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Abstract

The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) 

inflammasome is an intracellular sensing protein complex that plays a major role in innate 

immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine 

production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death 

– pyroptosis. While a balanced inflammatory response favors damage resolution and tissue 

healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the 
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NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). 

Several pharmacological agents selectively targeting the NLRP3 inflammasome system have 

been developed and tested in animals and early phase human studies with overall promising 

results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials 

have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure 

and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been 

recently shown to significantly reduce cardiovascular events in patients with chronic coronary 

disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, 

and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview 

of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
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1. Introduction

Innate immunity is a conserved stereotyped response that is necessary for the prompt 

identification of infectious pathogens [1]. The innate immune response is largely based 

on pattern recognition. Infectious pathogens share a variety of molecules, called pathogen-

associated molecular patterns (PAMPs), that possess similar chemical properties. A 

large variety of pathogens can be recognized by a small set of pattern recognition 

receptors (PRRs) [1]. Activation of PRRs induces a rapid and robust local and systemic 

inflammatory response resulting in production of several pro-inflammatory cytokines 

including interleukin (IL)-1β, IL-6 and IL-18. While lymphoid-mediated acquired immunity 

prepares antibody- and cell-mediated defenses during the first days of infection, these 

cytokines crucially activate myeloid-mediated innate immunity. Adequate cooperation of the 

innate and acquired immune responses, finely orchestrated by cytokines, ultimately leads to 

confinement and eradicatation of the pathogen [2].

PRRs also recognize self-derived molecules, defined as damage-associated molecular 

patterns (DAMPs) (Figure 1) [1-2]. DAMPs are released following tissue stress or injury, 

and serve as ‘alarmins’ to boost the inflammatory process, clear dead cells and initiate tissue 

healing [3]. DAMPs thus enable differential innate immune responses to commensal and 

non-commensal organisms [2,3].

This primordial innate immune response is considered an essential first-line defense to 

infections. Indeed, invididuals with inherited or acquired defects in the innate immunity 

are subject to deadly infections [1]. On the other hand, an exaggerated innate immune 

response exacerbates tissue damage and worsens prognosis [1]. In recent times, this 

adverse consequence has been evident in coronavirus disease 19 (COVID-19), in which 

hyperinflammation secondary to severe acute respiratory syndrome (SARS-CoV-2) infection 

significantly contributes to worse disease manifestations [4].
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In the setting of chronic degenerative diseases, overactivation of PRRs drives chronic 

inflammation, which aggravates disease progression and outcomes. While it is well-

established that inflammation plays a causal role in rheumatic disorders, the contribution 

of dysregulated innate immunity is now recognized in the development and progression 

of a wide range of non-rheumatic diseases such as cardiovascular, onco-hematological and 

neurodegenerative conditions [5-10].

The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are PRRs 

that recognize a wide range of pathogens and danger-associated products [8]. The different 

members of the NLR family form multimolecular complexes named inflammasomes [8]. An 

inflammasome is a multiprotein complex that leads to the activation of a pro-inflammatory 

caspase (e.g. caspase-1) and promotes the release of cytokines of the IL-1β family [8]. The 

NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) 

is the most extensively studied inflammasome, and its involvement has been demonstrated 

in several rheumatic and non-rheumatic diseases [9]. Besides the NLRP3 inflammasome, 

several other inflammasomes, including NLRP1, NLRC4 and AIM2, have been well 

characterized, and their role in health and disease has been reviewed elsewhere [8]. Within 

the cardiovascular field, recent clinical trials have validated the inflammatory hypothesis 

of atherosclerosis, and ongoing work has elucidated a role of the NLRP3 inflammasome 

following ischemic and non-ischemic, acute and chronic insults to the cardiovascular system 

[10]. In this review, we outline the processes beyond NLRP3 inflammasome formation and 

activation, and discuss the role of the NLRP3 in cardiovascular diseases (CVDs). In this 

context, current and future therapeutic approaches targeting the NLRP3 inflammasome will 

be also discussed.

2. The NLRP3 Inflammasome

NLRP3 acts as a receptor for immune/damage surveillance [8,9]. Activation of the NLRP3 

inflammasome transforms the cell into a powerhouse for the production and release of 

inflammatory cytokines belonging to the IL-1 family. NLRP3 activity also determines cell 

fate, by potentially inducing, through the formation of gasdermin D (GSDMD) channels in 

the membrane, pyroptosis, an inflammatory cell death.

NLRP3 is a multi-domain protein. It has a leucine-rich repeats (LRRs) domain at the 

C-terminus, that is the “sensing” component for PAMPs and DAMPs. It also possesses 

a nucleotide-binding and oligomerization domain (NOD, also known as NACHT), which 

contains the active ATPase site through the Walker A motif (ATP-binding site) and the 

Walker B motif (ATPase activity). Once activated, the LRR domain induces NLRP3 to 

oligomerize through their NACHT domain (Figure 2) [10-24]. The effector pyrin domain 

(PYD) at the N-terminus is responsible for the downstream pro-inflammatory effects, 

binding to the adaptor protein ASC (apoptosis-associated speck-like protein containing a 

caspase recruitment domain or CARD) through a PYD-PYD interaction [10,25-27]. This 

central oligomeric structure catalizes the polymerization of ASC into filamentous structures 

[25-27]. ASC then binds to the CARD of pro-caspase-1 to form the inflammasome [25-27]. 

Pro-caspase-1 auto-cleavage releases active caspase-1, which in turn activates pro-IL-1β, 

IL-18 and GSDMD. While IL-1β and IL-18 exert classical pro-inflammatory effects, the 
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activated N-terminal GSDMD (NT-GSDMD) forms membrane pores that facilitate the 

extracellular release of IL-1β and IL-18 as well as inflammatory cell death - pyroptosis 

[10,28-30].

Two independent but concomitant signals are required to induce inflammasome formation 

(Figure 2). This represents a mechanism of control, in order to regulate the potent 

inflammatory and pyroptotic consequences of NLRP3 activation [31-34]. A ‘priming’ 

signal is necessary to induce the transcription of the components of the inflammasome 

(NLRP3, pro-IL-1β and pro-IL-18). A ‘triggering’ signal, instead, leads to the structural 

changes in NLRP3 domains necessary for the assembly of the inflammasome. An additional 

regulatory level of NLRP3 activity is provided by post-translational modifications such as 

ubiquitination and phosphorylation of inflammasome proteins, as outlined below [35-38].

The priming signal can be induced by PRRs, including toll-like receptors (TLRs) and 

NOD2, by cytokine receptors, inducing nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB)-mediated transcriptional upregulation of the inflammasome 

components and substrates, as well as by pathways involved in cardiovascular regulation, 

such as the angiotensin receptor type 1 (AT1) or adrenergic receptors (Figure 2) 

[15,20,21,35].

The activation of the NLRP3 inflammasome signaling pathway is finely modulated 

by complex regulatory networks that include post-translational and post-transcriptional 

modifications. Numerous microRNAs (miRs) and long non-coding RNAs (lncRNAs) have 

been found to control the post-translational expression of the NLRP3 inflammasome 

proteins and substrates, by either reducing (miRs) or increasing (lncRNAs) NLRP3 

expression [8,9,24,25]. Among these, miR22 reduces NLRP3 mRNA expression in rat 

coronary artery endothelial cells, whereas the lncRNA MALAT1 was shown to increase 

NLRP3 expression in the setting of acute myocardial infarction (AMI) [39,40]. Protein 

phosphorylation and ubiquitination also regulate post-translational priming and triggering 

of the NLRP3 inflammasome [41]. Cell experiments have shown that NLRP3, ASC and 

caspase-1 are targets of several kinases, phosphatases and ubiquitin ligases [41,42], although 

the role of these modifications in development and progression of CVDs has not been 

thoroughly investigated.

3. Mechanisms of Cardiac NLRP3 activation

Multiple alarmins and DAMPs can contribute to the priming phase in the heart. During 

AMI, the ischemic insult promotes the release of cellular debris and alarmins. In 

addition, chronic conditions such as obesity, hypertension or diabetes promote the priming 

through metabolites and neurohormonal activation (e.g. angiotensin II, fatty acids and 

glucose) [43-48]. For example, diabetic mice display basally increased levels of NLRP3 

inflammasome components compared to their normoglycemic counterparts, and this 

exacerbates tissue damage in case of insults such as ischemia-reperfusion [49]. Numerous 

intracellular and extracellular signals activate NLRP3 [10]. These signals are unrelated 

and include intracellular pathways (e.g. reactive oxygen species [ROS], mitochondrial 
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dysfunction, lysosome rupture) and extracellular signals (e.g. ATP-mediated activation of 

the purinergic-type 2 receptor X7 [P2X7], potassium efflux and calcium influx) (Figure 2).

3.1. ATP and K+ efflux

Extracellular ATP has been described as one of the signals capable of inducing NLRP3 

activation [50,51]. The binding of ATP to the P2X7 opens the channel pore causing K+ 

efflux that leads to conformational changes of NLRP3, allowing the interaction with ASC 

(Figure 2) [50]. During ischemia, P2X7 activation is one of the main mechanisms driving 

the formation of the NLRP3 inflammasome in cardiomyocytes [52]. Bacterial toxins like 

nigericin form membrane pores, allowing K+ efflux independent of P2X7 activation [50,52]. 

