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Classification of triple negative 
breast cancer by epithelial 
mesenchymal transition 
and the tumor immune 
microenvironment
Francesc Font‑Clos1,2, Stefano Zapperi1,2,3 & Caterina A. M. La Porta1,4,5*

Triple-negative breast cancer (TNBC) accounts for about 15–20% of all breast cancers and differs from 
other invasive breast cancer types because it grows and spreads rapidly, it has limited treatment 
options and typically worse prognosis. Since TNBC does not express estrogen or progesterone 
receptors and little or no human epidermal growth factor receptor (HER2) proteins are present, 
hormone therapy and drugs targeting HER2 are not helpful, leaving chemotherapy only as the main 
systemic treatment option. In this context, it would be important to find molecular signatures able 
to stratify patients into high and low risk groups. This would allow oncologists to suggest the best 
therapeutic strategy in a personalized way, avoiding unnecessary toxicity and reducing the high costs 
of treatment. Here we compare two independent patient stratification strategies for TNBC based 
on gene expression data: The first is focusing on the epithelial mesenchymal transition (EMT) and 
the second on the tumor immune microenvironment. Our results show that the two stratification 
strategies are not directly related, suggesting that the aggressiveness of the tumor can be due to 
a multitude of unrelated factors. In particular, the EMT stratification is able to identify a high-risk 
population with high immune markers that is, however, not properly classified by the tumor immune 
microenvironment based strategy.

Breast cancer accounts for 25% of all newly diagnosed cancer cases in women around the world. Despite clini-
cal improvements introduced in the past decades, predicting the clinical outcome of individual patients is still 
an open challenge1. This is a very important goal since current treatments are costly and have important side 
effects, which are detrimental for the patients quality of life. Hence, being able to predict which patients will be 
most likely to benefit from a given treatment would help establish personalized therapies and avoid overtreat-
ment. The difficulty of this challenge stems from to the considerable heterogeneity of breast cancer, even within 
the standard molecular subtypes in which this tumor is usually classified2,3. Breast cancer subtypes are based on 
the expression level of estrogen receptor (ER), progesteron receptor (PR), the human epidermal growth factor 
receptor 2 (HER2) and the proliferation marker Ki67. In particular, the four subtypes that are mostly used to 
classify breast cancer are Luminal A (ER and/or PR+, HER2−, Ki67 low), Luminal B (ER and/or PR+, HER2−, 
Ki67 high), HER2 positive (HER2+) and triple negative (ER−, PR−, HER2−)2–5.

Stratification of breast cancer patients within each of the four subtypes has been attempted using a plethora of 
gene expression tests based on the expression level of gene panels either empirically selected6,7 or resulting from 
machine learning classification of whole transcriptomic data8,9. Older tests have mostly been applied to to the 
Luminal A breast cancer subtype and essentially measure the proliferation level. Machine learning based methods 
have been shown to suffer from overfitting10,11. The problem arises when a machine learning algorithm tries to 
classify a high-dimensional object by using a small training set11. When the dimension of the object (around 
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20000 genes in the case of the human transcriptome) is larger than the number of samples in the training set, 
the predictive power of the resulting classifier is poor.

Stratifying patients with triple negative breast cancer (TNBC) is an issue that has been addressed only in 
recent years12–14. This breast cancer subtype is the most aggressive of the four, showing poor prognosis, par-
ticularly when metastasis are present, and is highly heterogeneous15. The classification scheme proposed by 
Lehmann et al.12 and later refined by the same group16 is based on the clustering of gene expression data, leading 
to six subtypes which display differential response to treatment12, but no statistically significant differences in 
relapse-free survival16.

