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Maximum entropy models provide 
functional connectivity estimates 
in neural networks
Martina Lamberti1, Michael Hess2,3, Inês Dias1, Michel van Putten1, Joost le Feber1,4,5* & 
Sarah Marzen3,5

Tools to estimate brain connectivity offer the potential to enhance our understanding of brain 
functioning. The behavior of neuronal networks, including functional connectivity and induced 
connectivity changes by external stimuli, can be studied using models of cultured neurons. Cultured 
neurons tend to be active in groups, and pairs of neurons are said to be functionally connected when 
their firing patterns show significant synchronicity. Methods to infer functional connections are often 
based on pair-wise cross-correlation between activity patterns of (small groups of) neurons. However, 
these methods are not very sensitive to detect inhibitory connections, and they were not designed 
for use during stimulation. Maximum Entropy (MaxEnt) models may provide a conceptually different 
method to infer functional connectivity. They have the potential benefit to estimate functional 
connectivity during stimulation, and to infer excitatory as well as inhibitory connections. MaxEnt 
models do not involve pairwise comparison, but aim to capture probability distributions of sets of 
neurons that are synchronously active in discrete time bins. We used electrophysiological recordings 
from in vitro neuronal cultures on micro electrode arrays to investigate the ability of MaxEnt models 
to infer functional connectivity. Connectivity estimates provided by MaxEnt models correlated well 
with those obtained by conditional firing probabilities (CFP), an established cross-correlation based 
method. In addition, stimulus-induced connectivity changes were detected by MaxEnt models, and 
were of the same magnitude as those detected by CFP. Thus, MaxEnt models provide a potentially 
powerful new tool to study functional connectivity in neuronal networks.

Neuronal connectivity is essential for cognitive functions like learning and memory1–3, but is difficult to assess 
in the in vivo brain. Reduced models of networks of cultured neurons on micro electrode arrays have been used 
to investigate the relationship between connectivity and processes like memory formation4,5. Such networks 
present a wide range of responses to external stimuli6,7, and can produce diverse patterns from synchronous 
firing8,9 to chaotic trajectories10. Micro electrode arrays provide a useful tool to study cultured neural networks 
by recording action potentials from many neurons in parallel.

Network connectivity is often characterized by functional connectivity, which quantifies the likeliness of 
(groups of) neurons to fire in synchrony. In the last decades, various methods have been developed to infer 
functional connectivity, usually based on or related to cross correlation between activity patterns11–14. One such 
method is based on conditional firing probabilities (CFP), the likelihood of one neuron to fire, in response to 
another neuron firing15. This method uses spontaneous activity patterns to infer functional network connectiv-
ity, and yields strengths and latencies of excitatory connections between all pairs of active neurons. The finding 
that functional connections as obtained by CFP follow the rules of spike timing dependent plasticity16 suggests 
that thus inferred functional connectivity at least in part reflects synaptic connections between neurons (see 
Supplementary information for an analysis that supports this connection). Model studies showed that cross-
correlation based analyses are far more sensitive to excitatory connections than to inhibitory ones12,17–19, with 
possible exceptions of sparse networks20, or networks with high background activity21.

Recently, an alternative way to infer functional connectivity has been proposed based on Maximum Entropy 
(MaxEnt) models22. These models provide a conceptually completely different method to infer first order 
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interactions between pairs of neurons. Time is discretized in bins of duration �t . In each time bin, different 
neurons can fire synchronously in many possible combinations, all associated with different probabilities to 
occur. MaxEnt models are optimized to reproduce the probability distributions of all possible combinations of 
synchronously active neurons. They are designed to contain a minimum number of parameters. The most often 
used Maximum Entropy model estimates these probability distributions using only two main parameters: a vec-
tor which encodes mean firing rates of all (N) neurons and a (NxN) matrix that describes first order interactions 
between all pairs of neurons23. The parameters describing the first order interaction between pairs of neurons 
could be interpreted as functional connectivity. Fitting these models has been difficult, but recent advances in 
machine learning allow for computationally efficient fitting of large populations of neurons24–26. However, it is 
not clear yet how this connectivity measure relates to more traditional ones that directly assess statistical cor-
relation between pairs of neurons. The goal of the current work is to assess whether MaxEnt models can be used 
to estimate functional connectivity. A possible advantage of MaxEnt models is that they are in principle able 
to infer inhibitory as well as excitatory functional connections. Furthermore, if one uses a stimulus-dependent 
Maximum Entropy model27, it is possible to infer functional connections even during stimulation.