The mitotic serine/threonine kinase NEK7, a member of the mammal NIMA-related kinases 

(NEK proteins) family, acts downstream of K+ efflux, and directly binds NLRP3, thereby 

regulating its oligomerization and activation (Figure 2) [53]. NEK7 is highly expressed in 

the heart, making this protein a possible target to inhibit NLRP3 inflammasome activity 

[54].

3.2. Ca2+ mobilization

Different stimuli as extracellular ATP, nigericin and particulates can induce Ca2+ 

mobilization from the endoplasmic reticulum (ER) or the extracellular space, leading 

to mitochondrial damage and subsequent NLRP3 activation [55]. One of the sensors 

of extracellular Ca2+ is the calcium-sensing receptor (CaSR), that seems to mediate the 

increase in intracellular Ca2+ and the decrease in cellular cyclic AMP (cAMP). Both events 

are associated with NLRP3 activation [56]. In rats, CaSR mediates NLRP3 activation in the 

setting of hypertension and AMI [57,58].

3.3. Lysosomal rupture

Cytoplasmatic leak of lysosomal content has been shown to activate NLRP3 [59]. 

Incomplete phagocytosis of crystals causes lysosome swelling and instability, leading 

to lysosomal rupture with release the of cathepsin B, a lysosomal enzyme able to 

activate NLRP3 (Figure 2) [59-63]. This mechanism is common to different inflammasome-

activating stressors, such as monosodium urate crystals, calcium phosphate crystals and 

cholesterol crystals [59-63]. In particular, these last two have been correlated with the 

development of atherosclerotic plaques [63].

3.4. Autophagy

Autophagy comprises several cellular pathways that synergistically lead to 

compartmentalization and digestion of cellular protein and/or organelles [64]. In cells 

in culture, abrogation of the physiological autophagy, either by deletion of autophagy-

inducer proteins (e.g. microtubule-associated proteins 1A/1B light chain 3B [LC3B], 

beclin 1, autophagy related [ATG] 5, ATG7) or treatment with autophagy inhibitors 

(e.g. 3-Methyladenine), is associated with induction of the NLRP3 inflammasome [65]. 

On the contrary, in cells already expressing the inflammasome, induction of autophagy 

through rapamycin or starvation results in reduced NLRP3-mediated signaling [65]. In 

acute myocardial infarction, autophagy limits cardiac damage, while its suppression can 
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worsen cardiac remodeling [66,67]. In diabetic rats, induction of autophagy with rapamycin 

reduces the expression of the NLRP3 inflammasome components, which parallels with 

reduced infarct size after myocardial ischemia-reperfusion [68]. In vitro, exposure of rat 

cardiac myocytes H9C2 to high glucose or hypoxia induces the NLRP3 inflammasome, 

which is reduced by rapamycin treatement. In rats lacking NLRP3, experimental ischemia-

reperfusion stimulates the autophagic flux together with reduced myocardial damage and 

infarct size [69].

Saturated fatty acids also promote inflammasome activation through autophagy and increase 

ROS production [70].

3.5. Reactive oxygen species and mitochondrial dysfunction

Mitochondria are the major source of DAMPS, including ROS, and are involved in the 

control of different types of cell death (necrosis/necroptosis, apoptosis as well as pyroptosis) 

[71]. Mitochondrial dysfunction and impaired mitochondrial autophagy (i.e. mitophagy) can 

cause increased ROS generation and cytosolic accumulation of dysfunctional mitochondria 

or mitochondrial DNA (mtDNA) leakage, which are potent NLRP3 activators (Figure 2) 

[71-74]. Other mitochondrial-derived molecules can mediate the activation of NLRP3. 

Among these, cardiolipin can directly bind NLRP3 through its LRR domain allowing its 

activation [75]. Also MAVS, a mitochondrial adaptor protein activated by ATP and nigericin, 

promotes NLRP3 oligomerization and ASC recruitment [76,77]. Mitochondrial dysfunction 

seems to play an important role in atherosclerosis, ischemia-reperfusion injury and pressure 

overload [78-80]. In addition, thioredoxin-interacting protein (TXNIP) plays a critical role 

in cellular redox control by binding to the oxidoreductase thioredoxin (TRX) [81]. In 

the setting of hyperglycemia and hypercholesterolemia, excessive ROS production and the 

presence of unfolded proteins can cause the dissociation of TXINP from TRX [81-83]. In 

this state, TXINP can bind and activate NLRP3 [84]. TXINP inhibition by siRNA has been 

shown to protect the heart after ischemia-reperfusion [85].

4. The NLRP3 inflammasome in cardiovascular diseases

Activation of the NLRP3 inflammasome has been importantly implicated in several CVDs. 

The dynamics of NLRP3 activation differs also between acute and chronic injury. Acute 

injury is associated with rapid and robust upregulation of the NLRP3 inflammasome 

[10,12,29,34]. In this setting, the therapeutic window to target the inflammasome tends 

to be narrower (i.e. hours-days) depending on the nature of the injury. On the contrary, 

in chronic conditions such as atherosclerosis, hypertension, diabetes, obesity, heart failure 

[HF], where low-grade basal activation of the NLRP3 inflammasome contributes to the 

disease progression, inhibition of NLRP3 inflammasome at different stages may alleviate 

worsening of the chronic condition, the therapeutic window is significantly wider (i.e. days-

months-years)[10,12,29]. The impact may also be different in acute versus chronic setting. 

In the acute conditions, the inhibition of the NLRP3 inflammasome activity may lead to 

the rescue of viable tissue and provide ensuing large beneficial effects, but the efficacy 

will depend also by the nature of the injury and the time of the intervention [10,12,29]. 

In chronic conditions, the inhibition of the NLRP3 inflammasome can change the rate of 
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progression of the degenerative illness, and the efficacy may depend also by the activity 

of the NLRP3 inflammasome as compared with the chronic nature of the condition and 

injury already performed, and the ability of the treatment to ameliorate and change trajectory 

of conditions that are likely to progress and/or recur over time [12,15,29]. We herein 

provide an overview of the potential role of NLRP3 in CVDs including atherosclerosis, 

ischemic heart disease, diabetic cardiomyopathy, hypertensive cardiomyopathy, dilated 

cardiomyopathy, drug-induced cardiotoxicity, myocarditis, cardiac sarcoidosis, pericarditis, 

venous thromboembolism and COVID-19.

4.1. Atherosclerosis

Atherosclerosis is a chronic inflammatory disorder and a well-known cause of several 

CVDs [86]. Macrophage infiltration in the vascular wall is the main characteristic of 

atherosclerosis [87]. In macrophages, cholesterol and calcium phosphate crystals lead 

to lysosomal instability causing cathepsin B release that, in turn, activates the NLRP3 

inflammasome with IL-1β release [62,63]. The importance of NLRP3 inflammasome has 

been highlighted in several animal models of atherosclerosis. Decreased atherosclerosis was 

demonstrated in low density lipoprotein receptor knock-out mice (Ldlr−/−) transplanted with 

bone marrow from Nlrp3−/−, Asc−/− and Il-1β−/− mice [63]. These pieces of evidence make 

the NLPR3 inflammasome a promising therapeutic target for atherosclerosis.

4.2. Ischemic heart disease.

The inhibition of NLRP3 and other inflammasome components in animal model of 

ischemic cardiac injury showed beneficial effects in terms of reduced infarct size and 

improved cardiac function [52,85,88]. NLRP3 activation after ischemia is a time-dependent 

mechanism [89]. DAMPs and alarmins released from cells damaged by ischemia strongly 

stimulate the inflammatory response, with recruitment of highly active inflammatory cells at 

the site of injury. This feed-forward mechanism exacerbates the initial ischemic damage 

[90,91]. In experimental models of reperfused and non-reperfused AMI, peak NLRP3 

inflammasome activation occurs respectively 1 and 3 days after ischemia [52,85,91]. 

NLRP3 inflammasome specks can be detected in leukocytes, endothelial cells, fibroblasts 

and cardiomyocytes after AMI [52,85,88]. However, when the healing phase starts, ASC 

aggregates prevalently localize in fibroblasts and cardiomyocytes [52,85,88], The response 

to inflammasome activation seems to be cell-type specific. Leukocytes, fibroblasts and 

endothelial cells mainly respond with IL-1β production. In cardiomyocytes, NLRP3 

activation tend to result in caspase-1 activation and culminate with pyroptotic cell 

death [92]. After ischemia-reperfusion in mice, genetic or pharmacological inhibition of 

the NLRP3 inflammasome reduces infarct size and preserves cardiac function. This is 

recapitulated in studies with mice lacking caspase-1 or ASC (reviewed below) [52,85,88,93].

4.3. Dilated cardiomyopathy

Several pieces of evidence suggest an important inflammatory component in the 

pathogenesis of dilatated cardiomyopathy. Circulating levels of NLRP3 inflammasome 

seem to clinically correlate with cardiac function, NT-pro BNP levels and cumulative 

rehospitalization rate at 6 months [94]. At autopsy, markedly increased pyroptotic cell death 

was demonstrated in the hearts of patients with dilatated cardiomyopathy [95].

