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Deep neural network trained on gigapixel images
improves lymph node metastasis detection in
clinical settings
Shih-Chiang Huang 1,2,9, Chi-Chung Chen 3,9, Jui Lan4, Tsan-Yu Hsieh5, Huei-Chieh Chuang6,

Meng-Yao Chien 3, Tao-Sheng Ou 3, Kuang-Hua Chen1, Ren-Chin Wu 1, Yu-Jen Liu1, Chi-Tung Cheng7,

Yu-Jen Huang8, Liang-Wei Tao 8, An-Fong Hwu8, I-Chieh Lin1, Shih-Hao Hung8, Chao-Yuan Yeh 3✉ &

Tse-Ching Chen 1✉

The pathological identification of lymph node (LN) metastasis is demanding and tedious.

Although convolutional neural networks (CNNs) possess considerable potential in improving

the process, the ultrahigh-resolution of whole slide images hinders the development of a

clinically applicable solution. We design an artificial-intelligence-assisted LN assessment

workflow to facilitate the routine counting of metastatic LNs. Unlike previous patch-based

approaches, our proposed method trains CNNs by using 5-gigapixel images, obviating the

need for lesion-level annotations. Trained on 5907 LN images, our algorithm identifies

metastatic LNs in gastric cancer with a slide-level area under the receiver operating char-

acteristic curve (AUC) of 0.9936. Clinical experiments reveal that the workflow significantly

improves the sensitivity of micrometastasis identification (81.94% to 95.83%, P < .001) and

isolated tumor cells (67.95% to 96.15%, P < .001) in a significantly shorter review time

(−31.5%, P < .001). Cross-site evaluation indicates that the algorithm is highly robust

(AUC= 0.9829).
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G lobally, gastric carcinoma is the fifth most common can-
cer and the fourth leading cause of cancer-related
mortality1. In 2020, the estimated number of new cases

exceeded 1 million, with the highest incidence being in Eastern
Asia, Eastern Europe, and Latin America1. In East Asia, the
average incidence of gastric cancer is 32.5 and 13.2 per 100,000
people among men and women, respectively. Accurate staging is
crucial for the proper treatment of patients with gastric cancer.
The American Joint Committee on Cancer (AJCC) staging sys-
tem, the most commonly used staging system, involves the
assessment of parameters T, N, and M. These refer to the extent
of the primary tumor, the involvement of regional lymph nodes
(LNs), and distant metastasis, respectively2. The gold standard for
the diagnosis of gastric cancer is the histologic evaluation of
surgical specimens, through which accurate pathological staging
results can be obtained. The challenge of identifying metastatic
carcinoma in LNs in gastric cancer is attributable to the high
percentage of diffuse and mixed-type cancer, which accounts for
more than 40% of cases3. In diffuse and mixed-type gastric
cancer, metastatic tumor cells may be poorly cohesive small
clusters or individual cells. They may resemble histiocytes or
lymphocytes in appearance, having no well-adherent aggregates,
glandular structures, and easily recognizable nuclear pleo-
morphism. Although the prognostic impact of detecting
micrometastases4–6 (≥0.2 mm, <2 mm) and isolated tumor
cells5,7–9 (ITCs; <0.2 mm) remains under debate, promptly
detecting metastasis is recommended to provide more informa-
tion for clinical treatment10. The already demanding identifica-
tion of small metastases in LNs becomes even more challenging
when numerous harvested LNs are involved. The numbers of LNs
harvested from radical gastrectomy are typically high. In 186
consecutive specimens collected at Linkou Chang Gung Memorial
Hospital (CGMH), the average number of LNs retrieved from this
procedure was approximately 38 (7186/186). The AJCC staging
system requires a minimum of 15 LNs to be harvested. The fact
that LN metastasis identification is demanding and tedious makes
it suitable for the application of an artificial intelligence (AI)-
assisted workflow.

Since 2012, convolutional neural networks (CNNs) have
facilitated advances in deep learning with regard to image
recognition and classification tasks. Cutting-edge AI technology
has permeated medical imaging and computational
pathology11–13. Studies have demonstrated that the ability of
CNNs to detect metastatic LNs in gastric cancer cases is com-
parable to that of human experts14,15. However, these algorithms
have not yet been incorporated into workflows for real-world
application in clinical pathology. The main reason is that whole
slide images (WSIs) have an ultrahigh spatial resolution, typically
in the range of billions of pixels, making them extremely large
and highly difficult to process under a typical CNN training
workflow. This problem can be circumvented through two
methods. The first is the strongly supervised patch-based
approach14–16, in which WSIs are divided into small patches
and the labels for each image patch are derived from detailed
annotations made by pathologists. The efforts and complexity of
annotation involved in this process are prohibitively high; thus,
the availability of annotated data is limited, hindering the accu-
racy improvement of CNNs benefited from the gain of data. Most
previous works11,14,15 for LN metastasis identification adopted
this method. Therefore, this study focused on the second
approach, weakly supervised learning, which does not entail
detailed annotation and allows annotations to be in the form of
positive or negative LNs. However, some weakly supervised
methods adhere to a two-stage workflow (e.g., multiple instance
learning [MIL]), the performance of which is only comparable to
that of the patch-based method when numerous WSIs are used

for training16–21. Other methods, which employ end-to-end
single-stage training, are only feasible for tasks performed under
low magnification (up to 23,000 × 23,000 pixels, 4× magnification
[2.3 µm/pixel])22–25. In view of these drawbacks, we developed an
end-to-end weakly supervised method called enhanced streaming
CNN (ESCNN). It substantially boosted the throughput and
reduced the memory requirement by moving image augmenta-
tion into the streaming CNN24 pipeline and skipping unnecessary
computations. These improvements allowed an increase of input
image resolution to 75,000 × 75,000 pixels (20× magnification,
0.46 µm/pixel), enabling the direct training of gigapixel images for
metastasis identification.

To ensure its practicality, we further combined the model with
a pathological LN assessment workflow. Accordingly, an AI-
assisted LN assessment workflow was developed in a real-world
setting. The workflow comprised two modules: an LN detector
module for counting LNs and a metastasis identification module.
Upon the import of corresponding WSIs, the workflow was
triggered immediately, and then prediagnostic results were pre-
sented for pathologists to conduct final assessments. To deter-
mine the effectiveness of the workflow, we designed a clinical
experiment simulating a pathologist’s routine LN assessment
procedure. In the experiments, six pathologists reviewed 80 slides
with and without AI assistance, and the review time and number
of LNs positive and negative for metastatic carcinoma were
recorded.

Results
AI-assisted LN assessment workflow. The clinical workflow
interface is displayed in Fig. 1. Upon the import of a WSI, the LN
detector is triggered to outline the LNs, after which the LN
metastasis identification module classifies each LN as positive or
negative and highlights the lesion area. To address false predic-
tions, pathologists can edit contours, contour labels, or amend the
final counts for correction. To assist pathologists with N-category
assessment, a panel summarizing the numbers of positive and
negative LNs of the current slide and study was employed. The
evaluation of the ESCNN is presented as follows, followed by a
discussion of the proposed weakly supervised end-to-end training
method for metastasis identification and the clinical evaluation of
the AI-assisted workflow. A demo video is provided as Supple-
mentary Movie 1.