In a recent work, we introduced and validated ARIADNE, a general algorithmic strategy to assess the risk of 
metastasis of patients with TNBC based on the identification of hybrid epithelial/mesenchymal phenotypes from 
gene expression data17. The method is based on a Boolean network model that is able to efficiently classify cell 
phenotypes by mapping gene expression data into a complex landscape whose topographic features represent 
important biological aspects of the cells18. The epithelial–mesenchymal transition (EMT) describes how polarized 
epithelial (E) cells transform into mesenchymal (M) cells by losing cell polarity and down-regulating adhesion 
molecules, such as E-cadherin. M cells tend to be more motile, suggesting that EMT could be associated with 
metastatic capabilities19–22. Recent work shows that the EMT can also involve hybrid E/M states23 where cells 
display a mix of markers, characteristic of E and M cells24–26. These hybrid states combine invasive capabilities 
and intracellular adhesion27,28 and are associated to extremely aggressive tumors23,29–31. Several EMT scores have 
been proposed to determine the E or M character of a tumor sample based on gene expression data32. We showed 
that ARIADNE correlates with other EMT scores but it is more specific in identifying hybrid phenotypes, which 
is essential to stratify patients17.

Due to the possible involvement of the immune system in modulating the phenotype of tumor cells, a recent 
paper suggested that immunological metasignatures could stratify TNBC patients33,34. In particular, the authors 
focus on the tumor immune microenvironment, considering gene expression profiles of matched tumor, epithelial 
and stromal compartments from TBNC patients33. Using these data, the authors classify patients according to 
specific combinations of gene expression metasignatures that are able to stratify patients clinical outcomes33. The 
paper also shows that each of these immunological subtypes expresses distinct patterns of immune related gene 
markers (i.e. immune suppression, IL-17 induction and production, cell death, neutrophils, type I Interpherons 
(IFN), cytotoxic activity and antigen presentation).

Given that previous papers show that the same TNBC patients can effectively be stratified by two independ-
ent strategies, one based on the EMT17 and the other based on the tumor immune microenvironment33, we 
decided to investigate whether the two strategies are related. In other words, do patients considered at high/low 
risk according to the EMT based approach also show distinct immunological signatures? To address this ques-
tion, we use ARIADNE to analyze gene expression data from patients included in the study of the TNBC tumor 
immune microenvironment33 and then check if the groups selected by ARIADNE show any peculiar differences 
in the expression of immune-related genes.

Methods
Matching different datasets.  Gene expression data analyzed in Gruosso et  al.33 are accessible in the 
GEO database under accession numbers GSE88715 (for gene expression from stromal and epithelial compart-
ments) and GSE88847 (for bulk tumor gene expression). Survival data can be obtained from an earlier dataset 
(GSE58644) which contains gene expression data for the same patients together with others35. We could not find 
an indication of how gene expression data from GSE88847 can be matched with the survival data in GSE58644. 
To solve this problem, we compute the correlation of pairs of transcriptomes from GSE88847 and GSE58644. We 
find that for each sample in GSE88847 there is a matching sample in GSE58644 that has a much larger correla-
tion coefficient than the rest. We then verify the potential matching with clinical data (i.e. tumor size and age), 
and exclude four cases where the matching is not reliable because clinical data do not agree.

Data normalization.  We normalize data from GSE88847 and GSE88715 by following the procedure 
adopted by Karn et al.36 for GSE31519. To be precise: 

1.	 log2 transformation of MAS5 values
2.	 median centering of arrays
3.	 magnitude normalization of arrays.