Toldo et al. Page 7

Pharmacol Ther. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.4. Hypertensive heart disease

Hypertensive cardiac damage promotes myocardial hypertrophy and fibrosis leading to 

left ventricular remodeling and development of HF. Cardiac upregulation of NLRP3 and 

IL-1β has been found in two different mouse models of hypertension: transverse aortic 

constriction, a pressure overload model inducing myocardial fibrosis and remodeling, and 

the hypertensive angiotensin II-infusion model [96-100]. In both models, inhibition or 

deletion of NLRP3 ameliorated cardiac remodeling, reducing inflammation and fibrosis 

[96,97]. However, the mechanisms of inflammasome activation in absence of ischemic 

damage and cell death are not completely elucidated. A recent study indicates that, in 

response to pressure overload, priming and activation of cardiac NLRP3 is mediated by 

Ca2+/calmodulin-dependent protein kinase II δ (CaMKIIδ) [100].

4.5. Cancer therapy-associated cardiac injury

Several therapies employed to treat different types of cancer (i.e. radiation therapy and 

chemotherapy) are associated with the development of cardiomyopathy both in animals 

and humans. Mice injected with doxorubicin develop left ventricular dilatation, reduced 

cardiac function and increased cardiac fibrosis [101,102]. The decline in cardiac function 

parallels with increased cardiomyocyte expression of NLRP3, caspase-1, IL-1β and IL-18, 

and abudant pyroptosis [95,103]. Blocking NLRP3 by pharmacological inhibition or gene 

deletion attenuates cardiac dysfunction and myocardial damage induced by pyroptosis 

[95,104]. Given the beneficial effects of IL-1β and IL-18 blockade in radiation-induced 

cardiomyopathy, a direct involvement of the NLRP3 inflammasome in the initiation and 

progression of radiation-induced cardiac damage has been proposed [105-107].

4.6. Metabolic disorders and diabetic cardiomyopathy

In the context of cardiometabolic disorders, IL-1β and IL-18 are key mediators of the 

detrimental effects of obesity and aging [108,109]. Adipose tissue actively contributes 

to the systemic pro-inflammatory state, characterized by increased plasma levels of pro-

inflammatory cytokines [110]. Upregulation of the NLRP3 inflammasome was reported 

in the adipose tissue of obese patients and animals [47,110-113]. In animal models of 

aging and obesity, NLRP3 inhibition was associated with improved metabolic profile 

[111-113]. Sustained metabolic abnormalities may lead to diabetic cardiomyopathy [114], in 

which cardiac NLRP3 directly contributes to organ dysfunction [115,116]. Cardiomyocyte 

death seems to be the first step in initiating the structural remodeling leading to diabetic 

cardiomyopathy [117]. Glucotoxicity and lipotoxicity represent potent stimuli for the 

NLRP3 inflammasome [118-120]. In particular, in several cell types, high glucose levels 

induce ROS production and subsequent activation of nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) and TXNIP, thereby acting as priming and triggering 

signals to the inflammasome [118-121].

4.7. Pericarditis

Acute pericarditis is characterized by an intense inflammatory response due to an 

acute injury of the mesothelial cells in the pericardium [122-124]. A key role of 

NLRP3 in pericarditis has been attested in several pre-clinical and clinical studies 
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[122,123]. Furthermore, the efficacy of colchicine, an anti-inflammatory agent with NLRP3 

inflammasome inhibitory activity (reviewed below), in the treatment of acute pericarditis 

further supports a direct role of NLRP3 in this condition [122,123]. A recent study revealed 

the presence of inflammasome components (NLRP3, ASC and caspase-1) in pericardial 

samples of patients with chronic pericarditis experiencing an acute flare [123]. Consistent 

findings were obtained in a novel mouse model in which pericarditis was induced by 

zymosan intrapericardial injection [123]. In this model, inhibition of the inflammasome or 

IL-1α/β reduced pericardial effusion and thickening [123]. These observations are in line 

with the clinical efficacy of rilonacept, which inhibits both IL-1α and IL-1β, in patients with 

recurrent pericarditis [124,125]. In the phase III, RHAPSODY trial, rilonacept monotherapy 

was associated with a 96% reduction in recurrences as compared with placebo [125]. Similar 

benefits had been seen in the smaller AIRTRIP trial with anakinra, a recombinant IL-1 

receptor antagonist, in patients with recurrent pericarditis resistant to colchicine [126]. IL-1 

blockers are now considered standard of care for the treatment of recurrent pericarditis 

in patients who failed initial therapy. A potential role for interleukin-1 blockade in acute 

pericarditis is under investigation [127].

4.8. Myocarditis

The presence of the NLRP3 inflammasome has been shown in endomyocardial biopsies 

of patients with acute myocarditis [128]. Infection with coxsackievirus B3 (CVB3), one 

of the most common viruses causing myocarditis, is associated with enhanced NLRP3 

activation together with increased ASC, caspase-1 and IL-1β expression observed within 7 

days from the infection in mice [129]. Inhibition of caspase-1 or IL-1β ameliorates cardiac 

function and reduces the release of myocardial enzymes [129]. Of note, in experimental 

CVB3-induced myocarditis, inflammasome activation and subsequent pyroptosis seem to be 

mediated by cathepsin B [130]. A peculiar form of myocarditis, namely cardiac sarcoidosis, 

is characterized by the formation of giant cell granulomas in the heart, which progressively 

lead to cardiac failure and arrhythmias [131]. Recently, intense expression of the NLRP3 

inflammasome and its products in the granulomas has been described [132]. A clinical trial 

with anakinra in cardiac sarcoidosis is currently ongoing [133].

4.9. Venous thromboembolism

Venous thromboembolism (VTE), comprising deep vein thrombosis and pulmonary 

embolism, is the third leading cause of cardiovascular mortality worldwide [134]. In 

addition, post-thrombotic syndrome (PTS), a chronic inflammatory condition complicating 

VTE, accounts for considerable morbidity, affecting 20-40% of patients following VTE 

[134].

Initiation and propagation of venous thrombosis is a multifactorial process involving 

a complex sequence of events, in which inflammation directly promotes activation of 

the coagulation system and the endothelium, as well as the recruitment of leukocytes 

and platelets forming aggregates and aggravating thrombosis [135,136]. Several lines 

of evidence indicate that the NLRP3 inflammasome is implicated in the regulation of 

these events [135-141]. Blood flow restriction and hypoxia following experimental venous 

thrombosis have been shown to induce the NLRP3, caspase-1 and IL-1β [137-139]. In mice, 
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genetic deletion of the NLRP3 inflammasome and pharmacological inhibition of caspase-1 

or IL-1β significantly ameliorate venous thrombosis [137-139]. Recently, deficiency of 

caspase-1 or GSDMD has been shown to protect against experimental venous thrombosis 

[140]. Furthermore, tissue factor released from monocytes and macrophages following 

NLRP3 activation trigger the coagulation cascade [141]. In patients with VTE, elevated 

NRLP3 activity, as measured by high concentrations of caspase-1, IL-1β, IL-6 or C-reactive 

protein, were found from days to months after the index event, and correlated with thrombus 

extent and incomplete thrombus resolution [137,142]. Surrogate biomarkers of NLRP3 

inflammasome activation seemed to predict the development PTS, as well as the recurrence 

of thrombotic events [143,144]. Other studies have also found an association between basal 

levels of inflammation and the occurrence of a first event of VTE [145]. Despite no clinical 

trial specifically addressing inflammation in VTE exists, althogether, these data may allow 

to speculate that strategies selectively targeting the NLRP3 inflammasome may lead to 

the development of novel therapeutics against VTE, which may maximize the benefits of 

anticoagulation.

4.10. COVID-19

Viruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle 

East respiratory syndrome coronavirus (MERS-CoV), have the ability to trigger the 

NLRP3 inflammasome [146]. In recent times, a role of the NLRP3 inflammasome has 

been demonstrated in the pathophysiology of COVID-19. Severe forms of COVID-19 are 

characterized by systemic hyperinflammation which contributes to diffuse organ damage, 

including the lungs, heart and vasculature, and worsens clinical outcomes [4]. Upon autopsy, 

abundant presence of NLRP3, ASC and caspase-1 were found in the lungs of patients with 

fatal COVID-19 [147,148]. Analysis of circulating myeloid cells isolated from COVID-19 

patients indicated that NLRP3 and caspase-1 are highly active and produce large amounts 

of mature IL-1β [148-150]. In addition, higher concentrations of inflammasome-derived 

products such as caspase-1 and IL-18 in the sera of patients with COVID-19 correlated with 

disease severity and predicted worse evolution [148-150]. Mechanistic in vitro studies have 

consistently demonstrated that the interaction of SARS-CoV-2 spike protein with the virus 

receptor entry angiotensin-converting enzyme 2 induces abundant cytokine release including 

IL-1β, IL-6, IL-8 and IL-18, through activation of NLRP3 and caspase-1 [151-153]. Of note, 

abrogation of NLRP3-mediated signaling with different selective NLRP3 inhibitors resulted 

in significantly reduced cytokine production in cultured peripheral blood mononuclear 

cells (PBMCs) exposed to recombinant SARS-CoV-2 spike protein [152]. It has been 

hypothesized that IL-1β and IL-18 resulting from NLRP3 signaling activate monocytes, 

which in turn produce several other cytokines such as IL-6, IL-8 and tumor necrosis factor 

(TNF) responsible for hyperinflammation and, through multiple mechanisms, subsequent 

local (i.e. in the lungs) and systemic damage associated with severe forms of COVID-19 

[4,148-150]. These mechanisms include abundant recruitment of neutrophils to the lungs, 

generation of neutrophil extracellular traps (NETs) through GSDMD and ROS, as well 

as cell death (e.g. through pyroptosis) [147-152]. NETs recruit platelets, facilitate tissue 

factor release from pyroptotic monocytes and promote the hypercoagulable state associated 

with COVID-19. In addition, multiple cytokines such as IL-1α, IL-1β and IL-6 increase 
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vascular permeability and activate the endothelium, which further predispose to thrombosis 

[135,153].