ESCNN performance in metastasis identification. The experi-
ments were conducted using the main training set, which con-
sisted of 983 WSIs including 5907 LN images collected from
Linkou CGMH in 2019. Each LN image was downscaled to 20×
magnification (0.46 µm/pixel) and padded to dimensions of
75,000 × 75,000 pixels. The metastasis identification model of the
ResNet50 architecture26 was trained using the ESCNN in an end-
to-end, weakly supervised manner. The model was then tested
using the main test set of 1156 LN images (positive: 295; negative:
861) collected by Linkou CGMH in 2019. The ground truth of
each LN image was reviewed by four pathologists (S.-C.H., J.L.,
H.-C.C., and T.-Y.H.) and meticulously examined by the most
experienced pathologist (S.-C.H., an expert in gastric cancer
pathology) with the assistance of immunohistochemistry (IHC)
testing. The model achieved an area under the receiver operating
characteristic curve (AUC) of 0.9831 (0.9728–0.9934) for the
classification of LN images. After the LN prediction scores were
aggregated according to their maxima, the slide-level AUC
reached 0.9936 (0.9856–1.0000), comparable to the slide-level
AUC of 0.986 of a patch-based model trained with 700 fully
annotated WSIs15. Thus, the effectiveness of weak supervision
with less annotation effort was demonstrated. To investigate the
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impact of lesion sizes on the model performance, two subsets of
the main test set were established. Each comprised all 861
negative LN images. One contained the 58 positive LN images
demonstrating only micrometastasis (≥0.2 mm, <2 mm), and the
other contained the 28 positive LN images demonstrating only
ITCs (<0.2 mm). The model achieved AUCs of 0.9940
(0.9892–0.9988) and 0.9228 (0.8643–0.9814) on the micro-
metastasis and ITC test subsets, respectively. The results indicated
that the ITC identification accuracy of the model remained to be
improved (Fig. 2a).

To prepare the model for practical use, a threshold of
prediction scores was set such that the model could generate a
concrete prediction regarding whether an LN was positive or
negative. In the general context, the threshold was set as 0.4 to
balance positive and negative predictions, which acquired a

relatively high Matthews correlation coefficient (MCC; a reliable
confusion matrix metric27) score on the validation set compared
to other thresholds. Under a threshold of 0.4, the model achieved
a sensitivity of 0.8915 (0.8503–0.9246), a specificity of 0.9861
(0.9758–0.9928), and an MCC of 0.8986 (0.8686–0.9269) on the
main test set. These results are comparable to those of patch-
based methods14,15 (MCCs: 0.8937 and 0.9334). Table 1 and
Supplementary Table 1 presents the performance of our model,
the pathologists, and previous models14,15 under the main test set
as well as the micrometastasis and ITC test subsets. On the other
hand, in the clinical context, where AI is used to screen suspicious
LNs, a more sensitive threshold of 0.15 was employed.

Comparisons with other weakly supervised methods. The
results indicated that the proposed ESCNN was accurate in

Fig. 1 Overview of the gastric LN assessment workflow. a Description of the data sets in this study, including the number (P: positive, N: negative) of
studies, slides, and LNs; the distributions of age, sex (F: female, M: male), and the Lauren classification (IT: intestinal type, MT: mixed type, DT: diffuse
type), the grading of gastric cancer, and AJCC T and N categories. b Pipeline for training the LN detector and the metastasis identification module. c The
inference pipeline leverages the trained models to provide prediagnostic predictions of positive and negative LN counts and highlights suspicious areas.
d Schematic of the workflow.
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identifying gastric LN metastasis under weak supervision.
We next focused on investigating the performance of other
alternatives. Most weakly supervised methods adopt a two-stage
architecture: patch feature extraction and interpatch aggregation.
MIL typically involves the use of a first-stage CNN for making
patch predictions, followed by a second-stage selection of the
most suspicious patch with the highest prediction score (i.e.,
through max pooling) to represent the entire slide. In an
MIL–recurrent neural network (MIL-RNN) architecture17,

instead of max pooling, an RNN is employed to aggregate the
patch embeddings of top-scoring patches. Under the clustering-
constrained attention MIL (CLAM)18 approach, a pretrained
CNN is leveraged to extract patch embeddings in the first stage.
The second stage involves a clustering-constrained attention
module. Under the main training set, MIL, MIL-RNN, and
CLAM yielded AUCs of 0.9449 (0.9265–0.9634), 0.9475
(0.9297–0.9653), and 0.9323 (0.9120–0.9527) for LN image clas-
sification, respectively, and AUCs of 0.9687 (0.9462–0.9912),

Fig. 2 Receiver operating characteristic (ROC) curves of the metastasis identification ability of the models under the main test set of 1156 LN images.
The rows present a comparison of (a) the performance of our model with those of three pathologists before and after receiving AI assistance on the 48
equivocal cases; (b) weakly supervised methods; (c) performance obtained under various magnification levels (20×: 0.46 µm/pixel, 10×: 0.92 µm/pixel,
5×: 1.84 µm/pixel); and (d) performance obtained under different label types and amounts of training data. We evaluated each method with the main test
set and its subsets to retrieve the ROC curves. The first column presents the ROC curves differentiating between the 1156 LNs in the main test set. Among
the 1156 LNs, those marked as micrometastases and ITCs, as well as all the negative LNs, were sampled to evaluate the performance of the model in
identifying micrometastases and ITCs, as presented in the second and third columns. The fourth column displays the slide-level performance.
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0.9704 (0.9493–0.9914), and 0.9649 (0.9393–0.9905) for WSI
classification, respectively. As shown in Fig. 2b, the proposed
ESCNN model (AUC for LN image classification: 0.9831)
empirically outperformed these alternatives (P < .001).

Impact of image resolutions, data set size, and label types on
ESCNN performance. Aside from two-stage weak supervision,
end-to-end training methods such as streaming CNN24 and the
whole-slide training method22 also demonstrate favorable classi-
fication performance on tasks performed under low magnifica-
tion. However, image resolution under these methods is
constrained by the prohibitively low throughput and high
memory consumption. Because all these end-to-end methods are
logically equivalent, we used the ESCNN to evaluate their per-
formance when applied to downsampled WSIs (5× and 10×
magnification). The AUCs of ESCNN models trained using LN
images magnified 5× (resolution: 1.84 µm/pixel) and using LN
images magnified 10× (0.92 µm/pixel) were 0.9580 and 0.9790,
respectively, lower than the AUC of 0.9831 obtained using LN
images magnified 20× (P= .001 and .35). Further analysis
revealed that the ability to identify micrometastases became
saturated after application to micrometastasis subset images
magnified 10× (AUCs corresponding to LN images magnified 5×,
10×, and 20×: 0.9748 vs. 0.9938 [P < .001] vs. 0.9936 [P= .35]).
By contrast, the ability to identify ITCs from the ITC subset
improved continually with increasing image resolution (0.8103 vs.
0.8861 [P= .044] vs. 0.9228 [P= .13]). The benefits conferred by
10× magnification were significant. However, the benefits of 20×
magnification required the verification of more ITC samples
(Fig. 2c).