where magnitude normalization must be understood as setting the sum of squares of all samples to one. This 
is because ARIADNE was trained on GSE3151917, and in this manuscript we do not re-train ARIADNE, but 
rather tackle the challenge of reusing the parameters obtained in Font-Clos et al.17 to compute the score of a 
new dataset. Therefore, it is crucial to use the same normalization as in the training data. When comparing dif-
ferent datasets one should also keep in mind that additional sources of variability could come from differences 
in sample preparation across different studies. Figure 1 shows the distribution of normalized expression for the 
genes used in the score computation, comparing the training data of ARIADNE (i.e. GSE31519) with the data 
newly analyzed in the present paper (i.e. GSE88847 and GSE88715). We then compute the ARIADNE score as 
explained in Font-Clos et al.17 for the samples in GSE88847 and GSE88715. After computing the raw ARIADNE 
score, which is an integer value, we define the high and low groups simply by sorting and splitting the dataset 
into two groups, high and low.
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Calculation of pathway deregulation scores.  Pathway Deregulation Scores (PDS) were first intro-
duced by Drier et al.37 as a way of quantifying the overall deregulation of a given pathway with respect to a 
reference sample by fitting a non-parametric, non-linear one-dimensional curve through the “middle” of the 
transcriptomic data, in the subspace generated by the genes of that pathway. In practice, this is usually done via 
the principal curve algorithm38, although other procedures would be acceptable. We follow the steps of Drier 
et al.37, except for the following modification that we introduced in a previous paper39. We place the value of 0 
the mean value of the reference sample, instead of at the extremal point of the curve. This modification alters 
the resulting PDS only by a linear shift, but makes the results more robust against the variability of the reference 
samples, as discussed in Font-Clos et.39. We compute PDS for the immunological gene sets reported in Gruosso 
et al.33 and for a subset of immunologically related “hallmark gene sets” obtained from msigdb40. Boxplots show 
the distribution of PDS values, for each pathway, both for “ARIADNE low” samples (green) and for “ARIADNE 
high” samples (red).

Tumor immune microenvironment metasignatures.  The list of genes corresponding to the meta-
signatures proposed by Gruosso et al.33 are obtained from https://​github.​com/​bhklab/​EpiSt​romaI​mmune/. We 
focus our analysis on the “Immune” (CDSig1), “Fibrosis (CDSig3), “Cholesterol” (EDSig2) and “Interferon 
(IFN)” (EDSig5) metasignatures and use them to classify patients into groups following the algorithm described 
in Gruosso et al.33 and reported in https://​github.​com/​bhklab/​EpiSt​romaI​mmune/. In particular, we first con-
struct two groups—“Immune high/Fibrosis low” and “Immune low/Fibrosis high”—representing 60% and 40% 
of the samples respectively. We define samples that end up in both groups as “Intermediate”. This differs slightly 
from Gruosso et al.33 where those samples are later re-assigned to one of the two classes. We then refine the clas-
sification for the samples in the “Immune high/Fibrosis low” group by constructing two additional groups based 
on the “Cholesterol” and “Interferon” metasignatures, each containing 50% of the samples33. We compute the 
metasignatures for GSE88847 and GSE31519. When comparing the metasignature with ARIADNE, we consider 
two groups for GSE88847 (high and low) and three groups for GSE31519 (low, med and high, as in Font-Clos 
et al.17) owing to the larger sample size of the second dataset.

TNBC subtypes.  We establish the subtype (TNBCtype) of the samples in GSE88847 according to Lehmann et al.12 
submitting the GSE88847 gene expression dataset to the TNBCtype server (https://​cbc.​app.​vumc.​org/​tnbc/).

Computation of survival curves.  We use the lifelines python package to compute survival curves in 
Fig. 2a using the Kaplan-Meyer approach.

Figure 1.   Data normalization is consistent across datasets. Boxplot of normalized expression for genes used as 
part of the ARIADNE score computation, comparing the dataset used to train ARIADNE (GSE31519) in17 and 
the dataset analysed in this manuscript (GSE88847).

https://github.com/bhklab/EpiStromaImmune/
https://github.com/bhklab/EpiStromaImmune/
https://cbc.app.vumc.org/tnbc/
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Statistical analysis.  In correlation plots, statistical significance is established through linear regression. 
Statistical differences in the distributions of ARIADNE scores for immune-related groups and among tissues are 
established using the Kolmogorov-Smirnov (KS) test.

Statement.  All methods were carried out in accordance with relevant guidelines and regulations.