Besides regulating the activation of leukocytes, platelets, endothelial cells and the 

coagulation cascade following SARS-CoV-2 infection, the NLRP3 inflammasome has 

been found in hematopoietic stem cells, opening to the possibility that SARS-CoV-2, by 

means of NLRP3, may also remotely affect tissue proliferation and regeneration [154]. 

Altogether, these observations indicated that hyperactivation of the NLRP3 inflammasome 

contributes in initiating and propagating hyperinflammation associated with COVID-19, 

and suggested that selectively targeting of the NLRP3 inflammasome may represent a 

promising therapeutic strategy in COVID-19. This has led to the initiation of a phase II 

randomized trial with dapansutrile, an oral NLRP3 inhibitor (NCT04540120). Nevertheless, 

IL-1 inhibition with anakinra or canakinumab has been already evaluated in multiple 

observational studies with overall encouraging results [155-157]. In the SAVE-MORE 

double-blind, randomized controlled trial of anakinra, IL-1 receptor antagonist, in 594 

patients with COVID-19 pneumonia, significantly reduced the risk as compared with 

placebo of clinical worsening and reduced twenty-eight-day mortality [158]. In the phase 

III CAN-COVID trial randomizing 454 patients with severe COVID-19 pneumonia and 

systemic hyperinflammation, treatment with canakinumab was safe and associated with a 

trend towards improved survival without invasive mechanical ventilation and COVID-19-

related mortality at day 29 compared to placebo [159]. Although results were not 

statistically significant for the primary endpoint, early treatment with canakinumab was 

associated with a reduction of death, need for invasive mechanical ventilation or use of other 

IL-1/IL-6 blockers for worsening disease [159]. The efficacy of anti-cytokine treatments 

in COVID-19 has been proven for strategies targeting IL-6, a potent pleiotropic cytokine 

induced by the NLRP3 inflammasome [160]. During the early phases of the pandemic, 

different IL-6 antagonists including tocilizumab, sarilumab and siltuximab, already 

approved for rheumatic and oncological diseases, have been repurposed for COVID-19 

[160]. After initial promising experiences with tocilizumab, several randomized trials 

were launched worldwide [156,161-165]. A meta-analysis including 10,930 hospitalized 

COVID-19 patients from 27 randomized controlled trials, found that administration of 

either tocilizumab or sarilumab, two monoclonal antibodies directed against the IL-6 

receptor, significantly reduced 28-day all-cause-mortality compared to standard of care or 

placebo [166]. Early administration of tocilizumab in combination with dexamethasone has 

become standard-of-care in hospitalized COVID-19 patients exhibiting rapid respiratory 

decompensation [167,168].

5. Pharmacological targeting of the NLRP3 inflammasome

Due to the broad role of the NLRP3 inflammasome in several types of diseases as well as 

the direct and indirect evidences showing the benefits of NLRP3 blockade, several NLRP3 

inflammasome inhibitors are in preclinical and clinical development (Table 1). While some 

of these selectively block the NLRP3 inflammasome, others have broader effects which 

indirectly result in NLRP3-mediated signaling inhibition (Figure 3). This review will focus 

on the NLRP3 inhibitors that have been tested in CVDs.
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5.1. Glyburide derivates

Glyburide is an oral sulfonylurea used in the treatment of type 2 diabetes mellitus. It 

promotes insulin release from pancreatic β-cells through a cyclohexylurea moiety [169]. 

It was the first drug shown to inhibit NLRP3 at high doses in vitro [170]. Nevertheless, 

high-dose glyduride induce severe hypoglycemia in vivo [169,170]. For this reason, a 

glyburide derivative, named 16673-34-0, which lacks the cyclohexylurea moiety but retains 

the inhibitory activity against NLRP3, was developed [171]. The 16673-34-0, at a dose of 

100 mg/Kg, inhibited cardiac caspase-1 activity, and reduced infarct size in mice subjected 

to myocardial ischemia followed by 24 hours reperfusion [89,171]. Comparable beneficial 

effects were obtained even when treatment with 16673-34-0 was administered in a clinically 

relevant scenario (i.e. 60 minutes after reperfusion) [89,171]. The 16673-34-0 improved 

cardiac function also in a model of permanent coronary artery ligation, independently from 

infarct size reduction [104]. In rats in which circulatory death was induced through, pre-

treatment with 16673-34-0 before cardiac arrest or addition of 16673-34-0 to the buffer used 

for ex-vivo reanimation of the heart limited the ischemic damage and improved contractility 

[172]. In a rat model of donation after circulator death (DCD), consisting of heterotopic 

heart transplantation to a recipient rat after circulatory death of the donor is induced, the 

16673-34-0 was administered with cardioplegia to the donor rat heart at the moment of 

heart procurement as well as to the recipient rat one hour before heart transplantation. After 

24 hours, the transplanted heart displayed reduced myocardial ASC staining and improved 

contractility [173]. In mice with experimental pericarditis, 16673-34-0 reduced pericardial 

effusion and thickening [123]. In mouse models of doxorubicin-induced or Western diet-

induced cardiomyopathy, 16673-34-0 improved cardiac function and reduced interstitial 

fibrosis [104,174]. JC-124, a compound derived from 16673-34-0 developed at Virginia 

Commonwealth University, was shown to be more powerful than 16673-34-0 in inhibiting 

the inflammasome and reducing infarct size in a mouse model of ischemia-reperfusion 

[175]. Similarly to 16673-34-0, JC-124 is specific for NLRP3 and shows no inhibitory 

activity on the NLRP1 or NLRC4 inflammasomes, while it remains active against NLRP3 

mutants associated with genetic forms of cryopyrin-associated diseases [104,175].

5.2. MCC950 (CP-456,773 or CRID3)

MCC95 is a small-molecule that non-covalently binds near the Walker B motif and blocks 

NLRP3 ATPase activity, potently inhibiting NLRP3 both in vivo and in vitro [176-182]. 

MCC950 specifically targets NLRP3 and lacks inhibitory effects againts NLRP1, NLRC4 

or AIM2 inflammasome activity [176-182]. In pigs, a 7-day treatment of MCC950, at 

a dose of 3-6 mg/Kg, reduced neutrophil infiltration and myocardial IL-1β expression, 

and reduced infarct size and cardiac dysfunction [183]. Similar results have been shown 

in mice [184,185]. Additionaly, in a rat model of cardiac arrest and cardiopulmonary 

resuscitation, MCC950 reduced cardiac troponin I release and reduced mitochondrial 

damage, ameliorating cardiac function [186]. MCC950 also possesses cardioprotective 

benefits in non-ischemic cardiomyopathy, as evidenced by reductions in myocardial fibrosis 

and IL-1β levels in angiotensin II-induced hypertension [96]. When administered for 8 

weeks (10 mg/kg, 3 times/week) in a mouse model of post-menopausal heart disease, 

MCC950 limited hypertrophic remodeling, improved systolic and diastolic function and 

reduced cardiac ANF and BNP mRNA levels [187]. The long-term use of MCC950 (20 
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mg/kg/daily) for 15 weeks improved autophagy flux and reduced cardiac apoptosis [188]. 

Mice with cardiomyocyte-specific expression of constitutively active NLRP3 spontaneously 

develop premature atrial contractions and are particularly prone to atrial fibrillation. These 

NLRP3-induced arrhytomogenic effects were attenuated by MCC950 [189]. MCC950 

prevents atherosclerotic plaque development by decreasing the expression of adhesion 

molecules in the plaque and the number of infiltrating macrophages [182]. Twenty-five 

days of MCC950 treatment (10 mg/kg) can reduce blood pressure and renal inflammation 

in hypertensive mice [190]. In mice fed with high-fat, high-cholesterol diet or treated with 

angiotensin II, MCC950 inhibited the dilatation of the aorta, the dissection and rupture of 

aortic segments in the thoracic and abdominal tract [191].

5.3. Bay 11-7082

The synthetic kappa B kinase β (IKKβ) inhibitor, Bay 11-7082, structurally related to 

vinyl sulfone, alkylates the cysteine residues in the NLRP3 ATPase region, thus leading to 

NF-κB pathway inhibition [192]. However, independently from its IKKβ inhibitory activity, 

Bay 11-7082 can specifically block the NLRP3 inflammasome, without affecting other 

inflammasome receptors (NLRP1 and NLRC4) [192]. In experimental myocardial ischemia-

reperfusion in the mouse, administration of Bay 11-7082 10 minutes before coronary artery 

reperfusion reduces leukocyte infiltration in the infarcted area and improves cardiomyocyte 

apoptosis and infarct size [193]. Likewise, pre-treatment with Bay 11-7082 alleviates 

myocardial damage, preserves contractility and limits ensuing fibrosis [194]. In diabetic 

rats undergoing cardiac ischemia-repurfusion, Bay 11-7082 attenuated NLRP3 activation, 

caspase-1 and IL-1β expression and pyroptosis [49]. Overall, these findings indicate 

that Bay 11-7082 exerts cardioprotective effects and inhibit NLRP3-mediated signaling 

inflammasome in multiple rodent models of ischemia-reperfusion injury. Nevertheless, since 

Bay 11-7082 inhibits both IKKβ and NLRP3, it remains unclear whether its beneficial 

effects are due to the inhibiton of NF-κB-dependent signaling or the blockade of the NLRP3 

inflammasome.