Here, we report on the applicability of MaxEnt models to infer functional connectivity in neural networks 
and possible connectivity changes induced by external stimulation. We derive a theoretical connection between 
functional connectivity as inferred by Conditional Firing Probabilities and MaxEnt models. We use experi-
mental data recorded from in vitro cultures to investigate MaxEnt functional connectivity. We apply CFP and 
MaxEnt models to spontaneous recordings, and compare the sets of detected connections, as well as connection 
strengths. In addition, we stimulate cultures and compare stimulus-induced connectivity changes as detected 
by either method.

Methods
Cell culturing and transfection.  Cortical cells were obtained from newborn rats. Following trypsin treat-
ment, cells were dissociated by trituration. About 50,000 dissociated cells ( 50 µ l suspension) were plated on 
a multi electrode array (MEA; Multi Channel Systems, Reutlingen, Germany), precoated with poly ethylene 
imine (PEI). We used MEAs containing 60 titanium nitride electrodes (diameter: 30 µ m diameter; pitch: 200 µ
m). Cell cultures were placed in a circular chamber (diameter: 20 mm), glued on top of the MEA. The culture 
chamber was filled with 1 ml of R12 medium28. MEAs were stored in an incubator, under standard conditions of 
36 degrees C, high humidity, and 5% CO2 in air. Culture medium was refreshed twice a week by withdrawing 500 
µ l of the old medium and adding 550 µ l of fresh medium, thus compensating for evaporation. All cultures were 
grown for at least 3 weeks before experiments started, to allow for network maturation15,29,30. For recordings, we 
firmly sealed the culture chambers with watertight but O2 and CO2 permeable foil (MCS; ALA scientific), and 
placed the cultures in a measurement setup outside the incubator. In this setup, high humidity and 5% CO2 were 
maintained. Recordings began after an accommodation period of at least 15 min. After the measurements, the 
cultures were returned to the incubator.

To enable optogenetic stimulation, cells were transfected with an adeno associated virus (AAV, serotype 2.1), 
obtained from Penn Vector Core, Philadelphia, Pennsylvania, USA. This virus contained the ChannelRhodop-
sin-2 gene, driven by the CaMKIIα promoter, which is found exclusively in excitatory neurons. The Channel-
Rhodopsin-2 gene contains a mutation (H134R) which makes it sensitive for blue light 470 nm31. In this way the 
virus enables direct optogenetic stimulation of excitatory neurons, which, in turn, can activate other neurons in 
the network, including inhibitory ones. The initial volume of virus with a physical titre of ≈ 1.31 ∗ 1013 GC/ml 
was diluted 100 times in DPBS, and cultures were transduced with 25 µ l or 50 µ l the day after plating. Effective 
transduction was verified by the co-expression of the red fluorescent protein mCherry. All surgical and experi-
mental procedures were approved by the Dutch committee on animal use (Centrale Commissie Dierproeven; 
AVD110002016802), and complied with Dutch and European laws and guidelines. Results are presented in 
compliance with the ARRIVE guidelines.

Recording set‑up.  MEA were placed in a set-up outside the incubator to record activity. We used a 
MC1060BC preamplifier and FA60s filter amplifier (both MultiChannelSystems GmbH, Reutlingen, Germany). 
The set-up acquired signals from 59 electrodes at a sampling frequency of 16 kHz, using a custom-made Lab-
View program. All analogue signals were band-pass filtered (2nd order Butterworth 0.1 to 6 kHz) before sam-
pling. Due to their size, recording electrodes might record activity from one or more neurons. Spikes were 
detected whenever signals exceeded a detection threshold, set at 5.5 times the estimated root-mean-square noise 
level (ranging from 3 to 5 µV). for each electrode the noise estimation was continuously updated during record-
ings. For each threshold crossing a time stamp and electrode number were stored, as well as the waveform (6 
ms). These waveforms were used for off-line artifact detection and removal using an algorithm adapted from32. 
We did not apply spike sorting. The reliability of this waveshape based method is not undisputed, as the shapes 
of action potentials from individual neurons can for instance substantially change during intense firing during 
bursts33,34. Thus, we used small groups of neurons as unit sources of activity, rather than individual neurons5.