We also evaluated the impacts of data set sizes and the label
types (slide level or LN level) on identification performance.
Under training with LN-level labels and images magnified 10×,
the identification performance was enhanced after a larger data
set was input (AUC of LN image classification: 0.9343, 0.9493
[P= .032], and 0.9790 [P < .001] for the truncated 869-LN-image,
truncated 1918-LN-image, and full 5907-LN-image data sets).
The results suggest that the input of more training data improved
model performance. Under training with only slide-level labels,
the AUCs of LN image classification obtained using 983 and 1700
WSIs were 0.9194 and 0.9606, respectively. Notably, regardless of
the label type, the model performance corresponded relatively
well to the number of labels. The two models trained using 869
LN images and 983 WSIs achieved comparable results (LN-level

AUC= 0.9343 vs. 0.9194, P= .13), as did the models trained
using 1918 LN images and 1700 WSIs (LN-level AUC= 0.9493
vs. 0.9606, P= .11). In short, when the total number of slides is
limited, LN-level labels are recommended for enhancing model
performance (Fig. 2d).

Throughput and memory consumption. Despite the logical
equivalence of these end-to-end training methods, the vast
computational and memory overhead involved precludes the
handling of high-resolution tasks. As presented in Fig. 3, we
examined the throughputs and memory consumptions of these
approaches under various input image resolutions (4688 × 4688
[1.25×], 9375 × 9375 [2.5×], 18,750 × 18,750 [5×], 37,500 ×
37,500 [10×], and 75,000 × 75,000 [20×]) by using 100 randomly
sampled LN images from the main training set. Among these
image resolutions, an original ResNet5026 model can undergo
direct end-to-end training only on 1.25× images (memory con-
sumption: 19.1 GB) due to limited GPU memory capacity
(NVIDIA Tesla V100 with 32 GB of random-access memory
[RAM]). The whole-slide training method22 leverages CUDA
Unified Memory to enable the excessive amount of intermediate
data stored in GPU memory to be offloaded to host memory
through data swapping. Although host memory is 10×–100×
larger than GPU memory on a typical GPU server, this method
can train a 5× model (memory consumption: 618.9 GB) on a
server with 768 GB of system memory at best. Moreover, the
throughput was considerably hindered (0.153 images per minute
for training on 5× images) by the overhead incurred by
GPU–host memory data transfer. By contrast, the streaming
CNN and ESCNN methods reduced the amount of intermediate
data, such that the memory consumption for model training
remained between 8 and 9 GB regardless of the image resolution.
This ensured that all the intermediate data could fit into the GPU
memory, thus obviating the need for Unified Memory. Without
the data swapping overhead, the training throughputs of
streaming CNN and ESCNN on a 5× model training were 1.49
and 3.48 images per minute, which were 9.74× and 22.7× faster
than the whole-slide training method, respectively. When trained
on 20× images, the ESCNN approach obtained a training
throughput of 0.912 images per minute, which was 9.83× faster
than the 0.0928 images per minute achieved under the streaming
CNN method. This improvement is attributable to the patch-
based image augmentation (2.31× speedup) and skipping
mechanism (4.26× speedup) under the ESCNN approach.

Table 1 Overview of the performance of our model, the pathologists, and previous models.

Model / Pathologist TP FP FN TN Sensitivity Specificity MCC

Our model 263 12 32 849 0.8915(0.8503–0.9246) 0.9861(0.9758–0.9928) 0.8986(0.8686–0.9269)
Pathologist S.-C.H. 289 2 6 859 0.9797(0.9563–0.9925) 0.9977(0.9916–0.9997) 0.9818(0.9681–0.9932)
Pathologist 1 279 2 16 859 0.9458(0.9134–0.9687) 0.9977(0.9916–0.9997) 0.9589(0.9392–0.9767)
Pathologist 2 286 11 9 850 0.9695(0.9429–0.9860) 0.9872(0.9773–0.9936) 0.9546(0.9340–0.9731)
Pathologist 3 275 2 20 859 0.9322(0.8972–0.9581) 0.9977(0.9916–0.9997) 0.9497(0.9284–0.9690)
Pathologist 1with partial
AI assistance

289 2 6 859 0.9797(0.9563–0.9925) 0.9977(0.9916–0.9997) 0.9818(0.9682–0.9932)

Pathologist 2with partial
AI assistance

291 2 4 859 0.9864(0.9656–0.9963) 0.9977(0.9916–0.9997) 0.9863(0.9742–0.9956)

Pathologist 3with partial
AI assistance

288 2 7 859 0.9763(0.9517–0.9904) 0.9977(0.9916–0.9997) 0.9795(0.9648–0.9912)

Hu et al. 159 11 21 1025 0.8833(0.8272–0.9263) 0.9894(0.9811–0.9947) 0.8937(0.8566–0.9283)
Wang et al. 5217 391 82 9544 0.9845 (0.9808–0.9877) 0.9606 (0.9566–0.9644) 0.9334(0.9275–0.9391)

The confusion matrices were calculated for our model (at a threshold of 0.4) and the pathologists, including the number of true-positive (TP), false-positive (FP), false-negative (FN), and true-negative
(TN) LN images under the main test set (n= 1156). Three pathologists (J.L., H.-C.C., and T.-Y.H.) relabeled the 38 equivocal LN images with AI assistance (denoted as partial AI assistance). The data on
model performance reported in the bottom two rows of the table were directly retrieved from the publications in question. Considering the between-study discrepancies in test slide distributions, the
results may contain bias. MCC is an abbreviation for Matthews correlation coefficient. Supplementary Table 1 provides extended information, including additional metrics and model performance results
on the micrometastasis and ITC test subsets.
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Lesion highlights and qualitative analysis. The model high-
lighted metastatic tumor areas for rapid verification through class
activation mapping (CAM)28. In quantitative analysis, the sal-
iency maps generated by the algorithm achieved an Intersection
over Union (IoU) of 0.5934 (at a threshold of 0.5) and a pixel-
level AUC of 0.8495 in five detailed-annotated WSIs sampled
from the main test set, demonstrating high correspondence
between the predicted and actual lesion areas.

As displayed in Fig. 4, the CAM results of our model exhibited
a higher coverage of macrometastases and micrometastases, and
the ability to localize ITCs, compared to the other methods.

Furthermore, CAM was employed to investigate the sources of
false predictions of our model (Fig. 5). Specifically, 24 false-
positive slides were reviewed. Slides with artifacts (including
cautery, crushing, and floater artifacts; 5, 21%) and histiocytic
aggregates (3, 13%) may have misled the model. No common
patterns were found in the remaining 16 false-positive slides.
Within the reviewed 13 false-negative slides, the metastatic foci
were mostly ITCs (11, 85%) and micrometastases (2, 15%). As for
morphology, most cases were classified as diffuse or mixed-type
adenocarcinoma (10, 77%), characterized by low numbers of
dispersed ITCs that may have resembled sinus histiocytes in

Fig. 3 Throughput and memory consumption of end-to-end training methods under various magnification levels of LN images. Each panel represents
the (a) training throughput, (b) inference throughput, (c) training memory consumption (referring to Unified Memory for the whole-slide training method
and GPU memory for the others), and (d) inference memory consumption. For each setting, we recorded the training/inference time and memory
consumption when processing each LN image (n= 100 images in total, sampled from the main training set). Each box-and-whisker plot comprises the
center (median), the bounds of boxes (Q1 and Q3), the bounds of whiskers (the minimum and maximum within the range, obtained by adding the median
to ±1.5 times the Q3–Q1 distance), and the outliers of the underlying 100 samples. The absence of certain boxes indicates that those settings could not be
run due to memory shortages.
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appearance. The remaining cases (3, 23%) corresponded to
intestinal-type adenocarcinoma, in which ITCs with clear
cytoplasm were observed.