5.4. OLT1177

OLT1177, is an orally available beta-sulfonyl nitrile small molecule that specifically 

inhibits NLRP3 by blocking its ATPase activity (Figure 3) [195-198]. Notably, OLT1177 

demonstrates efficacy against constitutively active mutants of NLRP3 such as those observed 

in patients with cryopyrin-associated periodic syndrome [195]. In an animal models of 

myocardial ischemia-reperfusion, OLT1177 dose-dependently reduced the infarct size and 

preserved cardiac function at 24 hours and 7 days after reperfusion [199]. In permanent 

coronary artery occlusion models, OLT1177 preserved left ventricular contractile reserve 

and end diastolic pressure [200]. Importantly, OLT1177 is effective when administered up to 

60 minutes after reperfusion, a scenario which resembles clinical practice in which patients 

receive treatment with a delay after reperfusion [199]. OLT1177 was safe and effective in 

reducing target joint pain in patients with gout enrolled in an open-label phase 2A study 

[201]. In a phase 1B, double-blind trial in patients with heart failure with reduced ejection 

fraction (HFrEF), 14-day treatment with OLT1177 was safe. Interestingly, in the cohort 

receiving the highest dose tested, an increase in the left ventricular ejection fraction and 

treadmill exercise time was observed (Table 1) [202].
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5.5. Colchicine

Colchicine is a tricyclic alkaloid used in the treatment of gout, familial mediterranean 

fever, and acute and recurrent pericarditis [203,204]. Colchicine concentrates in circulating 

leukocytes where it interferes with NLRP3 and ASC approximation through microtubule 

disruption, among other effects [205]. Colchicine also inhibits neutrophil chemotaxis and 

diapedesis, possibly by inducing hepatic synthesis of growth differentiation factor 15 

(GDF-15) without directly interfering with leukocyte function [206]. Colchicine improved 

survival and preserved left ventricular systolic function in mice at 4 weeks after permanent 

coronary artery ligation, and reduced myocardial mRNA of NLRP3 inflammasome 

components [207]. Among the NLRP3 inflammasome inhibitors, colchicine is the one that 

has been most investigated. Data from multiple clinical trials have consistently suggested 

that colchicine reduces the risk of ischemic cardiovascular events in patients with acute 

or chronic coronary artery disease (Table 1) [208-215]. Among 5522 patients with chronic 

coronary disease randomized to colchicine at a dose of 0.5 mg once daily or placebo, 

colchicine significantly reduced adverse cardiovascular events [210]. When initiated in-

hospital in patients with acute coronary syndromes, colchicine may reduce the risk of 

recurrent coronary events - [209]. An earlier study with colchicine in patients with ST-

segment elevation myocardial infarction had shown a reduction in infarct size measured 

with plasma biomarkers [211]. A recent randomized clinical trial of 192 patients with 

ST-segment elevation myocardial infarction colchicine failed to meet the primary endpoint 

of infarct size reduction measured at cardiac magnetic resonance [212]. While colchicine 

in patients with stable or chronic coronary disease has been thoroughly explored in clinical 

trials, further investigation is warranted to establish the effects of colchicine in the acute 

setting. In addition to its beneficial effects on coronary artery disease, colchicine reduces 

the risk of recurrence in adults with acute or recurrent pericarditis, possibly through NLRP3 

inflammasome inhibition [123,216,217].

5.6. H2S, CY-09 and IFN4E

Endogenous hydrogen sulfide (H2S) is a gasotransmitter that exerts important physiological 

functions [218]. In vivo, administration of H2S protects the cardiovascular system in 

several models of disease [219]. Na2S, a H2S donor, reduces NLRP3-dependent caspase-1 

activation and pyroptosis in primary cardiomyocytes, and reduces caspase-1 activity and 

infarct size in mice undergoing ischemia-reperfusion injury [220]. H2S appears to reduce 

inflammasome activity by acting both on the priming and trigger signals [221,222], CY-09, 

binds directly to the ATP-binding motif of the NLRP3 NACHT domain [223]. In mice, 

Cy-09 was able to protect from cardiac dysfunction associated with diabetic ischemic 

stroke [223]. In ex-vivo experiments using Langendorff-perfused rat hearts subjected 

ischemia-reperfusion, pre-treatment with IFN4E reduced infarct size and improved left 

ventricular pressure. Furthermore, IFN4E treatment of these hearts reduced expression of 

NLRP3 system components and concomitantly activated the protective RISK pathway and 

improved mitochondrial function [224,225]. Other structurally similar compounds have been 

developed but not yet tested in models of CVDs [226].
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6. The role of the other inflammasome components in myocardial damage

Inhibition of the other components of the inflammasome machinery (i.e. ASC, caspase-1, 

IL-1β and IL-18) can block NLRP3 activation. However, since these components and 

substrates are shared by different inflammasomes, their inhibition may result in less specific 

but wider effects due to potential inhibition of the activity of other inflammasomes.

6.1. Specific role of ASC, caspase-1, and GSDMD in cardiovascular diseases

ASC knock-out mice are protected from ischemia-reperfusion injury, and display reduced 

levels of IL-1β [88]. ASC-deficient mice display attenuated neointimal formation after 

vascular injury [227]. ASC and caspase-1 knock-out mice are protected from the 

development of atherosclerosis, however, the reproducibility of these effects seems 

dependent on the atherosclerosis model used [228,229]. In humans, methylation of the Asc 
gene affects the ASC protein expression. The degree of methylated of CpG sites in the 

promoter region of exon 1 of Asc is inversely proportional to the ASC mRNA and protein 

expression [230]. In patients with HF (NYHA class II and III), the levels of Asc methylation 

measured in PBMCs were inversely correlated to the levels of plasma IL-1β (i.e. higher 

degrees of methylation corresponded to higher IL-1β levels), and directly correlated with 

peak VO2 [230]. In HF patients, physical exercise increased the methylation of ASC in 

PBMCs, and this was associated with a significant decrease in IL-1β [231].

The clinical effects of ASC inhibition on the cardiovascular system have not been tested 

yet. IC100 is a monoclonal antibody of the IgG4 class that inhibits ASC polymerization in 

cell extracts, resulting in inhibition of the inflammasome pathway. Since the monoclonal 

antibody needs to cross the cell membrane to exert its inhibitory activity on ASC, IC100 

efficacy should be carefully examined when used in vivo. The data from a mouse model of 

multiple sclerosis suggested that IC100 reduced disease severity, and the number of CD4+, 

CD8+ and active myeloid cells [232]. Nevertheless, since IgG4 antibodies themselves have 

immunomodulatory effects [233], the absence of a non-IgG4 antibody control together with 

the lack of direct evidence ASC/inflammasome inhibition limit the findings of the this study 

[232].

Cell specific overexpression of active caspase-1 in cardiomyocytes is sufficient to 

induce a heart failure in the mouse. In fact, caspase-1 transgenic mice develop dilated 

cardiomyopathy, increased ventricular fibrosis and increased expression of genes associated 

with cardiac failure [234]. In accordance with the observations in NLRP3- and ASC-

deficient mice, caspase-1 knock-out mice display reduced levels of IL-1β and are protected 

from ischemia-reperfusion injury [88]. In vitro, caspase-1 inhibition on myocardial tissue 

strips exposed to hypoxic conditions, improves tissue contractility compared to controls 

[235]. Another caspase-1 inhibitor, VX795, protected rat hearts from ex-vivo ischemia-

reperfusion injury [236,237].

GSDMD is responsible for forming pores into the cell membrane necessary for the release 

of the active IL-1β and IL-18 and then mediating inflammatory cell death [28]. There are 

two distinct pathways responsible for GSDMD activation, one through the NLRP3/caspase-1 

pathway and one through the toll-like receptor/caspase-4 pathway (caspase-11 in the mouse) 
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[28,238]. In mice, cardiomyocyte-restricted conditional deletion of GSDMD significantly 

ameliorates infarct size and cardiac function [238]. Targeting of GSDMD may therefore 

represent another prominisg approach to counteract excessive inflammasome activation.

6.2. Role of IL-1β in atherosclerosis, myocardial damage and heart failure

The role of IL-1 in the development of atherosclerosis and plaque instability is well 

substantiated. Deletion of the IL-1 receptor type I (IL-1RI), as well as deletion of 

IL-1β and IL-1α, reduces the size of the plaque in mice [63]. Vromann and colleagues 

elegantly showed that, while IL-1α determines arterial remodeling during early experimental 

atherogenesis, IL-1β regulates progression of atheromas [239]. In the Canakinumab 

Anti-Inflammatory Thrombosis Outcomes Study (CANTOS) pilot trial, canakinumab, a 

monoclonal antibody against IL-1β, was shown to blunt inflammation without affecting 

low-densitiy lipoprotein cholesterol or high-density lipoprotein cholesterol [240]. These 

preliminary findings were confirmed by the CANTOS trial, in which canakinumab 

compared to placebo significantly reduced the rate of atherothrombotic events among 10061 

patients with established atherosclerotic disease (Table 1) [241,242].

