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Abstract 

Background:  Trimethyltin (TMT) is a potent neurotoxicant that leads to hippocampal neurodegeneration. Regula‑
tory T cells (Tregs) play an important role in maintaining the immune balance in the central nervous system (CNS), but 
their activities are impaired in neurodegenerative diseases. In this study, we aimed to determine whether adoptive 
transfer of Tregs, as a living drug, ameliorates hippocampal neurodegeneration in TMT-intoxicated mice.

Methods:  CD4+CD25+ Tregs were expanded in vitro and adoptively transferred to TMT-treated mice. First, we 
explored the effects of Tregs on behavioral deficits using the Morris water maze and elevated plus maze tests. Bio‑
markers related to memory formation, such as cAMP response element-binding protein (CREB), protein kinase C (PKC), 
neuronal nuclear protein (NeuN), nerve growth factor (NGF), and ionized calcium binding adaptor molecule 1 (Iba1) 
in the hippocampus were examined by immunohistochemistry after killing the mouse. To investigate the neuroin‑
flammatory responses, the polarization status of microglia was examined in vivo and in vitro using real-time reverse 
transcription polymerase chain reaction (rtPCR) and Enzyme-linked immunosorbent assay (ELISA). Additionally, the 
inhibitory effects of Tregs on TMT-induced microglial activation were examined using time-lapse live imaging in vitro 
with an activation-specific fluorescence probe, CDr20.

Results:  Adoptive transfer of Tregs improved spatial learning and memory functions and reduced anxiety in TMT-
intoxicated mice. Additionally, adoptive transfer of Tregs reduced neuronal loss and recovered the expression of neu‑
rogenesis enhancing molecules in the hippocampi of TMT-intoxicated mice. In particular, Tregs inhibited microglial 
activation and pro-inflammatory cytokine release in the hippocampi of TMT-intoxicated mice. The inhibitory effects of 
TMT were also confirmed via in vitro live time-lapse imaging in a Treg/microglia co-culture system.

Conclusions:  These data suggest that adoptive transfer of Tregs ameliorates disease progression in TMT-induced 
neurodegeneration by promoting neurogenesis and modulating microglial activation and polarization.
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Background
The hippocampus, an area under the medial temporal 
lobe of the mammalian brain, plays a pivotal role in the 
neurobiology of learning and memory. It is one of the 
first regions damaged in Alzheimer’s disease (AD) [1, 
2]. Hippocampal neurodegeneration accounts for the 
cognitive impairments observed in neurodegenerative 
disorders, such as AD [3]. There is a clinical association 
between hippocampal neurogenesis and cognition and 
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microglia are important effectors of hippocampal neu-
rogenesis. Activated pro-inflammatory microglia have a 
negative effect on hippocampal neurogenesis and cogni-
tive processes [4].

Trimethyltin (TMT) is an organotin compound that is 
considered a potent neurotoxicant and causes behavioral 
alterations as well as learning and memory impairment 
in mammals [5, 6]. Cognitive impairment, including 
memory loss and learning impairment, developed in 
experimental animals exposed to TMT, indicating severe 
hippocampal damage [7]. It was reported that the lev-
els of activated microglia and pro-inflammatory factors, 
such as TNFα, IL-1β, and NO were elevated in the hip-
pocampus prior to neuronal death by TMT treatment 
in rodents. Consistently, previous studies have indicated 
that microglial activation by TMT exacerbates neuronal 
death in vivo and in vitro [8–10].