Comparisons with pathologists and a pilot study of AI assis-
tance. The main test set was reviewed by four pathologists. The
classification of each LN image by each pathologist was examined.
The MCCs of the four pathologists (0.9497–0.9818) exceeded that
of the model (0.8986). Notably, regarding the 48 LN images for
which consensus among the four pathologists was not reached
(sensitivity: 39.4–81.8%; specificity: 26.7–86.7%), the model
exhibited a relatively high sensitivity of 69.7% and specificity of
86.7%. In other words, AI assistance was helpful under this
equivocal situation. To confirm this premise, three pathologists
(J.L., H.-C.C., and T.-Y.H.) were asked to double-review the 48
equivocal LN images by using the AI-assisted LN assessment
workflow. Overall, 42.4% of the previous labels were changed, and

the performance of all three pathologists improved (MCCs
without assistance: 0.9497–0.9589, MCCs with assistance:
0.9795–0.9863) to the level of that of the expert pathologist (S.-
C.H.; 0.9818). Therefore, we proceeded to conduct a formal study
for validating the clinical impact of the AI-assisting workflow in
terms of review time, accuracy, and count consistency.

Clinical impact of the AI-assisted LN assessment workflow. As
mentioned, the assessment workflow included an LN detector.
Trained using the main training set of 5907 LN images, the
DeepLabv3+ -based29 LN detector achieved an IoU of 0.8473
and a pixel-wise accuracy of 92.83%. Six pathologists (J.L., T.-
Y.H., H.-C.C., K.-H.C., R.-C.W., and Y.-J.L.) were recruited to
review 80 slides with and without AI assistance, with a 2-to-3-
week washout interval. The slides, sampled from the archive of
Linkou CGMH in 2020, comprised 19 negative slides, 24 slides

Fig. 4 Qualitative results of lesion highlights on macrometastasis, micrometastasis, and ITC cases. Each panel displays an example of an H&E-stained
LN image, the reference standard of the metastatic area under IHC staining (cytokeratin AE1/AE3), the heat map for lesion localization generated by our
model through CAM, the heat map generated by a 5× low-resolution ESCNN model, the attention map of a CLAM model, and the prediction map of a MIL
model. Identified metastatic tumor cells are highlighted in brown and red in the IHC stains and heat maps, respectively. Examples of (a) macrometastasis,
(b) micrometastasis, and (c, d) ITCs identified from the main test set demonstrated the high correspondence of the model-predicted area with the IHC-
predicted area, where (d) displays the high-power field of the green boxes in (c). Aside from the displayed examples, the localization performance of our
model remained at the same level for the 263 LN images from the main test set that were correctly classified as metastases.
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with macrometastasis (≥2 mm), 24 slides with micrometastasis
(<2 mm, ≥0.2 mm), and 13 slides with ITCs (<0.2 mm).

As indicated in Fig. 6a, the workflow significantly shortened
the review time of the pathologists (per-slide median: 161.2 to
110.5 s, −31.5%, P < .001). The review time also significantly
decreased for negative slides (178.9 to 127.7 s, −28.6%, P < .001),
slides exhibiting macrometastasis (166.7 to 112.2 s, −32.7%,
P < .001), slides exhibiting micrometastasis (142.2 to 99.4 s,
−30.1%, P < .001), and slides exhibiting ITCs (139.7 to 103.4 s,
−26.0%, P= .005). AI assistance accelerated the classification of
most cases. In a few negative cases, however, the review time
increased slightly. As presented in Fig. 6b, mixed-effect modeling
revealed that AI-attributable false alarms affected the time taken
to review negative LN images (median time for slides with and
without false alarms: 146.3 vs. 119.1 s, respectively; P= .047). In
short, the AI-predicted false positives prompted the pathologists
to scrutinize the slides of interest more thoroughly, thus
increasing the review time. However, the time taken remained
shorter than that under no AI assistance.

Regarding the accuracy of reported positive LN slide (with a
classification of positive meaning that at least one positive LN was
detected), under AI assistance, the slide-level sensitivity increased
significantly from 81.94% (79.25–92.18%) to 95.83%
(91.15–98.46%, P < .001) for the slides exhibiting micrometas-
tases. For the slides exhibiting ITCs, the slide-level sensitivity
improved significantly from 67.95% (56.42–78.07%) to 96.15%
(89.17–99.20%, P < .001). The sensitivity corresponding to the
slides exhibiting macrometastasis remained at the same high level
without (99.31% [96.19–99.98%]) and with (100.0%
[97.47–100.0%], P > .99) AI assistance (Fig. 6c). As displayed in
Fig. 6d, in some cases, false alarms in negative slides resulted in
the pathologists reporting false-positive results, causing the
specificity to drop from 93.86% (87.76–97.50%) to 84.21%
(76.20–90.37%, P= .019). All but one false alarm (16/17) was
concentrated in 3 of the 19 negative slides. They misled five to six
of the pathologists. The class activation maps of these slides

highlighted regions containing tightly aggregated histiocytes with
unusual blue proteinaceous fluid, increased numbers of high
endothelial venules, and unintentionally introduced floater
artifacts, respectively (Fig. 5).

The counts of positive LNs differed among the pathologists.
This is ascribable to inconsistent diagnoses of LN metastasis and
to variations in subjective distinctions of LN and non-LN tissue.
Under AI assistance, the consistency of positive reports, as
indicated by the coefficient of variation (CV; a lower value is
desirable), increased significantly (median: 0.3499 to 0, P < .001)
in all the positive categories, namely macrometastasis (0.1775 to
0, P < .001), micrometastasis (0.3651 to 0, P < .001), and ITCs
(0.6388 to 0.1113, P= .014; Fig. 6e). The consistency of negative
reports increased as well, but not as markedly (Fig. 6f).

Cross-site evaluation. After the assessment of both the perfor-
mance of the ESCNN model and the clinical experiment using
slides from Linkou CGMH, we validated the robustness of the
workflow. Specifically, we applied the 20× ESCNN model to the
327 slides collected from Kaohsiung CGMH between 2019 and
2021 with the 2088 LN images annotated by S.-C.H., J.L., H.-C.C.,
T.-Y.H., and K.-H.C. Regarding the cross-site performance of
metastasis identification, AUCs of 0.9868 (0.9784–0.9952) and
0.9829 (0.9652–1.0) were achieved for the classification of LN
images and WSIs, respectively. These AUCs were not significantly
different from those of the main test set (0.9831 [P= .59] and
AUC= 0.9936 [P= .29], respectively). The IoU of 0.9044 of the
LN detector (vs. 0.8522 on the main test set) also indicated high
model generalizability.