Modulation of IL-1 signaling following permanent coronary artery occlusion modulates 

the process of scar formation and ventricular remodeling. IL-1RI-deficient mice display 

attenuated infarct scarring and more favorable ventricular remodeling compared to wild-

type mice [243]. On the other hand, deletion of IL-1 receptor antagonist (IL-1Ra), an 

endogenous antagonist of IL-1 signaling, worsens post-ischemic ventricular remodeling and 

produces a dysfunctional scar [243]. Treatment with anakinra, a recombinant form of the 

human IL-1Ra, or with IL-1 trap, a chimeric protein that neutralizes bot IL-1α and IL-β, 

reduces the myocardial remodeling in mice undergoing permanent coronary artery ligation 

[244-246]. Anakinra also exerts cardioprotective effects in reperfused mouse models of 

AMI [247]. Follow-up studies demonstrated that while the selective IL-1β inhibition using 

a antibody reduces the infarct size in mice that undergo ischemia-reperfusion injury, the 

inhibition of IL-1α has no effect on infarct size in the same model [248,249]. However, 

IL-1β inhibition using two different monoclonal antibodies reduces adverse remodeling 

and improves left ventricular contractility following permanent coronary ligation [250-252]. 

Three sequential double-blinded placebo-controlled phase II clinical studies (The VCUART-

Virginia Commonwealth University Anakinra Remodeling Trials) tested the efficacy of 

anakinra in patients with ST-segment elevation myocardial infarction, and proved that 

the anakinra is safe and blunts the acute inflammatory response following AMI, thereby 

reducing the rate of new onset HF and HF hospitalization when compared to placebo 

[253-256]. In the MRC-ILA-Heart study, however, patients with smaller non-ST-segment 

elevation myocardial infarction, anakinra also reduced the acute systemic inflammatory 

response during AMI, but it did not result in improved clinical outcomes (Table 1) [257].

One potential advantage of using anakinra as a therapeutic strategy is the blockade of both 

IL-1β and IL-1α [258]. IL-1α is a member of the IL-1 family that shares high homology 

with IL-1β but lacks the cleavage domain for caspase-1 and therefore is not activated 

in the inflammasome [258]. IL-1α is active however already in its pro-form inducing a 

pro-inflammatory signal through the IL-1 type I receptor, and priming the cell for the 
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formation of the inflammasome and as such it functions as an alarmin [258]. Strategies 

targeting specifically IL-1α reduce inflammatory injury and infarct size [248]. IL-1α is 

also expressed on the cell membrane of leukocytes and regulates the systemic inflammatory 

response after ischemic injury [259].

Experimental studies in vitro and in vivo have shown that IL-1β impairs myocardial 

relaxation and contractility and alters the response to β-adrenergic stimulation in mice, 

even in absence of AMI or other types of acute myocardial injury [258]. Compared to 

the placebo, anakinra reduced the acute inflammatory response and improved the ejection 

fraction in hospitalized patients hospitalized with acute decompensated systolic HF [260]. 

In a subgroup of patients enrolled in the CANTOS trial, canakinumab reduced the rate 

of hospitalizations for HF [261]. In the REDHART study (Recently Decompensated Heart 

Failure Anakinra Response Trial), anakinra improved cardiorespiratory fitness (peak oxygen 

consumption), reduced levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP) 

and increased the patient quality of life [262]. The REDHART2 study is currently ongoing 

[263]. In the D-HART (Diastolic Heart Failure Anakinra Response Trial), anakinra was 

administered to patients with heart failure with preserved ejection fraction (HFpEF) and 

promoted significant improvements in peak oxygen consumption [264]. The D-HART2 

study, conducted in the same patient population, albeit with a higher degree of obesity, 

showed a significant increase in treadmill exercise time, lower plasma levels of NT-proBNP, 

and improved quality of life measures, in absence of a significant change in peak oxygen 

consumption (Table 1) [265].

Rheumatic diseases have been linked to an increased risk of developing HF [266]. In 

these diseases, the activity of the NLRP3 inflammasome in the site of inflammation is 

increased and, it is associated with a systemic increase of pro-inflammatory markers, 

including those of the IL-1 pathway [267]. Experimental induction of arthritis promotes, 

indeed, remodeling of the heart in mice [268,269]. A strong link between cardiac 

dysfunction and the pro-inflammatory effects of IL-1β has been found in patients with 

rheumatoid arthritis (RA) [270]. In this patient population, recombinant IL-1Ra improved 

cardiovascular function within three hours after the first dose, and the effects lasted for 

30 days (Table 1) [270]. Besides, independent of the presence of coronary artery disease, 

RA patients treated with recombinant IL-1Ra had reduced oxidative stress and improved 

LV contractility and relaxation. These pieces of evidence point out that extra-cardiac (or 

systemic) inflammasome activation affects the heart as well as the inflammasome activation 

in cardiac cells [270,271]. This notion is of utmost importance since systemic upregulation 

of the NLRP3 inflammasome and its downstream cytokines observed in several chronic 

conditions such obesity, diabetes, hypertension or aging, may directly impact the heart 

structure and function with detrimental consequences.

6.3. Role of IL-18 in cardiovascular diseases

Together with IL-1, IL-18 is one of the main NLRP3-derived cytokines. IL-18 has 

been implicated in several cardiovascular diseases, in which elevated plasma levels of 

IL-18 are found, and correlate with disease severity [272]. Following AMI, circulating 

IL-18 concentrations increase and predict dire outcomes [272-274]. Decompensation of 
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HF is associated with increased levels of IL-18 [275]. In mouse models, pretreatment 

with a neutralizing antibody against IL-18 reduces the infarct size [276]. Recombinant 

IL-18 binding protein (IL-18BP) reduces myocardial damage and inflammation following 

ischemia-reperfusion in a mouse model of heterotopic heart transplantation [277]. IL-18BP 

improves the heart function and reduced myocardial damage in a mouse model of 

heart donation after circulatory death ex vivo [278]. Furthermore, IL-18BP improves 

cardiomyocyte contractility in cultured human heart strips exposed to ischemia in vitro 

[235]. IL-18BP also ameliorates right ventricular function in mice exposed to chronic 

hypoxia for 2 weeks [279]. In a mouse model of β-adrenergic receptor overstimulation 

induced by high-dose injections of isoproterenol, genetic deletion of IL-18 or neutralization 

through anti-IL-18 antibodies reduced damage to the heart, ameliorating cardiac function 

and remodeling [280]. Like IL-1, IL-18 is involved in the progression of atherosclerosis 

in multiple models of atherogenesis in mice [281-284]. In fact, IL-18 administration 

to atherosclerosis-prone mice accelerates plaque development, whereas deletion of IL-18 

reduces plaque development [282,283]. In contrast with these observations, one study 

reported increased atherosclerotic lesions in proatherogenic lacking the IL-18 gene 

[284]. However, another study found that IL-18 deletion prevented the development of 

cardiomyopathy in mice fed with a high-fat and high-sugar diet [285].

IL-18 plays a crucial role in homeostasis. Even when fed with a regular diet, mice lacking 

IL-18 are hyperphagic and become diabetic and obese [285,286]. When fed with a high-fat 

and high-sugar diet, deficiency of IL-18 induces significant gain in body weight compared 

to wild-type mice [283,284]. In addition, IL-18 controls the appetite in the central nervous 

system and the NLRP1 inflammasome regulates IL-18 physiological production [286,287].

6.4. Role of IL-6 in cardiovascular diseases

IL-6 production is induced by IL-1β, therefore IL-6 is an indirect product of the NLRP3 

inflammasome [160,288]. Nevertheless, several other cytokines can control IL-6 expression 

and secretion [160,288]. IL-6 has powerful pro-inflammatory and pro-thrombotic effects, 

strongly contributing to augment cardiovascular risk [160,288]. Increased IL-6 levels predict 

worse outcomes across health and disease, and several IL-6 inhibitors are clinically available 

[289,290]. The preclinical evidence supporting the beneficial effects of IL-6 blockade in 

ischemia-reperfusion provided the basis for the phase II trial with the IL-6 receptor inhibitor 

tocilizumab [291]. In the ASSAIL-MI trial, treatment with tocilizumab was associated with 

a significant reduction in the systemic inflammatory response and an improvement in the 

myocardial salvage index in patients with ST-segment elevation myocardial infarction [291]. 

The positive results of the recently completed phase II RESCUE trial with ziltivekimab, 

an anti-IL-6 antibody, prompted the launch of a larger cardiovascular outcome trial [292]. 

The ZEUS trial will test ziltivekimab in patients with low-grade chronic inflammation, 

established atherosclerotic disease and chronic renal disease (Table 1) [290]. IL-6 directly 

activates membrane-bound IL-6 receptors (classical signaling), but also can complex with 

soluble IL-6 receptors, which then bind membrane-bound gp130 to initiate IL-6 signaling 

(trans-signaling) [160,288,290]. Initial evidence suggests that trans-, but not classical, IL-6 

signaling contributes to atherosclerosis [293]. Whether specific inhibitors of IL-6 trans-
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signaling offer better efficacy or more targeted anti-inflammatory effects in humans remains 

unclear.