Stimulation of neuronal cultures.  Two different modes of stimulation were applied: electrical and 
optogenetic. Each experiment included a stimulation period of 20 h, and 1 h of spontaneous activity before 
and after the stimulation period. For the electrical stimulation we applied biphasic rectangular current pulses 
of 200 µ s per phase5. Current pulses were sent to one of the electrodes with interstimulus intervals taken from 
a fixed distribution, ranging 1–166.13 s. Possible loss of responsiveness to electrical stimulation during the 20 
h experiments was evaluated by calculating the area under the curve (AUC) of the averaged post stimulus time 
histogram (PSTH; 15ms < latency < 300 ms), and then subtract the AUC in the interval −300 < latency < 0. 
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Values were obtained for every hour (see Fig. 1c). After probing all electrodes at various amplitudes (16−24 µA), 
one electrode was selected for stimulation at the lowest amplitude that allowed for more than 50% of the stimuli 
to trigger a network response. Amplitudes were low enough to avoid electrolysis.

For optogenetic stimulation, power LEDs on a SinkPAD-II 20 mm Star Base (Blue (470 nm)-74 lm@700 
mA from LuxeonStarLEDs) were placed approximately 7 cm above the top of the MEA. between the LED and 
the MEA we placed a Faraday cage, created by a stainless steel mesh to reduce electrically induced artefacts by 
the LED power cables31. The duration and intensity of light pulses was set to induce a network response with a 
reliability of at least 50% (typically intensity 2.5 klx, pulsewidth 100 ms). Interstimulus intervals were the same 
as with electrical stimulation.

Experimental design.  In total, 34 cultures were used in this study. All cultures were tested for activity and 
stimulus responses before experiments started, and cultures with less than ten active electrodes or without a 
clear responses to stimulation (example in Fig. 1) were not used for experiments.

Influence of inactive electrodes on MaxEnt.  In MEA recordings, some of the electrodes may record only few 
( < 250 per hour), or no action potentials (e.g. if there are no cells on the electrode), these are referred to as 
inactive electrodes. Cross-correlation based methods to infer functional connectivity typically do not take these 
electrodes into account. Maximum Entropy (MaxEnt) models, however, do not discriminate between active and 
inactive electrodes, which might affect inferred connectivity. To determine whether and how the inclusion of 
inactive electrodes affected MaxEnt connectivity estimates, we used 20 recordings of 1 h of spontaneous activity. 
We first inferred functional connectivity using MaxEnt on all data, including the inactive electrodes, and then 
repeated the procedure on the subset of active electrodes. We determined the correlation between the J matrices 
as obtained in both approaches, considering only the connections between active electrodes (see Supplementary 
information for results).

Relating CFP and MaxEnt.  We first determined a mathematical relationship between functional connectiv-
ity inferred by CFP (M) and MaxEnt (J). As J is symmetric by definition and M is not, we related Mi,j +Mj,i to 
Ji,j + Jj,i . We used 20 1 h recordings of spontaneous activity to verify this relationship. We calculated the M and 
J, and used the derived relationship (Eq. 6) to calculate Ĵ . We determined correlation coefficients between Ĵ and 
the actual J as obtained by MaxEnt, taking into account only the non-zero positions of the M matrix.

Figure 1.   Micro electrode arrays (MEA), recorded activity and post stimulus response. Panel (a) shows an 
example of MEA with a zoom on a section of recording electrodes surrounded by several neurons. (b) Shows 
raster plots of 5 min of spontaneous activity before stimulation (left) and 5 min of activity recorded during 
electrical stimulation (right) Bottom pannels of both plots show summed activity in 1s bins ( � ), top panels 
indicate stimulation (c) Time course of the area under the curve (AUC) of the post stimulus histogram (PSTH) 
averaged across experiments. Here AUC was normalized to the first stimulation hour, given that 75% of all hours 
were normally distributed error bars indicate SEM. (d) example of the averaged post stimulus response during 1 
h of stimulation. Horizontal axis shows latency respective to the time of stimulation. Vertical axis shows network 
wide counted action potentials in 5ms bins.
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Quantification of spontaneous functional connectivity changes on long recordings.  We used 4 long ( ≈ 20 h) spon-
taneous activity recordings to quantify spontaneously occurring connectivity changes, as inferred by MaxEnt 
and CFP,Both models were applied to 1 h chunks of data (hours 1–5, 10, 15, and 19), taking into account only 
electrodes that were active ( > 250 action potentials) in all chunks. We calculated the fraction of excitatory and 
inhibitory connections during the first 5 h, to enable comparison to work by others21 We determined Euclidean 
distances (Eq. 4) between these connectivity matrices ( Jn , n = 2, 3, 4, 5, 10, 15, 19 ) and that of the first hour, J1 . 
We also calculated similarity indices (Eq. 5) between sets of excitatory and inhibitory connections during these 
hours.