Discussion
Herein, we applied the ESCNN approach to the direct end-to-end
training of models on high-resolution images (i.e., images at 20×
magnification) with LN-level and slide-level labels. ESCNN
enhanced the performance of the weakly supervised model to the

Fig. 5 Qualitative results of lesion highlights on false-negative and false-positive cases. Each panel displays an example of an H&E-stained LN image
(left), the reference standard of the metastatic area under IHC staining (cytokeratin AE1/AE3; middle), and the heat map for lesion localization generated
by our model through CAM. a Example of false-negative cases indicating histiocyte-like metastasis, which tended to mislead our model. The main test set
contained 10 similar samples. b Histiocyte-like diffuse-type ITCs in sinusoids were challenging for both the model and the pathologists; their accurate
detection may require IHC slides. c Slide showing histiocytic aggregates in sinusoids and unusual blue proteinaceous fluid that caused our model to issue a
false alarm, which led five of the six pathologists to incorrectly interpret the slide as positive. The incorrect highlight of histiocytic aggregates appeared in
three samples. d Floater misidentified by our model and five of the six pathologists under AI assistance as metastatic adenocarcinoma. Five slides with
artifacts (including cautery, crushing, and floater artifacts) were misidentified.
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level of patch-based models with significantly less annotation
effort14,15. Moreover, the implementation of the AI-assisted LN
assessment workflow in routine pathological practice is expected
to facilitate the acquisition of LN-level labels. Given a new slide
image, reviewed LN contours can directly be fed as LN annota-
tions for model finetuning. A vast amount of new training data
can be efficiently obtained with this mechanism (e.g., 1300 slides
per year in Linkou CGMH). We expect that the performance of
the metastasis identification model can be further enhanced using
labeled images accumulated in a routine clinical workflow.

The clinical experiment revealed that the AI-assisted LN
assessment workflow confers benefits to clinical practice with
respect to the review time, sensitivity, and consistency. These
results accord with those of studies examining the impacts of AI
assistance in pathological analysis. Steiner et al.12. developed a
metastatic breast cancer identification model that increased the
sensitivity with which micrometastasis was identified from 83% to
91% and reduced the review time for both micrometastasis
(−47.4%) and negative cases (−19.0%). Kiani et al.30. reported
that AI assistance in the classification of liver cancer significantly

improved the accuracy (P= 0.045, odds ratio [OR]= 1.499). The
model developed by Zhou et al.31. significantly shortened the time
taken to review Helicobacter pylori–positive cases (P = 0.003) and
significantly increased the sensitivity with which they were
identified (OR= 13.37). Taken together, the evidence indicates
that AI-assisted workflows help reduce the review time and
enhance sensitivity. We estimate that the present workflow can
save approximately 1000 min of pathologists’ time each year. This
was calculated according to the total number of slides (1294)
collected by Linkou CGMH in 2019 and according to the average
reduction in the per-slide review time (50.7 s). However, we
observed that AI-attributable false alarms misled the pathologists
on negative results, reducing the specificity from 94% to 84%.
This phenomenon was also observed in a study by Zhou et al.31.,
in which AI-attributable false alarms reduced the specificity
corresponding to the classification of cases negative for H. pylori
(OR = 0.435). Notably, regarding positive LN images, the sig-
nificantly improved sensitivity and interrater stability suggest
that pathologists can reach a greater consensus in clinical
practice with AI assistance. Some investigators argued that

Fig. 6 Plots showing the review time, accuracy, and LN count consistency in the clinical experiments. a Per-slide review time with and without AI
assistance. Macro and Micro are the abbreviations of macrometastasis and micrometastasis respectively. b Impact of AI-attributable false alarms on
review time, assessed by comparing the time taken to review negative slides for which false alarms were issued with the time taken to review negative
slides for which false alarms were not issued. c Accuracies (i.e., specificities for negative slides and sensitivities for positive slides) achieved with and
without AI assistance. d Impact of AI-attributable false alarms on specificities. e CVs per slide, calculated using the positive LN classifications of the six
pathologists to quantify the interrater reliability of positive LN counts. f CVs per slide of negative LN classifications. The box-and-whisker plots in (a), (b),
(e, f) comprises the center (median), the bounds of boxes (Q1 and Q3), the bounds of whiskers (the minimum and maximum within the range, obtained by
adding the median to ±1.5 times the Q3–Q1 distance), and the outliers. The numbers within the boxes are the medians. The centers and error bars in (c, d)
represent the sensitivities (or specificities) and the 95% confidence intervals, respectively.
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micrometastasis in gastric cancer should be reflected in the N
category6. The February 2021 update to the National Compre-
hensive Cancer Network guidelines recommends adjuvant che-
motherapy as treatment for patients with pT1N0 or pT2N0
gastric cancer with micrometastases or ITCs10. However, given
the conflicting evidence on the subject, the prognostic impact of
detecting micrometastases and ITCs remains debatable8,9. This
controversy may be due to the difficulty in collecting a sufficiently
large number of ITCs. Moreover, in view of the challenges
involved in detecting micrometastases and ITCs in clinical sce-
narios based on slides stained with hematoxylin and eosin (H&E),
the possibility of between-patient treatment discrepancies should
be considered. The ignorance of such differences may constitute a
confounding factor that reduces the validity of studies. Employ-
ment of the AI-assisted workflow is expected to resolve these
problems. Its high detection sensitivity enables the selection of
more cases of interest, allowing all patients to receive suitable
treatment. In turn, the real significance of detecting micro-
metastases and ITCs to the prognosis can be revealed. On the
other hand, the drop in specificity in the present study requires
further consideration. Errors were concentrated in three slides,
with some AI-highlighted areas that resembled metastatic tumor
cells being identified as ITCs by five to six pathologists. Besides,
the high number of micrometastasis and ITC cases in the test set
(30% and 16%, respectively) could contribute to the decline in
specificity. Such high proportions of micrometastasis and ITC
cases were included to ensure sufficient numbers of samples per
category. These characteristics of the data set resulted in the
tendency of the pathologists to lean toward AI predictions rather
than relying on their interpretation. Specifically, they favored
positive assessments although the slides were negative. False
alarms would probably have a weaker impact in clinical practice,
where the categories in data sets are naturally distributed. In the
diagnosis of challenging cases, the pathologists are provided tools
such as IHC staining32,33 and primary tumor reference images.
Given the distinct histological appearances of primary tumors
and metastatic regions corresponding to false alarms, the three
slides of interest should have been classified correctly. We suggest
employing cytokeratin IHC to verify cases involving shifts in
AJCC staging, especially shifts from N0 to N1 status. In the near
future, we will conduct follow-up research on the clinical appli-
cation of the workflow to determine whether this concern of
specificity drop persists. The examination of prognostic impacts
derived from shifts in the N category is recommended for future
studies. Moreover, we expect that the false alarm problem can be
resolved by improving the metastasis identification model. To
reach this target, further scaling up of the training set is highly
recommended because model performance has not reached
saturation. The present workflow is effective in reducing efforts
devoted to the collection of node-level labels. The final obstacle to
model optimization is the presence of noisy labels in training
data34,35. Specifically, the model can be misled by pathologists’
inability to locate all ITCs. This inability is attributable to the high
percentage of diffuse and mixed-type cancer in gastric cancer3.
The forward correction of cross-entropy loss35 that we employed
mitigated this problem, but not significantly. This concern may be
resolved completely by introducing a noisy label correction
mechanism36 that routinely identifies possible labeling errors in
data sets for IHC verification or further expert review.