7. Cell-specific effects of the inflammasome in the myocardium

Circulating monocytes, in which the NLRP3 inflammasome is constitutively expressed at 

high levels, are proptly recruited in the heart following injury [32]. On the contrary, the 

most abundant cardiac resident cells, such as cardiomyocytes, fibroblasts and endothelial 

cells, display low basal expression of the inflammasome constituents, which are strongly 

upregulated after priming [10,30,33]. Activation of the NLRP3 inflammasome induces 

secretion of IL-1β in leukocytes, endothelial cells and fibroblasts. In cardiomyocytes, the 

inflammasome primarily activates caspase-1 leading to pyroptotic cell death [92]. GSDMD 

permits release of IL-1β and IL-18 from cells after activation of the inflammasome, and 

mediates pyroptosis independently from cytokine production [238]. The type of response 

to injury depends on the nature of insult, and it appears to be cell-type-specific in 

the heart [92]. In the heart of patients who died from AMI, ASC was expressed in 

infiltrating cells [88]. However, in animal models, NLRP3 inflammasome expression also 

localizes in cardiomyocytes, endothelial cells, and fibroblasts [88,93,84]. Activation of 

the inflammasome is responsible for the pyroptotic death in cardiomyocytes [52,104]. 

Endothelial cells and fibroblasts exposed to ischemia release IL-1β [92-94]. In these cells, 

the inflammasome promotes the production of active IL-1β and IL-18. IL-18 modulates 

myocardial contractility, collagen deposition by fibroblasts and endothelial function [92-94]. 

However, except for the production of IL-1β, the specific contribution of fibroblast and 

endothelial NLRP3 in the early phases following acute myocardial injury has not been fully 

elucidated yet.

8. Conclusions

The formation and activation of the NLRP3 inflammasome with the production of 

IL-1β and IL-18 and inflammatory cell death – pyroptosis - have a central role in the 

pathogenesis of acute and chronic cardiovascular diseases, ranging from atherosclerosis to 

acute myocardial infarction, heart failure to pericarditis. The recent development of specific 

NLRP3 inflammasome inhibitors has opened the way to testing the hypothesis that targeting 

the NLRP3 inflammasome may improve clinical outcomes. Early phase clinical trials with 

targeted NLRP3 inflammasome inhibitors show promising results awaiting validation. Phase 

II-III clinical trials targeting cytokines downstream of the inflammasome like IL-1β and 

IL-6 have shown efficacy across a variety of cardiovascular conditions, and are currently 

under further investigation. IL-1 inhibition with rilonacept has recently become standard-of-

care for the treatment of recurrent pericarditis.
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Abbreviations:

AMI acute myocardial infarction

AT1 angiotensin receptor type 1

ATP adenosine triphosphate

cAMP cyclic AMP

CaMKIIδ Ca2+/calmodulin-dependent protein kinase II δ

CaSR Ca2+ is the calcium-sensing receptor

COVID-19 coronavirus disease 19

CVB3 coxsackievirus B3

CVDs cardiovascular diseases

DAMPs damage-associated molecular patterns

DCD donation after circulator death

ER endoplasmic reticulum

GDF-15 growth differentiation factor 15

GSDMD gasdermin D

HF heart failure

HFpEF preserved ejection fraction

HFrEF heart failure with reduced ejection fraction

H2S hydrogen sulfide

IKKb inhibitor of kappa B kinase b

IL interleukin

IL-1Ra IL-1 receptor antagonist

IL-18BP IL-18 binding protein

lncRNAs long non-coding RNAs

LRR leucine-rich repeat

MAVS Mitochondrial antiviral-signaling protein

MERS-CoV Middle East respiratory syndrome coronavirus

miRs microRNAs

mtDNA mitochondrial DNA
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NETs neutrophil extracellular traps

NEK NIMA-related kinases

NF-κB nuclear factor kappa-light-chain-enhancer of activated B 

cells

NLRs nucleotide-binding oligomerization domain (NOD)-like 

receptors

NLRP3 NACHT, leucine-rich repeat (LRR), and pyrin domain 

(PYD)-containing protein 3

NOD nucleotide-binding oligomerization domain

NT-GSDMD N-terminal GSDMD

NT-proBNP N-terminal pro-B-type natriuretic peptide

PAMPs pathogen-associated molecular patterns

PBMCs peripheral blood mononuclear cells

PRRs pattern recognition receptors

PYD pyrin domain

PTS post-thrombotic syndrome

P2X7 purinergic-type 2 receptor X7

RA rheumatoid arthritis

ROS reactive oxygen species

SARS-CoV severe acute respiratory syndrome coronavirus

SARS-CoV-2 severe acute respiratory syndrome

TNF tumor necrosis factor

TRX thioredoxin

TXNIP thioredoxin-interacting protein

VTE venous thromboembolism
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Figure 1. 
Overview of the key molecular events driving the inflammatory response following tissue 

injury.
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Figure 2. 
Priming and triggering signals regulating the assembly and activation of the NLRP3 

inflammasome. Primining signals result in the transcription, primarily through NF-κB, of 

the NLRP3 inflammasome components. Triggering signals result in: NLRP3 inflammasome 

assembly; caspase-1 activation: cleavage of pro-IL-1β and pro-IL-18 into the mature forms; 

cleavage of GSDMD which forms pores on the cell membrane, allowing secretion of active 

IL-1β and IL-18.
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Figure 3. 
NLRP3 inhibitors under clinical development in cardiovascular diseases: chemical structure, 

molecular target and mechanisms of action.
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Table 1.

Clinical trials targeting the NLRP3 inflammasome, IL-1 and IL-6 in cardiovascular diseases.

Study
(year)

Pharmacological
target

Disease
(Total No.

of
patients
enrolled)

Study
design

Main
findings

Ref.

OLATEC-HF (2021) NLRP3 Stable HFrEF 
(NYHA Class II-

III) (30)

Randomization: 
Dapansutrile 

(OLT1177) or placebo 
4:1 (500, 1000, or 2000 

mg/day)

Treatment with 
dapansutrile for 14 days 

was safe and well 
tolerated in patients 
with stable HFrEF. 

Improvements in left 
ventricular EF and in 
exercise time were 
observed in cohort 

of patients receiving 
dapansutrile at a dose of 

2000 mg/day

202

COLchicine 
Cardiovascular 
Outcomes Trial 

(COLCOT) (2019)

NLRP3 (non 
selective)

AMI < 30 days 
(4745)

Randomization: 
colchicine or placebo 

1:1 (0.5 mg/day)

Colchicine led to a 
significantly lower risk 

of ischemic cardiovascular 
events as compared to 

placebo

207

Low Dose Colchicine 
Trial (LoDoCo) (2013)

NLRP3 (non 
selective)

Stable CAD (532) Randomization: 
colchicine or no 

colchicine 1:1 (0.5 mg/
day)

Colchicine on top of 
standard therapy was 

effective in preventing 
cardiovascular events in 
patients with established 

stable CAD

208

Colchicine in Patients 
with Chronic Coronary 

Disease (LoDoCo2) 
(2020)

NLRP3 (non 
selective)

Chronic CAD 
(5522)

Randomization: 
colchicine or placebo 

1:1 (0.5 mg/day)

Colchicine significantly 
reduced the risk of 

cardiovascular events in 
patients with chronic 

CAD

210

COlchicine in Patients 
with ACS (COPS) 

(2020)

NLRP3 (non 
selective)

ACS (795) Randomization: 
colchicine or placebo 
1:1 (0.5 mg twice a 
day for 1 month, 0.5 

mg/day for 11 months)

Colchicine in addition 
to standard care did 

not significantly affect 
cardiovascular outcomes 
at 12 months in patients 

with ACS and it was 
associated with a higher 

rate of mortality

213

Colchicine Therapy and 
Plaque Stabilization in 

Patients With ACS 
(2018)

NLRP3 (non 
selective)

ACS < 30 days 
(80)

Non-randomized: 
Colchicine or no 

colchicine (0.5 mg/day)

Low-dose colchicine 
therapy improved plaque 
morphology and reduced 

hsCRP

214

Colchicine in acute 
ST-segment elevation 
myocardial infarction 

(2015)

NLRP3 (non 
selective)

ACS <12 hours 
(151)

Randomization: 
Colchicine or placebo 
1:1 (loading dose 2 mg 
followed by 1 mg/day 

for 5 days)

Reduction in infarct size 
measured by area-under-

the-curve for CK-MB

211

Colchicine in acute 
ST-segment elevation 
myocardial infarction 

(2021)

NLRP3 (non 
selective)

ACS <12 hours 
(192)

Randomization: 
Colchicine or placebo 
1:1 (loading dose 2 mg 
followed by 1 mg/day 

for 5 days)

No effect on infarct size, 
trend toward reduction in 
CRP at 48 hours, trend 

toward lower heart failure 
events at 3 months

212

COlchicine for 
Recurrent Pericarditis 

(CORP) (2011)

NLRP3 (non 
selective)

First recurrence of 
pericarditis (120)

Randomization: 
colchicine or placebo 

1:1 (0.5 to 1.0 mg/day)

Colchicine reduced the 
risk of recurrence and at 

18 months

216

Efficacy and Safety 
of Colchicine 

for Treatment of 
Multiple Recurrences 

NLRP3 (non 
selective)

Recurrent 
pericarditis (240)

Randomization: 
colchicine or placebo 

1:1 (0.5 to 1.0 mg/day)

Colchicine in combination 
with conventional anti-
inflammatory therapy 

significantly reduced the 

217
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Study
(year)

Pharmacological
target

Disease
(Total No.

of
patients
enrolled)

Study
design

Main
findings

Ref.