Results
We access gene expression data from TNBC patients taken from the tumor (GSE88847) and from adjacent tissues 
(stroma and epithelium) already analyzed in Gruosso et al.33 and match them to survival data35 as described in 
the Methods section. We then stratify the patients according to the score provided by the ARIADNE algorithm17 
which maps gene expression data into the states of a Boolean network model simulating gene regulatory inter-
actions responsible for the EMT18. The algorithm was already trained and cross-validated on a large cohort 
of TNBC patients (GSE3151941) and was able to identify low and high risk patients based on the presence of 
hybrid E/M characteristics17. As shown in Fig. 2a, ARIADNE successfully stratifies patients in two risk classes, 
a low risk class with high survival and a high risk class with lower survival. We then applied ARIADNE also to 
gene expression data measured in tissues adjacent to the bulk tumor (i.e. stroma and epithelium). As shown in 
Fig. 2b, the ARIADNE score, which measures the presence of hybrid E/M cells, is larger in the tumor bulk and 
smaller in the epithelium with intermediate scores found in the stroma. The differences are statistically signifi-
cant as demonstrated by the KS test. This suggests an increasing presence of hybrid E/M phenotypes from the 
epithelium to the stroma and finally to the bulk tumor. We also establish the TNBC subtype of the tumor samples 
according to Lehmann et al.12. As shown in Fig. 2c, samples are scattered across the six subtypes independently 
of their ARIADNE score.

Having confirmed that this cohort of patients can be effectively stratified by ARIADNE based on the EMT 
status of the tumor, we consider signatures related to the tumor immune microenvironment. To this end, we first 
consider the immunological gene sets considered in Gruosso et al.33 and analyze if their expression correlates 
with the score produced by ARIADNE. As shown in Fig. 3a, we can not see any clear pattern in the gene expres-
sion values measured from bulk tumor samples when those are sorted according to their ARIADNE scores. To 
be more quantitative, we compute the cross-correlation between the ARIADNE score and the mean expression 
value within each gene set. The results displayed in Fig. 3b show that correlation coefficients are rather small 
and not statistically significant, even when the significance level is not particularly strict (i.e. α = 0.05 without 
multiple testing correction). These negative results hold for all sample types: Bulk tumor, stroma and epithelium.

To obtain a more precise assessment of the possible relation between the stratification obtained by ARIADNE 
and the tumor immune microenvironment, we compute pathway deregulation scores (PDS)37. The method quan-
tifies the overall deregulation of a given pathway with respect to a reference sample, by fitting a non-parametric 
non-linear one-dimensional curve through the gene expression data relative to each pathway (see Methods for 
details). We apply the method using again the same gene sets (Fig. 4a) and then compute a cross-correlation 

Figure 2.   ARIADNE score predicts survival. (a) Survival curves for low (green) and high (red) patients as 
stratified by the ARIADNE score. The panel shows that ARIADNE is able to stratify triple-negative breast cancer 
patients on unseen data without the need to retrain the algorithm. (b) ARIADNE score for gene expression data 
from the epithelium and stroma adjacent tissues, compared to those from the main bulk tissue. A higher value 
of ARIADNE is associated to more hybrid and aggressive phenotypes. (c) ARIADNE scores associated with 
different TNBC subtypes according to12.
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between PDS and ARIADNE score. Again correlations are weak and not statistically significant (Fig. 4)b. We also 
repeat the same analysis for a set of immune related hallmark pathways40. As shown in Fig. 5, we do not detect 
any significant correlation between PDS and ARIADNE score.

Finally, we consider the immunological metasignatures defined in Gruosso et al.33 and compare their value 
with ARIADNE. In particular, we consider the “Immune” (CDSig2), “Fibrosis” (CDSig4), “Cholesterol” (EDSig2) 
and “Interferon” (EDsig5) metasignatures used in Gruosso et al.33 to stratify patients. Cross-correlation analysis 
for the data in GSE88847 does not reveal significant correlations between the scores, except in one case (see 
Fig. 6a). To check if the lack of correlation is due to the relatively small size of the dataset, we also consider a 
larger dataset (i.e. GSE31519). As shown in Fig. 6b, the group of patients with high ARIADNE score displays a 
small but statistically significant enrichment in all the metasignatures. We then proceed as in Gruosso et al.33 and 
define groups based on combinations of the metasignatures. In particular, we first divide patients in two classes: 
“Immune high”/“Fibrosis low” and “Immune low”/“Fibrosis high” (see Fig. 7a). As shown in Fig. 7b, there is a 
small but statistically significant difference in ARIADNE score between the two classes. Remarkably, the largest 
differences in ARIADNE score are observed in patients that fall in both groups and that we classify as “intermedi-
ate” (Fig. 7a). Our result is consistent with Fig. 6b showing that a number of patients with high ARIADNE score 
and also high immune and fibrosis markers. We also consider a sub-classification of the “Immune high”/“Fibrosis 
low” group into “Cholesterol low”/“Interferon high” and “Cholesterol high”/“Interferon low” groups (Fig. 7c), 
finding no significant association with ARIADNE score (Fig. 7d).