This study is associated with some possible future works. First,
the ESCNN method divides the training procedure into subtasks
through spatial partition and solves them independently to save
memory. Such a design conflicts with operations requiring a
global context, including batch normalization37, Squeeze-and-
Excitation38, and Vision Transformer39. One possible solution is
to combine the ESCNN approach with halo exchange40, where

subtasks are executed concurrently using a sufficiently large
number of computing devices. Inter-patch information can be
exchanged through inter-device communication. Second, the
ESCNN method is currently employed in classification, but it can
be extended to conduct semantic segmentation or detection tasks
in the future. Strongly supervised segmentation and detection
model architectures are not the targets of interest for the ESCNN
approach because these models require detailed annotations for
training, with which the image resolution issue can be resolved
simply through patching. Applying weakly supervised semantic
segmentation (WSSS) and detection (WSOD) to medical images
is relevant to the ESCNN method. Numerous WSSS and WSOD
architectures adopt a two-stage workflow comprising a first-stage
classifier to produce pseudo annotations and a second-stage
strongly supervised segmentation or detection model to learn
from those pseudo annotations41,42. In such architectures, the
ESCNN approach can be employed as a classifier for producing
pseudo annotations through CAM to realize whole-slide WSSS
and WSOD. Third, ESCNN leverages the gradient
checkpointing43 technique to reduce memory consumption. This
increases the overhead for recomputing feature maps. Even if we
considered this as a cost-effective trade-off in view of the vast
throughput leap conferred by memory saving (22.1× speedup
against the whole-slide training method22), reducing this over-
head remains a necessary endeavor.

Since the success of the CAMELYON16 challenge of breast
cancer LN metastasis identification in 201611, no commercial
deep learning software has been developed for identifying LN
metastasis. This reflects not only the time demand for the gen-
eralization of AI-enabled software but also the difficulty in
establishing a reliable clinical-grade deep learning algorithm for
identifying LN metastasis, especially high morphological varia-
tions within the same anatomic site for different cancers. The
embedded metastasis identification model was trained through
the proposed ESCNN and outperformed all other models through
its use of end-to-end, high-resolution deep learning. The results
of the clinical experiment demonstrated the improvement of the
pathologists’ accuracy in identifying micrometastases and ITCs
and the shortening of the review time. Further large-scale or
multicenter studies are warranted to test the practicability of the
workflow. The improvement to the N category evaluation is
expected to confer prognostic benefits and indicate that AI pro-
motes enhancements in healthcare quality.

Methods
Samples and slide images. We retrospectively retrieved slides featuring surgical
resections of LNs from gastric carcinoma dissections between 2018 and 2020 from
the archive of the Department of Anatomic Pathology at Linkou CGMH and
Kaohsiung CGMH. In total, we examined 422 studies, 2422 H&E slides, 125
immunohistochemistry (IHC) slides, and approximately 20,000 LN images. The
WSIs were obtained and digitalized at 40× magnification (0.23 µm/pixel) on a
NanoZoomer S360 digital slide scanner (Hamamatsu Photonics, Hamamatsu,
Japan). The study protocol was approved by the Institutional Review Board (IRB)
of CGMH (IRB No. 202000038B0). Written informed consents were waived by the
IRB in the study due to the usage of deidentified digital slides.

Data preparation for model training and evaluation. The slides were categorized
according to their purpose. The main test set, which was used to evaluate and
compare the model’s performance with that of the pathologists, comprised
30 studies, including 201 slides obtained through total population sampling from
the archive of Linkou CGMH in 2019. Total population sampling was employed to
prevent sampling bias. To obtain the reference standard, each slide in the test set
was repeatedly annotated by four certified pathologists (S.-C.H., J.L., H.-C.C., and
T.-Y.H.) through the aetherSlide digital pathology system (aetherAI, Taipei, Tai-
wan). The LNs on each slide were contoured and labeled as either negative or
positive for metastatic carcinoma. Micrometastases or ITCs were marked non-
exhaustively for analysis. In total, 1156 LN contours were labeled with four indi-
vidual classifications, after excluding 149 contours on which agreement could not
be reached regarding whether each contour encompassed LN or non-LN tissue.
Based on H&E staining results, the consensus was established for 1108 of the 1156
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LNs. The 48 slides for which consensus was not reached were further stained for
IHC testing with cytokeratin (clone AE1/AE3, 1:200, Genemed, Torrance, CA,
USA), Ep-CAM (clone BerEP4, 1:100, Cell Marque, Rocklin, CA, USA), and cal-
retinin (clone Poly, 1:100, Genemed, Torrance, CA, USA), to differentiate meta-
static carcinoma from intranodal mesothelial cells. The immunohistochemical
procedures were conducted in an automated immunostaining machine (BOND-
MAX, Leica Microsystems) with optimal negative and positive controls according
to the manufacturers’ protocols. Specifically, a slide of control tissue is run in every
staining batch. The control tissue is derived from the human species and contains
both positive and negative staining cells (epithelial cells for cytokeratin, adeno-
carcinoma for Ep-CAM, and mesothelial cells for calretinin) to serve as both the
positive and negative controls. S.-C.H. made the final judgments after reviewing the
IHC slides and the other pathologists’ classifications.

The main training and validation sets consisted of 144 studies (983 WSIs, 5907
LN images) and 16 studies (110 WSIs, 655 LN images), respectively, collected from
the archive of Linkou CGMH in 2019. The data sets excluded studies sampled for
testing. The annotation process was similar to that for the test set—without
interannotator validation. To increase the annotation efficiency by obviating the
need for annotators to outline LNs, the LN detector generated editable LN contours
for unannotated slides. An expanded training set incorporated 92 studies (718
WSIs) from the archive of Linkou CGMH in 2018. This set served as the training
data of the model trained with slide-level labels to discuss the impact of label types.
Each slide was marked according to whether LN metastasis was present. Tumor
cells outside LNs, such as subserosal non-nodal extensions or free-floating cancer
cells were ignored. The collection of this vast amount of data consolidates the
robustness of the deep neural networks on which the present workflow is
grounded.