Regulatory T cells (Tregs) act as immune suppressors, 
playing a role in self-tolerance and immune homeostasis. 
Immune balance in the central nervous system (CNS) is 
tightly controlled by Tregs. Previous studies suggested 
that the Tregs suppress the microglial inflammation by 
promoting polarization toward anti-inflammatory M2 
rather than pro-inflammatory M1 phenotype [11–13]. 
However, the suppressive activity of Tregs is dysregu-
lated in neurodegenerative diseases, leading to neuroin-
flammation in these diseases. For these reasons, Tregs 
are emerging as an attractive therapeutic strategy against 
neurodegenerative diseases [14, 15]. Therefore, adop-
tive cell therapy using Tregs has attracted attention as an 
individualized medicine for inflammatory diseases [16]. 
Treg cell therapy has been attempted in mouse models of 
neurodegenerative diseases such as amyotrophic lateral 
sclerosis (ALS) and Parkinson’s disease (PD) to evaluate 
its neuroprotective effects [17, 18]. In our previous study, 
we adoptively transferred Tregs into 3×Tg-AD mice con-
taining three mutations associated with familial Alzhei-
mer’s disease (APP Swedish, MAPT P301L, and PSEN1 
M146V) and demonstrated the inhibitory effects of Tregs 
on the accumulation of amyloid-beta (Aβ) and activation 
of microglia in the hippocampus [19]. Since TMT-treated 
animal models are used to study hippocampus-specific 
neurodegeneration that accompanies microglial acti-
vation, similar to that seen in AD, we aimed to confirm 
that Treg cell therapy is also effective in TMT-induced 
hippocampal neurodegeneration. Based on the effects 
of Treg therapy in other neurodegenerative diseases, it is 
expected that TMT-induced neuronal loss and behavior 
disorders will prevent through microglial activation by 
Treg transfer.

There is some evidence indicating that antigen-spe-
cific Tregs may be more efficient, so the generation and 
expansion of antigen-specific Tregs are important in Treg 

cell therapy [20]. To generate antigen-specific Tregs, we 
presented fibrillar Aβ to bone marrow-derived dendritic 
cells (Aβ-DCs) and performed ex  vivo Treg expansion 
in the presence of Aβ-DCs. In addition, to increase the 
efficiency of Treg expansion, we treated cells with bee 
venom phospholipase A2 (bvPLA2), a Treg expansion 
inducer [21]. We previously demonstrated that bvPLA2 
induced the Treg population by suppressing apopto-
sis [22]. Moreover, we reported that administration of 
bvPLA2 had neuroprotective effects on AD and PD 
mouse model [23, 24].

In the present study, we attempted to expand 
Aβ-specific Tregs and examine the effects of the adoptive 
transfer of these Tregs on behavioral deficits, memory 
formation, and neuronal loss in TMT-induced neurode-
generative mice. Furthermore, we sought to determine 
whether the effects of Tregs are associated with micro-
glial activation, which induces pro-inflammatory 
responses. Our findings would be helpful in developing 
a new treatment strategy for neurodegenerative diseases.

Materials and methods
Animals
Seven-week-old male C57BL/6 mice were purchased 
from Taconic Farms, Inc. (Samtako Bio Korea, Kyunggi, 
Korea) and Deahan Biolink (Chungbuk, Korea). The 
mice were maintained under a 12-h light/dark cycle 
and temperature-controlled conditions, with food and 
water ad  libitum. All experiments were performed 
in accordance with the approved animal protocols 
and guidelines established by Kyung Hee University 
(KHUAP(SE)-18-073).