Connectivity changes.  Cultures were stimulated (electrically ( n = 10 ) or optogenetically ( n = 10 )) to investi-
gate the effect on connectivity as estimated by CFP and MaxEnt. CFP and MaxEnt were fitted to 1 h chunks of 
spontaneous activity collected before (Baseline) and after the 20 h stimulation period (AftStim). Both Baseline 
and AftStim recordings were divided into two blocks of 30 min. First, the Euclidean distance was calculated 
between both connectivity matrices within Baseline. Then, Euclidean distances were calculated between both 
AftStim connectivity matrices and both Baseline matrices, and averaged. Only electrodes that were active during 
Baseline and AftStim were taken into account. We checked for possible differences between Euclidean distances 
within Baseline with the ones induced by the stimulation.

Assessing functional connectivity.  Conditional firing probability.  Conditional Firing Probability 
(CFP) models estimate the probability that neuron j fires at t=τ ( 0 ≤ τ < 500 ms), given that neuron i fired at 
t=0. Only active electrodes were used in this analysis. All electrodes that recorded > 250 spikes in a period of 1 
hour were considered to be active. For each pair of active electrodes (i, j) the obtained histograms (0.5 ms bin 
size) are fit by the equation15

In this equation Mi,j is interpreted as the strength of the connection, Ti,j as the latency. oi,j represents uncor-
related background activity and wi,j accounts for the width of the peak. Values were estimated by minimizing 
the summed squared error using a Nelder-Mead simplex algorithm. The bin size influences the values of M 
and o, as these are related to the probability to record a spike during a time window of that size. T and w are 
timing dependent parameters. If this standard function could not be fitted properly, resulting in wi,j > 250ms , 
Ti,j > 250ms , or Mi,j ≤ oi,j , the strength of the connection was set to Mi,j = 0.

Maximum entropy models.  In the most popular Maximum Entropy model, neuronal activity between time t 
and t +�t are assessed and recorded in a binary vector �σ . We set �t to 100 ms. If neuron i fires in that time 
frame, σi is set to 1, otherwise, σi = 0 . After construction of the binary vectors their probability distributions 
are modeled as

where Z, the partition function, is a normalization factor:

In Eq. (3) θ is a vector that represents the propensity of neurons to fire, and J represents first order interactions 
between neurons. J is symmetric by definition, and is considered to describe functional connectivity between neu-
ron i and j. The values of J can be positive, indicating an excitatory connection, negative, indicating an inhibitory 
connection, or 0, indicating no connection, see Fig. 2. The most difficult aspect of using the Maximum Entropy 
model is that it was hard, until recently, to infer θ and J. We use a somewhat recently developed technique called 
Minimum Probability Flow (MPF)24 to infer these parameters. An analysis of the goodness of fit of MPF is given 
in the Supplementary Information. Although there is good reason to suspect that the parameters inferred by 
MPF are not the parameters that cause the best match between model and data, the parameters inferred by MPF 
seem to still yield accurate assessments of functional connectivity, and detect whether or not connectivity has 
changed over the course of the experiment (see Supplementary information).

Readouts for connectivity changes.  Euclidean distances.  Spontaneously occurring or stimulus-in-
duced changes in network connectivity were quantified by the Euclidean distance (ED) between two connectiv-
ity matrices S. Here S represents a general matrix, referring to the connectivity matrix M when CFP is applied, 
and to the matrix J when MaxEnt is used instead.

where t > t0 . Only nonzero values present in both connectivity matrices were considered.
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Similarity index.  Similarity between the sets of excitatory (E) and inhibitory (I) connections were assessed 
calculating a similarity index (SI) expressed as following15:

Here Ja indicates the set of either excitatory or inhibitory connections in matrix Ja, while Jb indicates that set 
for matrix Jb. ‖ are used to obtain set sizes; |(Ja = E, I) ∩ (Jb = E, I)| indicates the number of connections that 
are excitatory in Ja and Jb. SI was also calculated between M matrices, for excitatory connections only.