Overview of the gastric LN assessment workflow. Automatically detecting
positive and negative LNs is a classic instance segmentation problem for which
sophisticated model architectures such as HTC44 and DetectoRS45 have been
proposed in recent years. Those algorithms achieved favorable performance when
applied to natural images, but their feasibility and effectiveness on WSIs are
debatable. Directly training an instance segmentation model on WSIs is not feasible
because of the high memory consumption attributable to the high resolutions of
the images. Although patch-based methods resolve this problem in high-resolution
image classification, they are not applicable to instance segmentation model
training because instances in training images are required to remain whole without
patching. Image downsampling is a satisfactory workaround for LN detection but
sacrifices the model’s ability to identify metastasis. To avoid this trade-off, we
separated the proposed workflow into two modules, an LN detector and a gastric
LN metastasis identification module, working at 1.25× and 20× magnification levels
(7.36 and 0.46 µm/pixel), respectively. As the name suggests, the LN detector
detects the boundaries of LNs. Large receptive fields of low magnification are
preferred to capture comprehensive information about the LNs. The metastasis
identification model operates under high magnification to identify subtle patterns
in metastases, especially in ITCs.

LN detector. The LN detector is based on DeepLabv3+ 29, a semantic segmen-
tation model that adopts atrous spatial pyramid pooling to substantially enlarge the
receptive field such that the detector is capable of capturing the features of LNs of
diverse sizes. The input of the detector is a WSI at 1.25× (7.36 µm/pixel) magni-
fication and the output is a binary mask of equal size. The value of each pixel on the
mask represents either the LN area (positive) or the background/area featuring
non-LN tissue (negative). During the inference phase, predicted masks are con-
verted into contours for LN enumeration. First, the positive area on the mask is
expanded by morphological dilation using a 3 × 3 diamond-shaped kernel. Second,
areas containing fewer than 4096 pixels are determined to be noise and removed.
Finally, instances of LNs are segmented using Suzuki’s method46.

ESCNN for gastric LN metastasis identification. The gastric LN metastasis
identification model classifies each LN instance into either positive (i.e., metastatic)
or negative and highlights highly tumor-relevant areas to assist pathologists in
rapid verification. In pursuit of precision, we developed an ESCNN for the direct
end-to-end training of a classification model on high-resolution LN images and
LN-level or slide-level labels, as illustrated in Fig. 7a.

The primary challenge of direct WSI training is that excessive memory usage
cannot fit in the limited memory capacity of a graphics processing unit (GPU)22.
Such high image resolution increases the memory requirement of each step in a
typical training workflow, including image loading and image augmentation, as
well as the backpropagation algorithm for updating a CNN. Although the elevated
memory usage in image loading and image augmentation may cause no problem
given sufficient host memory capacity, the limited GPU memory prevents the
computation of a backpropagation algorithm on the GPU. A CNN consists of a
stack of layers, most of which transform an input two-dimensional feature map
(e.g., an RGB image) into another two-dimensional feature map. To update a CNN
with a training pair comprising an image and its label, the backpropagation
algorithm first conducts a forward pass, in which the image goes through layers to
obtain the final prediction. Subsequently, the algorithm performs a backward pass,

in which the error between the prediction and the label propagates layers in reverse
order. All the intermediate feature maps generated in the forward pass are retained
until they are used in the backward pass, but their sizes increase in proportion to
the image resolution and eventually exceed the memory capacity of the GPU. To
reduce GPU memory consumption, the ESCNN follows the technique employed in
streaming CNNs24, involving the use of patching and gradient checkpointing. Both
the forward and backward passes are divided into subtasks in the spatial
dimensions. Each subtask handling a small region is sequentially executed to obtain
a partial result, which is collected and then compiled with the others to obtain the
full result. This divide-and-conquer technique saves memory space. Instead of the
reuse of intermediate feature maps in the typical backpropagation algorithm,
patches of intermediate feature maps generated in the forward pass are released
and recomputed in the backward pass. This process is called gradient
checkpointing47. By controlling the patch size such that each subtask is within the
memory capacity of the GPU, this technique enables images of varying sizes to be
processed on a GPU.

Aside from the memory capacity issue, the training throughput decreased
sublinearly as the image size increased, hindering the application of gradient
checkpointing to demanding tasks requiring larger images (e.g., metastasis
detection). This performance bottleneck was observed during image augmentation,
which entails the sequential application of processing steps to an image to increase
data variety. The extremely high memory footprint involved in transforming a
high-resolution image into another in each processing step increases paging
overhead and memory loading (i.e., thrashing) considerably. To resolve this
problem, the ESCNN introduces patching to image augmentation such that the
locality of the memory access pattern can be increased to maximize the efficiency of
the memory system. The implementation of patching is trivial for structure-
preserving augmentations (e.g., color transformation) because the location of a
patch is preserved after the augmentation. However, patching in morphological
augmentations (e.g., rotation and scaling) faces a challenge due to the structural
changes. Herein, patching in common morphological augmentations was facilitated
by the patch-based affine transformation algorithm described in the Supplementary
Information. Given that patching is conducted in both the image augmentation
and successive backpropagation steps, a producer-consumer model, as illustrated in
Fig. 7c, was constructed between the location where a patch buffer filled by an
image processing thread is consumed by a backpropagation thread. Furthermore,
the ESCNN implements a skipping mechanism to forgo unnecessary computations
to achieve superlinear throughput scaling. All processing steps (image
augmentation, forward pass, and backward pass) are skipped for contentless
patches (pure white patches in our implementation). Patches with no gradient
contribution to model parameters are dropped in the backward pass. Overall, this
training pipeline resolves the thrashing issue by incorporating patching into data
augmentation; skips unnecessary computations; and thus accelerates the overall
throughput. Using the ESCNN training pipeline, we trained the metastasis
identification model of the ResNet50 architecture26 with two modifications. First,
due to the inability of streaming CNN to tackle inter-patch computations, batch
normalization layers were retained in the evaluation mode, performing linear
transformations using two trainable parameters, namely γ and β. Second, the global
average pooling layer was replaced by a global maximum pooling layer to handle
the extremely small size of lesions presented on WSIs22. LN contours predicted by
the LN detector were piped to this gastric LN metastasis identification module to
yield a metastatic prediction—specifically, to label the contours as positive or
negative. Furthermore, we used CAM28 to generate highlights of the cancerous area
by feeding the WSIs into the model. The feature map preceding the global pooling
layer was extracted. Subsequently, a linear combination was performed with the
weight in the final dense layer, and a sigmoid function was applied to output a [0,
1] score map. The score map was then scaled and transformed into a translucent
mask for overlay on the original WSI.

Model training. We used the main training set, consisting of 983 WSIs and 5907
LN images, to train both the LN detector and the metastasis identification model
on 32 NVIDIA Tesla V100 GPUs running in parallel. The weights in both the
models were initialized as the pre-trained weights trained by the ImageNet data
set48. Each training step dispatched one image per GPU. Images at 40× magnifi-
cation were downscaled by 1/32 and 1/2 to 1.25× and 20× magnification to train
the LN detector and the metastasis identification model, respectively. Random flip,
random rotation (−180°–180°), stain matrix perturbation49 (−10°–10°; stain
matrix obtained by Vahadane et al.50), and random stain concentrations49

(0.5×–1.5×) were applied to diversify the images before they were fed iteratively
into the training pipeline. The LN detector was updated through stochastic gra-
dient descent (initial learning rate: 0.01, momentum: 0.9, L2 decay: 0.0005) to
minimize the per-pixel cross-entropy. After 40,000 training iterations with cosine
annealing43, the model parameters were saved. To update the metastasis identifi-
cation model, we employed the AdamW optimizer51 (initial learning rate: 1e−5,
beta: [0.9, 0.999], weight decay: 0.01). The loss function, forward correction cross-
entropy35, mitigated the impact of incorrect labels with the transition matrix
estimated from the labels of each pathologist and ground truths of the test set.
Validation losses were evaluated after each training epoch. If no improvement was
observed during 16 consecutive epochs, the learning rate was tuned to 1e−6, and
the model continued training another 16-epoch stall. The optimal model
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parameters (i.e., those with which the lowest validation loss was achieved) were
saved. The software stack comprised CUDA 11.1 and cuDNN 7.6 for GPU
acceleration, PyTorch 1.8.2 and Torchvision 0.9.2 for model construction and
training, Open MPI 4.0.1 and Horovod 0.22.1 for multi-GPU training, OpenCV
4.1.1.26 and Pillow 8.2.0 for image processing, and OpenSlide 3.4.1 to decode WSIs.