Figure 3.   ARIADNE score is not correlated with immunological gene sets. The heatmaps report the normalized 
gene expression of the bulk cancer samples for the immunological gene sets studied in33. (a) The heatmap shows 
normalized gene expression values sorted according to the value of the ARIADNE score. (b) Cross correlation 
analysis between mean gene expression value in each pathway and the ARIADNE score leads to small 
correlation coefficient. No pathway yields significant correlations ( p < 0.05 ) in bulk, stroma or epithelium. 
Heatmaps are done in python (version 3.7.4) using the seaborn package (version 0.11.2) (https://​seabo​rn.​pydata.​
org).

https://seaborn.pydata.org
https://seaborn.pydata.org
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Conclusions
The possibility to stratify TBNC patients is a crucial aspect to build personalized treatments, which would be 
particularly relevant for this breast cancer subtype where no specific therapeutic strategy is available. Several 
patients stratification strategies based on gene expression data have been proposed in the literature. The most 
widely used classification of TNBC was proposed by Lehmann et al.12 and it is based on automatic clustering of 
gene expression data and resulted in six subgroups, later refined into four16. The Lehmann classification showed 
promising results in identifying patients who respond to treatment12, but limited success in identifying relapse-
free surviving patients16.

Alternative patient stratification strategies for TNBC are built on specific biological processes known to affect 
clinical outcome, rather than performing an unsupervised analysis of gene expression data as in the case of 
Lehmann et al.12. In this paper, we compared two of these strategies, one based on the EMT, which we introduced 
in a recent paper17, and the other based on the tumor immune microenvironment33. Our analysis suggests that 
our EMT based stratification successfully identifies high risk patients in a way that is largely independent of the 
tumor immune microenvironment and the Lehmann subtyping. Our analysis, however, reveals a small fraction 
of patients with high ARIADNE score and large metasignature scores that is not properly classified according the 
the categories proposed in Gruosso et al.33. This point is particularly interesting since it illustrates the potential of 
ARIADNE in identifying patients that fall into a grey area when classified with immune categories. Apart from 

Figure 4.   ARIADNE score is not correlated with pathway deregulation score of immunological gene sets. (a) 
Boxplots of the PDS of each immunological gene set separated by ARIADNE class for bulk tumor, stroma and 
epithelium. (b) Cross-correlation coefficients and p-values for the correlation between ARIADNE score and 
PDS.
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this subpopulation, other patients classified as high or low risk by ARIADNE do not display a peculiar profile in 
terms of their tumor immune microenvironment.

Figure 5.   ARIADNE score is not correlated with pathway deregulation score for immune related hallmark 
pathways. Projections of bulk tumor samples of a set of immune related hallmark pathways (top panels). 
Boxplots of the PDS of each pathway separated by ARIADNE class for bulk tumor, stroma and epithelium 
(bottom panels).

Figure 6.   ARIADNE is associated with immune metasignatures in a large dataset. (a) Cross-correlation 
between immune metasignature scores and ARIADNE score for samples in the GSE88847 dataset. (b) 
Metasignature scores for groups classified according to the ARIADNE score for the GSE31519 dataset. Statistical 
significance is established using the KS test.
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Data availability
The datasets analyzed during the current study are available in the GEO repository under accession numbers 
GSE88847 https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE88​847, GSE88715 https://​www.​ncbi.​nlm.​
nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE88​715, and https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE31​
519 GSE31519.
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