Statistical analysis.  Normality of distributions was assessed by a Shapiro-Wilk test. In case of normality, 
group means +/- standard error of the mean (SEM) are presented and group means were compared by a Student 
t-Test. Otherwise, median values and 32%-68% percentiles are shown, and the Mann-Whitney test was used. 
P-values < 0.05 were considered to indicate significant differences. All statistical analysis were performed using 
SPSS statistics for Windows (IBM, Inc., Chicago, IL) or Matlab (The Mathworks, Inc., Natick, MA, USA).

Results
Cultures had on average, 32.4± 2.1 (out of 59) active electrodes, with a mean firing rate of 1.5± 1.2 spikes/s/
electrode (see Table 1 ). MaxEnt connectivity based on all electrodes was very similar to that based on active 
electrodes only, with a mean correlation coefficient of 0.87± 0.02 (see Supplementary information). To have a 
fair comparison with CFP connectivity, all further analyses were performed on active electrodes only. We first 
reveal the theoretical relationship between CFP and MaxEnt and verify this using spontaneous recordings. Then, 
we analyze spontaneous connectivity fluctuations in long recordings as quantified by MaxEnt and CFP models.

(5)SIE/I =

√

|(Ja = E, I) ∩ (Jb = E, I)|2

|(Ja = E, I)| · |(Jb = E, I)|
.

Figure 2.   Visualization of the MaxEnt Jij . Top graph shows simulated activity recorded from 3 electrodes 
during a period of 1 s. Left vertical axis shows electrodes numbers and stimulation (empty; spontaneous 
activity). Right vertical axis shows total number of recorded spikes per electrode. Horizontal axis: time in 
ms. Bottom panel shows the binary vectors �σi calculated using a �t of 100 ms. From the binary vectors it is 
then possible to estimate the nature of the different Jij . Jij is negative if the two electrodes have an inhibitory 
connection, positive if the connection is excitatory and 0 if there is no connection.

Table 1.   Characteristics of networks used in experiments. Second column shows the number of cultures used 
per type of experiment, third column shows the number of active electrodes in the first hour of spontaneous 
activity (mean ± SD). The three columns on the right show the number of action potentials recorded during 
baseline (1 h), the first hour of stimulation, and 1 h of spontaneous activity after stimulation (mean ± SD).

Type of experiment Number of experiments
Mean number of active 
electrodes (baseline)

Mean number of total 
spikes (baseline)

Mean number of total 
spikes (first hour of 
stimulation)

Mean number of total 
spikes (after stimulation)

Influence of inactive elec-
trodes and correlation CFP 
and MaxEnt

20 31.5 ± 12.9 133046 ± 113969.4 Does not apply Does not apply

Stability of CFP and MaxEnt 4 17.5 ± 5.7 73190.8 ± 24371.3 Does not apply Does not apply

Electrical stimulation 10 37.3 ± 8.2 183203.3 ± 97969.3 258234.2 ± 141886.2 90041 ± 58038.5

Optogenetic stimulation 10 35.2 ± 10.7 298843.6 ± 177255.2 341378.5 ± 156726.1 178368.3 ± 153222.6
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Finally, we show how both methods detect large connectivity changes induced by electrical stimulation, and 
much smaller changes by optogenetic stimulation.

Relationship between CFP and MaxEnt functional connectivity.  We derived a theoretical relation-
ship between CFP and MaxEnt. The key is to compute P(σj(t + τ) = 1|σi(t) = 1) , or CFPij(τ ) , assuming that 
the MaxEnt model is correct, and thereby relate the CFP connectivity matrix M to the MaxEnt connectivity 
matrix J. The obtained relation solves as (see Supplementary information for detailed mathematical derivation)

plus corrections of O(�t) . Here, Ĵ represents the predicted MaxEnt connectivity, calculated from the CFP connec-
tivity, and � represents the mean firing rate. We verified this relation on experimental data, inferring functional 
connectivity with both CFP and MaxEnt. Figure 3 shows an example of inferred MaxEnt connectivity (J) versus 
MaxEnt connectivity estimated from CFP ( ̂J ) using Eq. (6). In 20 recordings the correlation coefficient between 
Jij + Jji and Ĵij + Ĵji averaged 0.32± 0.03.