The implementations of MIL and MIL-RNN were revised slightly according to
an open-source implementation (https://github.com/aetherAI/whole-slide-cnn)22

to support the same set of image augmentation processes and implement the
modified ResNet5026 used for training the ESCNN model. The patch size and the
sequence length of the RNN were set at 224 × 224 and 10, respectively. The loss
and optimizer were controlled, as were those for the ESCNN model. The CLAM
model was trained using the default configuration of the official implementation
(https://github.com/mahmoodlab/CLAM), which was published by the research
group proposing the method18. Specifically, the patch size was set at 256 × 256, the
feature extraction model was ResNet50 pre-trained with the ImageNet data set48,
the aggregation model was a single-attention-branch CLAM model, the loss for
instance-level clustering was the Smooth SVM loss, and the loss for bag-level
predictions was the cross-entropy. The Adam optimizer was employed to update
the model with a learning rate of 2e−4.

Evaluation of the clinical impact of the AI-assisted LN assessment workflow.
To evaluate the clinical impact of the present workflow, 80 slides were sampled
from the archive of Linkou CGMH in 2020. Senior pathologist S.-C.H. verified the
category of each slide with the assistance of IHC slides. Six attending pathologists
(J.L., T.-Y.H., H.-C.C., K.-H.C., R.-C.W., Y.-J.L.) from Kaohsiung CGMH, Keelung
CGMH, Chiayi CGMH, and Linkou CGMH were recruited. Each pathologist
reviewed all 80 slides twice in both the AI-assisted (A) mode and the normal (N)
mode. Half of the slides were randomly sampled to be reviewed first in A mode and
then in N mode. The remaining 40 slides were reviewed first in N mode and then
in A mode. To eliminate the carryover effect, the experiment was divided into two
rounds separated by a 2-to-3-week washout period. In each round, 40 A-mode
slides and 40 N-mode slides were reviewed. To minimize sampling bias, the order
in which the slides were presented differed for each pathologist.

The experiment was designed to simulate a real-world clinical setting such that
the actual impact of the proposed workflow on the pathologists’ daily routine could
be determined. The pathologists were required to calculate the number of positive
and negative LNs on each slide and were obligated to review 80 slides within
2–3 days in each round. No strict time limit for slide review was imposed because
such pressure might increase pathologists’ tendency to rely on AI assistance.

The pathologists were instructed to prioritize diagnostic accuracy and were
informed that the review time was recorded. A round was split into four phases. In
each phase, 20 randomly sampled slides were reviewed. To prevent bias, the phases
alternated between presentation in the ANNA manner and the NAAN order
(equally distributed among the six pathologists). To ensure accurate time
measurement, each phase was completed without interruption. In mode A, LNs
were marked negative or positive, lesion areas were highlighted, and the total
number of LNs was calculated in advance. By contrast, in mode N, only WSIs were
displayed. To enable familiarization with the experimental procedure, the
pathologists reviewed training images in both modes before the formal
experiment began.

Statistical analysis and evaluation metrics. Regarding the laboratory experi-
ments of model performance, we used the main test set consisting of 201 slides and
1156 LN images, the ground truths of which were reviewed by four pathologists.
The LN detector was evaluated using the IoU metric (scikit-learn 0.22.1). The
confidence intervals (CIs) of AUCs employed to score LN metastasis identification
models, along with the two-sided P values, were calculated using the Delong
method52 (pROC 1.18.0). To compare the performance of the models with that of
the pathologists, the prediction scores of the models were binarized and evaluated
for their sensitivities, specificities, positive predictive values (PPVs), negative pre-
dictive values (NPVs), and MCCs. The CIs of these metrics were retrieved using
exact binomial confidence limits (epiR 2.0.35). The MCCs and their accompanying
CIs were calculated using mltools 0.3.5 and the bootstrapping method (n= 10,000),
respectively.

In the clinical experiments for testing the efficiency of the AI-assisted
assessment workflow, the review time was modeled using linear mixed-effect
models (lme4 1.1.27.1). In those models, the fixed effects were the mode (A or N),
round, and category (normal, macrometastasis, micrometastasis, or ITCs). The
random effects were the pathologist and the slide. Post hoc analyses were
conducted to compare factors of interest (e.g., AI assistance) using Tukey’s test
(emmeans 1.6.3). Sensitivities and specificities were evaluated at slide level
(positive: at least one positive LN) by using the exact binomial test (epiR 2.0.35 for
CI computation and DTComPair 1.0.3 for comparison). CVs for quantifying the
consistency of LN counts were calculated with unbiased estimates of variance
(EnvStats 2.4.0). The two-sided P value for comparing the mean CVs of two groups
was obtained through a paired t test. In addition, a transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (TRIPOD)
checklist is provided as Supplementary Table 2.

Fig. 7 ESCNN as a weakly supervised method for training gigapixel images. a Dataflow of ESCNN illustrates how patching mechanisms are embedded
into image augmentation and the backpropagation algorithm (including forward pass and backward pass). b Procedure of the patch-based affine
transformation. c Three threads run concurrently to fully utilize computing resources, including one for loading WSIs (Input/Output-intensive), one for
patch-based image augmentation (bus-intensive), and one for patch-based backpropagation (GPU-intensive).
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw experimental data are provided as Source Data, including pathologists’
diagnoses and the model-predicted scores on the main test set (Fig. 2 and Table 1), the
throughput and memory consumption of the training methods (Fig. 3), the review time
and reported LN counts corresponding to each pathologist-slide obtained from the
clinical experiment (Fig. 6). To protect patients’ privacy, the slide data are not publicly
available. Although, for reproducing the results in this study, researchers can request the
corresponding authors, Chao-Yuan Yeh or Tse-Ching Chen, to access these slide data
remotely through virtual private networking (VPN) with approval of the Institutional
Ethics Committee of the Chang Gung Memorial Hospital (irb1@cgmh.org.tw). The
requests will be processed in 10 business days. The ImageNet data set48 used to pre-train
models is publicly accessible at https://www.image-net.org.

Code availability
The source code of this study can be downloaded from https://github.com/aetherAI/
hms2 under the CC BY-NC-SA 4.0 license53. This includes a training pipeline seamlessly
adaptable to other pathological cases, and a demo video that gives a brief overview of
this study.
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