of Pericarditis: 
a Multicentre, 

Double-Blind, Placebo-
Controlled Randomised 
Trial (CORP-2) (2014)

rate of subsequent 
recurrences of pericarditis

Effects of 
Interleukin-1β 
Inhibition with 

Canakinumab on 
Hemoglobin A1c, 
lipid, C-reactive 

protein, Interleukin-6, 
and Fibrinogen: a 

Phase IIb randomized, 
placebo-controlled trial 
(CANTOS pilot trial) 

(2012)

IL-1β Subjects with 
well-controlled 

diabetes mellitus 
at high 

cardiovascular risk 
(556)

Randomization: 
Canakinum ab or 

placebo 1:1:1:1:1 (5, 
15, 50, 150 mg 

monthly)

Canakinum ab 
significantly reduced 
inflammation without 

major effects on 
low-density lipoprotein 

cholesterol or high-
density lipoprotein 

cholesterol

240

Canakinumab 
ANti-inflammatory 

Thrombosis Outcomes 
Study (CANTOS) 

(2017)

IL-1β AMI > 30 days 
(10061)

Randomization: 
Canakinum ab or 
placebo 1:1:1:1.5 
(50,150 or 300 mg 

monthly)

Canakinum ab 
significantly reduced 

hsCRP, the incidence of 
recurrent AMI and the 

rate of atherothrom botic 
events in patients with 

established atherosclerotic 
disease

241

Virginia 
Commonwealth 

University Anakinra 
Remodeling Trial 

(VCUART/VCU ART2) 
(2010, 2015)

IL-1β Acute STEMI <12 
hrs (40)

Randomization: 
Anakinra or placebo 

1:1 (100 mg/day)

Anakinra reduced hsCRP 
and the incidence of death 

or new onset HF

253,254,256

Virginia 
Commonwealth 

University Anakinra 
Remodeling Trial 3 
(VCUART3) (2020)

IL-1β Acute STEMI < 
12 hrs (99)

Randomization: 
Anakinra or placebo 

1:1:1 (100 or 200 mg/
day)

Anakinra significantly 
reduced the area under 
the curve for hsCRP at 

14 days, and reduced the 
incidence of death or new 
onset HF and of death or 

HF hospitalization

255,256

Effects of interleukin-1 
receptor antagonist 

therapy on markers of 
inflammation in non-ST 
elevation acute coronary 
syndromes (MRC-ILA 

Heart Study) (2015)

IL-1β NSTEMI < 48 hrs 
(182)

Randomization: 
Anakinra or placebo 

1:1 (100 mg/day)

Anakinra significantly 
reduced systemic 

inflammator y markers 
without improving clinical 

outcomes

257

Safety and Efficacy 
of Anakinra in 

Heart Failure (AIR-HF) 
(2012)

IL-1β Stable HFrEF 
(NYHA Class II-

III) (7)

Non-randomized: 
anakinra (100 mg/day)

Anakinra significantly 
reduced systemic 

inflammatory markers and 
improved peak aerobic 
exercise capacity and 
ventilatory efficiency

260

Interleukin-1 Blockade 
with Canakinumab 
to Improve Exercise 
Capacity in Patients 

with Chronic Systolic 
Heart Failure and 

hsCRP (CANTOS sub-
study) (2018)

IL-1β AMI > 30 days, 
Stable HFrEF 

(NYHA Class II-
III) (15)

Randomization: 
Canakinum ab or 
placebo 1:1:1:1.5 

(50,150 or 300 mg)

Canakinum ab improved 
peak aerobic exercise 

capacity and reduced the 
rate of hospitalizations for 

HF

261

REcently 
Decompensate d 

Heart failure Anakinra 

IL-1β HFrEF < 14 days 
post-discharge 

(60)

Randomization: 
anakinra or placebo 

1:1:1 (100 mg/day for 
2 or 12 weeks)

Anakinra reduced hsCRP, 
and improved peak 

aerobic exercise capacity 
and quality of life

262
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Study
(year)

Pharmacological
target

Disease
(Total No.

of
patients
enrolled)

Study
design

Main
findings

Ref.

Response Trial 
(REDHART) (2017)

REcently 
Decompensated Heart 

failure Anakinra 
Response Trial II 

(REDHART2)

IL-1β HFrEF < 14 days 
post-discharge 

(estimated 
enrollment 102)

Randomization: 
anakinra or placebo 1:1 
(100 mg/day 24 weeks)

Ongoing study 263

Diastolic Heart failure 
Anakinra Response 

Trial (D-HART) (2014)

IL-1β Stable HFpEF (12) Randomization: 
anakinra or placebo 1:1 
(100 mg/day 14 days)

Anakinra reduced hsCRP, 
and improved peak 

exercise capacity and 
quality of life score

264

Diastolic Heart failure 
Anakinra Response 
Trial 2 (D-HART2) 

(2018)

IL-1β Stable HFpEF (31) Randomization: 
anakinra or placebo 1:1 
(100 mg/day 12 weeks)

Anakinra treatment 
reduced hsCRP, increased 

treadmill exercise time 
and improved quality of 

life, albeit in absence of a 
significant change in peak 

oxygen consumption

265

Effects of Interleukin-1 
Inhibition on Vascular 
and Left Ventricular 

Function in Rheumatoid 
Arthritis Patients (2008)

IL-1β RA (23) Randomization: 
anakinra or placebo 1:1 

(150 mg/day)

Acute and chronic 
anakinra treatment 

reduced nitrooxidative 
stress and improves 
vascular and Left 

ventricular function in RA 
patients

270

Effects of Interleukin-1 
Inhibition on Vascular 
and Left Ventricular 

Function in Rheumatoid 
Arthritis Patients with 

CAD (262)

IL-1β RA and chronic 
stable CAD (80)

Randomization: 
anakinra or placebo 1:1 

(100 mg)

Anakinra treatment 
improved endothelial 
and coronary aortic 

function, ameliorated left 
ventricular myocardial 

deformation and twisting

271

Effect of Anakinra on 
Recurrent Pericarditis 
among Patients with 

Colchicine Resistance 
and Corticosteroid 

Dependence (AIRTRIP) 
(2016)

IL-1β Recurrent 
pericarditis (21)

Open-label anakinra 
followed by a double-

blind withdrawal 
step with anakinra 

or placebo until 
pericarditis occurred (2 

mg/kg per day, up to 
100 mg)

Anakinra compared to 
placebo reduced the risk 

of recurrence

126

Efficacy and Safety 
of Rilonacept for 

Recurrent Pericarditis: 
Results from a Phase II 

Clinical Trial (2020)

IL-1α/IL-1β Recurrent 
pericarditis (25)

Rilonacept 320 mg 
loading dose, followed 

by 160 mg weekly 
maintenance dose for at 

least 6 weeks

Rilonacept was safe, 
reduced background 

corticosteroid therapy, and 
led to a rapid and 

sustained improvement in 
pain, inflammation and 
health-related quality of 

life

124

Rilonacept Inhibition 
of Interleukin-1 Alpha 

and Beta for 
Recurrent Pericarditis 
(RHAPSODY) (2021)

IL-1α/IL-1β Recurrent 
pericarditis (86)

Randomization after 
a 12-week run-in 

period with Rilonacept: 
Rilonacept or placebo 
1:1 (320 mg loading 

dose, followed by 
160 mg weekly 

maintenance dose)

Rilonacept was associated 
with rapid resolution 

of recurrent pericarditis 
episodes and to a 

significantly lower risk 
of pericarditis recurrence 

compared to placebo

125

ASSessing the effect 
of Anti-IL-6 treatment 

in Myocardial Infarction 
(ASSAIL-MI) (2021)

IL-6 STEMI < 6 hours 
from symptoms 

(199)

Randomization: 
tocilizumab or placebo 

1:1 (280 mg)

Tocilizumab treatment 
reduced systemic 
inflammation and 

increases myocardial 
savage index

291
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Study
(year)

Pharmacological
target

Disease
(Total No.

of
patients
enrolled)

Study
design

Main
findings

Ref.

Trial to Evaluate 
Reduction in 

Inflammation in 
Patients with Advanced 
Chronic Renal Disease 

Utilizing Antibody 
Mediated IL-6 

Inhibition (RESCUE) 
(2021)

IL-6 Chronic Kidney 
Disease and 

hsCRP >2 mg/L 
(264)

Randomization: 
ziltivekimab or placebo 
1:1:1:1 (7.5, 15 or 30 

mg)

Ziltivekimab treatment 
reduced biomarkes 

of inflammation and 
thrombosis

292

Effects of Ziltivekimab 
Versus Placebo 

on Cardiovascular 
Outcomes in 
Participants 

with Established 
Atherosclerotic 

Cardiovascular Disease, 
Chronic Kidney 

Disease and Systemic 
Inflammation (ZEUS)

IL-6 Atherosclerotic 
Cardiovascular 

Disease, Chronic 
Kidney Disease 
and Systemic 
Inflammation 

(estimated 
enrollment 6200)

Randomization: 
ziltivekimab or placebo 

1:1 (15 mg/month)

Ongoing study 290

Abbreviations: HF = Heart Failure, HFrEF = Heart Failure with reduced Ejection Fraction, NYHA = New York Heart Association, AMI = Acute 
Myocardial Infarction, CAD = Coronary Artery Disease, hsCRP = high-sensitive C-Reactive Protein, ACS = Acute Coronary Syndrome, STEMI 
= ST-segment elevation myocardial infarction, NSTEMI = non ST-segment elevation myocardial infarction, HFpEF = Heart Failure with Preserved 
Ejection Fraction, RA = rheumatoid arthritis.
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