Despite the value shift between directly inferred Jij + Jji and that derived from CFP-estimated functional 
connectivity, there was a moderate correlation between connection strengths as obtained by both methods. The 
time needed to compute CFP and MaxEnt connectivity matrices increased with increasing number of active 
electrodes and with the increasing number of recorded spikes. When analyzing>40 active electrodes or >150000 
spikes per hour, MaxEnt was computationally more efficient than CFP (see Supplementary Information, Fig. S2).

Quantification of spontaneous functional connectivity changes on long recordings.  Figure 4a 
shows that CFP connectivity (connectivity matrix M values range up to 0.02) in 19 h recordings exhibits slow 
drift away from the initial connectivity. The set of connections was very stable, with > 85% of connections 
unchanged, in agreement with earlier work15. MaxEnt connectivity contained excitatory as well as inhibitory 
connections (connectivity matrix J absolute values range up to 21). During the first 5 h of these recordings, on 
average 74%± 4% of all connections were excitatory, and 26%± 4% were inhibitory. Both sets of connections 
showed a similar drift as seen with CFP connectivity, see Fig. 4b. The set of excitatory connections in MaxEnt 
connectivity was very stable, with more than 80% of connections unchanged, while ≈ 50% of all inhibitory con-
nections persisted.

Connectivity changes induced by stimulation.  We investigated changes in functional connectivity 
induced by electrical or optogenetic stimulation on, as inferred by MaxEnt and CFP. Connectivity changes were 
quantified by the Euclidean distances between connectivity matrices before and after stimulation. Connectivity 
fluctuations within baseline did not significantly differ between cultures that received electrical stimulation or 
optogenetic stimulation (CFP p = 0.17 , MaxEnt p = 0.77).

CFP detected signifcant stimulation-induced connectivity changes (electrical stimulation: p = 0.02 ; optoge-
netic stimulation: p = 0.01 ). MaxEnt also detected significant connectivity changes in response to electrical 
stimulation ( p = 0.004 ), but not to optogenetic stimulation ( p = 0.16 ). Both methods yielded larger connectivity 
changes after electrical stimulation than after optogenetic stimulation (Fig. 5).

All MaxEnt and CFP Euclidean distances induced by the stimulation were normally distributed (CFP electri-
cal p = 0.07 , CFP optogenetic p = 0.07 , MaxEnt electrical p = 0.92 , MaxEnt optogenetic p = 0.61 ). Euclidean 
distances within baseline were normally distributed for MaxEnt (both electrical and optogenetic stimulation 
recordings) and CFP electrical stimulation data, but not for CFP optogenetic stimulation data (CFP electrical 
p = 0.61 , CFP optogenetic p = 0.02 , MaxEnt electrical p = 0.19 , MaxEnt optogenetic p = 0.38).
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Figure 3.   Relationship between directly inferred MaxEnt connectivity J and MaxEnt connectivity estimated 
from CFP parameters Ĵ . Both models were applied to spontaneous activity of n=20 cultures. x-axis shows 
the predicted Ĵij + Ĵji from Eq. (6), while the y-axis shows the directly inferred estimates Jij + Jji of those 
connections that were found by CFP analysis (R= 0.44). Red dashed line shows fitted linear trend. Error bars 
indicate 32–68% percentiles.
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Figure 4.   Inferred connectivity from spontaneous activity recordings using CFP or MaxEnt models during 
time. (a) CFP connectivity matrices were calculated for every hour of recording. Shown are mean Euclidean 
distances to the connectivity matrix of the first hour (n = 4 networks). CFP connections slowly drift away from 
the starting connectivity. (b) Same analysis as in (a) but with MaxEnt connectivity matrices, all connections 
(blue), excitatory connections only (red) and inhibitory connections only (green). Results show a similar trend 
as for CFP connectivity (c) Similarity indices (SI) of excitatory (red) and inhibitory (green) connections of 
MaxEnt connectivity matrices, and similarity indices of CFP connectivity matrices (black). around 85% of CFP 
connections (mainly excitatory) and 80% of MaxEnt excitatory connections remained unchanged. On the other 
hand around 50% of MaxEnt inhibitory connections seemed to not change during long recordings. Error bars 
indicate SEM, and refer to differences between networks.