Regulatory T cell preparation
To prepare fibrillary Aβ, 5  mM Aβ1–42 peptide (Gen-
script, NJ, USA) in dimethyl sulfoxide (DMSO) was 
diluted with 10  mM HCl to a final concentration of 
100  µM Aβ and incubated overnight (O/N) at 37  °C. 
Bone marrow (BM)-leukocytes from femurs and tibiae of 
mice were resuspended in a medium containing 20  ng/
mL granulocyte-macrophage colony-stimulating factor 
(GM-CSF; R&D Systems, Minneapolis, MN, USA) [25]. 
After 7  days, BM-leukocytes were washed with mag-
netic-activated cell sorting buffer (Miltenyi Biotec Inc., 
CA, USA) and dendritic cells (DCs) were isolated using 
CD11c+ MicroBeads (Miltenyi). The DCs were resus-
pended at a density of 2 × 105/mL and seeded in 96-well 
U-bottom plates. For antigen presentation, DCs were 
treated with 0.5 µM fibrillated Aβ for 24 h. CD4+ T cells 
from splenocytes were isolated using CD4 (L3T4) Micro-
Beads (Miltenyi), resuspended at a density of 2 × 106/mL, 
and added to the DC culture at a ratio of 10: 1 (CD4+ 
T cells: DCs) with 0.4  µg/mL bvPLA2 (Sigma-Aldrich, 
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MO, USA). Four days after CD4 T cell–DC co-culture, 
CD4+CD25+ T cells (Tregs) were isolated using MACS, 
according to the manufacturer’s protocol (CD4+CD25+ 
Regulatory T Cell Isolation Kit; Miltenyi). CD4+CD25+ 
regulatory T cells were stimulated using the Treg Expan-
sion Kit (Miltenyi) for 2 weeks. To confirm the purity of 
isolated cells and the change in phenotype, cells were 
stained with fluorescently labeled antibodies and ana-
lyzed using flow cytometry. The following antibodies 
were used (1:1000): PE-CD11c (eBioscience, San Diego, 
CA, USA) for DC purity, PE-CD4 (BD Pharmingen, CA, 
USA) for CD4 T cell purity, and PE-CD127 (eBioscience), 
PE-Cy7-CD4 (Invitrogen, CA, USA), APC-CD62L (Inv-
itrogen), and APC-Cy7-CD25 (BD Pharmingen) for Treg 
phenotype. Samples were washed with the BD FACS stain 
buffer (BD Bioscience, CA, USA) and stained for 30 min 
at 4 °C in the dark. After staining, the cells were washed 2 
times with the stain buffer. The data were acquired using 
a BD FACSlyric™ flow cytometer (BD Bioscience) and 
analyzed using BD FACSuite software (BD Bioscience).

BV2 microglia and Treg co‑culture
BV2 microglia were incubated at 37 °C with 95% humidity 
and 5% CO2 for all experiments. To examine the effects 
of Tregs on microglial polarization, 1 × 106 BV2 micro-
glia in Dulbecco’s modified Eagle’s medium (DMEM; 
Welgene Daegu, Korea) 500 µL were seeded into 12-well 
plates. After 2–3  h, Tregs were co-cultured with BV2 
cells (BV2:Treg = 10:1) and the cells were immediately 
stimulated with 3 µM TMT for 24 h according to previ-
ous study [26]. The cell culture supernatants were col-
lected for ELISA, and the remaining adherent cells were 
harvested for mRNA extraction.

Animal experiments
For TMT (Sigma-Aldrich, Steinheim, Germany) treat-
ment, the mice were intraperitoneally (i.p.) administered 
TMT (2.6 mg/kg) and randomly divided into five groups 
of 18 to 25 mice, except for the control group (n = 21) 
that did not receive TMT. After 7 days, Treg cells (4 × 104, 
2 × 105, or 1 × 106) were intravenously injected (i.v.) into 
the tail vein of TMT-treated mice. Aricept (3 mg/kg; Eisai 
Co. Ltd, Tokyo, Japan) was orally administered once daily 
for 2 weeks from day 7.

Behavior tests
Ten days after Treg injection, spatial learning and mem-
ory were examined in mice using the Morris water maze 
(MWM) test with minor modifications [27]. The water 
maze was a circular pool with a 90-cm diameter and was 
filled with opaque water containing 1  kg of powdered 
skim milk (maintained at 22 ± 2  °C). During training, a 
6-cm hidden platform was fixed 1  cm below the water 

surface. The pool was surrounded by different extra-
maze cues. The maximal trial duration was 60 s, with 30 s 
on the platform at the end of the first trial. Each animal 
was trained for one of the different starting positions and 
swimming paths once per day for 4 days. All mice were 
subjected to three trials per day at intervals of 15 min for 
4 consecutive days. For the probe trial, the platform was 
removed from the pool, and the mice were allowed to 
swim freely for 60 s to search for the previous location of 
the platform. Escape latency, time spent in the platform 
quadrant, and the number of platform crossings were 
recorded for each mouse.

