would

enable true real-time echo decorrelation imaging, e.g., with

volumetric frame rates >10 Hz. The resulting improvements

in temporal resolution of echo decorrelation imaging may

further increase its ability to predict local ablation and over-

all ablation progress. Although echo decorrelation imaging

only provides real-time feedback during the ablation pro-

cess, additional ultrasound imaging methods, such as elas-

tography14,15 or contrast-enhanced imaging,12,46 could also

be employed using the same scanning system to assess and

quantify the ablation zone after treatment is complete.

To reduce dependence of treatment outcomes on opera-

tor skill and to increase the precision of these procedures,

automatic control of thermal ablation procedures has been

proposed.27,35,42,45 In one potential approach to control RFA

using echo decorrelation imaging, a predictor value is mea-

sured at each voxel inside an ROI and either its minimum or

average value is used as the treatment end point.27 Optimal

thresholds from ROC curve analysis in this study can be

potentially used as endpoints for control of the tumor abla-

tion. To confirm local ablation of malignant tissue and avoid

recurrence, it may be appropriate to choose thresholds corre-

sponding to higher specificity of local ablation prediction.

For example, in a study of ex vivo bovine liver ablation by

focused ultrasound, treatments were stopped when the mini-

mum echo decorrelation inside a control ROI reached a spe-

cific threshold chosen for 90% specificity and 83%

sensitivity of local ablation prediction based on ROC curve

analysis.35

V. CONCLUSION

3D monitoring of ex vivo RFA of bovine liver was

investigated using 3D echo decorrelation imaging with three

different normalization methods, along with 3D integrated

backscatter. All investigated image parameters showed sta-

tistically significant capability for prediction of local

ablation, with the best performance attained by globally nor-

malized echo decorrelation. When combined with a

weighted K-means clustering algorithm to segment ablation

zones, all definitions of echo decorrelation resulted in sub-

stantial agreement with measured ablation zones, as quanti-

fied by the Dice coefficient. All four investigated image

parameters were significantly but weakly correlated with

local tissue temperature. These results indicate the promise

of 3D echo decorrelation and IBS imaging for real-time

monitoring and control of radiofrequency and microwave

tumor ablation procedures.
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