Figure 5.   Connectivity changes induced by electrical (blue) and optogenetic stimulation (green). Euclidean 
distances were calculated first within baseline recordings, and then between the connectivity matrices before 
and after a 20 h stimulation period. (a) Comparison between connectivity changes within baseline with the 
ones induced by the different stimulation modalities, obtained from MaxEnt (electrical p = 0.004 , optogenetic 
p = 0.16 ). (b) Same as panel A but results obtained using CFP (electrical p = 0.02 , optogenetic p = 0.01 ). 
Error bars indicate SEM. (c) ED calculated based on all connections in CFP connectivity matrices ( EDCFP ) and 
MaxEnt matrices ( EDMaxEnt ). Correlation coefficient: R = 0.42 . Black dashed line shows fitted linear trend.
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We then grouped all stimulation experiments. Connectivity changes as detected by MaxEnt, including both 
excitatory and inhibitory connections, and CFP showed a correlation coefficient of R = 0.42 . (See Fig. 5c). A 
comparable correlation coefficient with CFP, was obtained when considering only excitatory connections in 
MaxEnt ( R = 0.47).

Discussion
Cross-correlation based methods have been commonly used to infer functional connectivity in neuronal net-
works, despite drawbacks like their relative insensitivity to inhibitory connections and difficulties to infer con-
nectivity during stimulation. Recently, coupling constants of Maximum Entropy (MaxEnt) models have been 
proposed to describe functional network connectivity23. This is a conceptually completely different approach, that 
optimizes two variables—a vector that describes the probability to fire for all neurons, and a matrix of coupling 
constants that account for pair-wise first order interactions between neurons—to approximate the probability 
distributions of all possible combinations of neurons to fire in synchrony23. We used data from in vitro neuronal 
networks to show that MaxEnt models provide connectivity estimates that correlate well with those obtained 
by conditional firing probabilities (CFP), an established cross-correlation based method15. In addition, MaxEnt 
models were able to detect stimulus-induced connectivity changes, which were of the same magnitude as those 
detected by CFP.

Earlier work showed that CFP estimates of connectivity in mature, unstimulated network present mainly 
minor fluctuations during periods of 1 day15,and that stimulation at one electrode induced significantly larger 
connectivity changes15. Comparable results were obtained in the current study, where spontaneously occurring 
connectivity changes detected by CFP during 19 h seem to be smaller than those induced by electrical stimula-
tion, and showed no clear trend away from baseline connectivity. MaxEnt models yielded very similar sponta-
neous connectivity fluctuations, which appeared to be smaller than stimulus-induced connectivity changes.The 
vast majority of all excitatory connections persisted during 19 h without stimulation. These results indicate that 
MaxEnt models thus provide stable estimates of excitatory connectivity during at least 19 h. MaxEnt Euclidean 
distances were several orders of magnitude larger than CFP distances. This probably reflects the different ranges 
of connectivity strengths in both methods, rather than different sensitivity to detect stimulus induced connec-
tivity changes. Inhibitory connectivity was revealed only by MaxEnt models, and appeared less stable (Fig. 4). 
This may reflect methodological difficulties to detect inhibitory connections, or may reveal inherent different 
stability between inhibitory and excitatory connections. Recently, two methods were developed that are, in 
principle, able to detect inhibitory connections. Both methods, however, impose additional requirements on 
networks (sparseness)20 or recorded activity ( ≥ 6 spikes/s/electrode)21. The first method was validated only on 
computational models, and it is not fully clear how observed limitations (low density random networks) translate 
to our biological networks. Still with this method inhibition was more difficult to identify than excitation20. Our 
data did not show the relatively high level of ongoing activity required for the second method. Still, the current 
finding that 26%± 4% of all connections were inhibitory is in good agreement with their observation that ≈ 25% 
of all connections were inhibitory21.

In MaxEnt models the sign of a connection reflects whether the connection is excitatory or inhibitory, but the 
absolute value cannot be interpreted as straightforwardly as in CFP models, which obscures direct comparison 
of both methods. To that end, we derived and verified a theoretical connection between MaxEnt and CFP-based 
functional connectivity. Even though the computationally-efficient Minimum Probability Flow does not appear 
to fit the Maximum Entropy model well (see Supplementary information), the two methods showed a moderate 
correlation. This is remarkable because the relationship between the differently inferred connectivities is highly 
non-linear, and contains factors that depend on specific properties of individual cultures. The moderate correla-
tion coefficients emphasize that both conceptually different methods to infer connectivity tended to yield the 
same set of connections, with similarly distributed strengths across this set.

Mismatches between estimated and true values of Jij + Jji may come from errors in the approximation (e.g. 
due to a large value of Jij+Jji

min(|θi |,|θj |)
 ), and errors in parameter inference. This might happen either due to an inability 

of Minimum Probability Flow to infer correct parameters when the model is out-of-class24, meaning that the 
data are derived from a distribution that does not match the model to which the data is fit, or due to the fact that 
these models tend to be “sloppy”35. Sloppy models have hard-to-infer parameters, such that a wide set of param-
eters yield similar model predictions (see Supplementary information). Improvements to parameter inference 
via changes to hyperparameters in Minimum Probability Flow will likely lead to increases in correlation between 
the two functional connectivity methods, as the parameters inferred for the Maximum Entropy models will be 
closer to the true parameters that would best match the fit between data and model.

Finally, we investigated whether MaxEnt models provide good estimates of the efficacy of electrical versus 
optogenetic stimulation in changing functional connectivity. Earlier work, using CFP analysis, showed that 
repeated electrical stimulation through one electrode induces connectivity changes in cultured neuronal net-
works, but stimulation through randomly changing electrodes had no effect on connectivity7. Activity and con-
nectivity mutually affect each other, and it has been hypothesized that networks develop an equilibrium between 
activity and connectivity. It requires repeated activation of patterns not included in the spontaneous activity 
repertoire to drive networks out of this equilibrium4, and the driving force applied by random stimulation is 
apparently insufficient to achieve this. In principle optogenetic stimulation does not directly activate inhibitory 
neurons, which have been described to have an important hub function in developing networks36. Activation 
of hub neurons might be crucial to induce connectivity changes. However, inhibitory neurons did become acti-
vated indirectly in this stimulation modality. It thus seems unlikely that activation of inhibitory hub neurons 
was the critical difference between electrical and optogenetic stimulation. As an alternative, we hypothesize 
that optogenetic stimulation probably lacks specific new patterns, and therefore does not exert a driving force 
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towards a new equilibrium. Accordingly, electrical stimulation induced significant changes in both MaxEnt and 
CFP connectivity. Optogenetic stimulation induced changes were significant only in CFP connectivity. Still, the 
magnitudes of induced MaxEnt and CFP connectivity changes were well-correlated, and both methods showed 
the same trend of smaller connectivity changes upon optogenetic stimulation. The power of our analysis would 
increase if future studies would use the same cultures for electrical and optogenetic stimulation. Even though 
there were no significant differences in spontaneous connectivity fluctuations between the cultures used for 
the two stimulation modalities, this protocol modification would exclude possible culture-specific differences.

In conclusion, MaxEnt models can be applied to infer functional connectivity based on activity recorded 
from in vitro neuronal networks. They provide a stable measure of connectivity and detect stimulus induced 
connectivity changes. Inferred connectivity and the magnitude of stimulus-induced changes correlated well to 
those inferred by CFP, a cross-correlation based method. Although strengths of MaxEnt connectivity are less 
straight-forward to interpret than those inferred by CFP, they discriminate between excitatory and inhibitory 
connections. Inhibitory connections appeared less stable than excitatory ones, but we cannot exclude that this 
reflects methodological difficulties to infer inhibitory connectivity. Thus, MaxEnt models provide a suitable 
alternative to cross-correlation based methods to infer excitatory functional connectivity. This, together with 
the potential benefit of being able to estimate functional connectivity in the presence of a stimulus27, make a 
potentially powerful new tool to study living neuronal network connectivity.

Data availability
Data files are available from Dryad (https://​doi.​org/​10.​5061/​dryad.​p5hqb​zkqj). Additional information related 
to experimental conditions, data formats, etc. is available on request. Please contact the corresponding author.
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