The elevated plus maze (EPM) test was performed after 
the first MWM training to measure the anxiety levels 
in mice. The EPM equipment was a cross-shaped maze 
that was elevated to a height of 50  cm above the floor. 
It consisted of two opposite open arms and two closed 
arms. Mice were positioned on the central platform and 
allowed to explore the maze for 3 min.

Data were collected using a video camera connected 
to a video recorder and a tracking device (S-MART, 
Pan-Lab).

Immunohistochemistry
After the behavioral test, mice were anesthetized by 
pentobarbital (50 mg/kg, i.p.) and transcardially perfused 
with formalin and PBS. The brain was transferred into a 
30% sucrose solution, and frozen-sectioned on a sliding 
microtome into 30-μm-thick coronal sections. The brain 
sections (3–5 sections/mice) were washed with phos-
phate-buffered saline (PBS) and incubated for 10  min 
with 3% hydrogen peroxide (Sigma-Aldrich) to quench 
endogenous peroxidase activity. Nonspecific binding 
was reduced by blocking the sections with 1.5% bovine 
serum albumin (BSA; Millipore, MA, USA) in PBS for 
1 h. The sections were incubated with antibodies (1:500) 
for mouse CREB (Cell Signaling Technology, MA, USA), 
Iba1 (WAKO, Osaka, Japan), PKC (Abcam, MA, USA), 
NeuN (Abcam), or NGF (Invitrogen) for 24 h at RT. Brain 
sections were washed with PBS, incubated with a bioti-
nylated secondary antibody (Vectastain ABC kit; Vector 
Laboratories, CA, USA) for 2 h, and processed using an 
avidin–biotin peroxidase complex kit (Vectastain ABC 
kit; Vector Laboratories) for 1 h. Each marker was visu-
alized by incubation with 0.05% diaminobenzidine–HCl 
(DAB; Vector Laboratories). The labeled sections were 
mounted and analyzed under a bright-field microscope 
(Nikon) and the intensities were quantified using the 
ImageJ software (US National Institutes of Health; avail-
able at http://​rsb.​info.​nih.​gov/​ij/) as previously describe 
[28, 29]. Data were analyzed under the same conditions 
by two observers for each experiment in blinded condi-
tions to avoid the bias. Images were calibrated into an 

http://rsb.info.nih.gov/ij/
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array of 512 × 512 pixels corresponding to a tissue area. 
Each pixel resolution had 256 Gy levels, and the intensity 
of immunoreactivity was evaluated based on the ROD, 
which was obtained after transformation of the mean 
gray level using the following formula: ROD = log10 (256/
mean gray level).

RT‑PCR assay
Mice were transcardially perfused with PBS after anes-
thetization. RNA was isolated from the brain and BV2 
cells using the easy-BLUE RNA extraction kit (iNtRON 
Biotechnology, Seoul, Korea), and cDNA was synthe-
sized using Cyclescript reverse transcriptase (Bioneer, 
Seoul, Korea). The samples were prepared for real-time 
PCR using the SensiFAST SYBR no-Rox kit (Bioline, OH, 
USA). Real-time quantitative PCR was performed using 
CFX Connect (Bio-Rad, WA, USA) and the data were 
analyzed using CFX Maestro Software (Bio-Rad). The 
amplification conditions were 95 °C for 30 s, followed by 
50 cycles at 95 °C for 10 s and 55 °C for 30 s. The expres-
sion levels of each target mRNAs, 2−dCt values, were nor-
malized to those of mouse β-actin, a housekeeping gene 
used as an endogenous control [30]. Then the relative 
mRNA expression values were calculated as a fold change 
in which the mean value of the control group consid-
ered 1. The base sequences of the primers are shown in 
Table 1.

ELISA
After anesthetization, mice were transcardially perfused 
with PBS. Total protein was isolated from the brain using 
RIPA buffer (Biosesang, Seoul, Korea) with protease 
and phosphatase inhibitors (Thermo Fisher Scientific, 
CA, USA). Levels of pro-inflammatory cytokines were 
quantified using TNF-α, IL-1β, and IL-6 DuoSet ELISA 
(R&D Systems) and normalized to the levels of BSA. The 
cytokines secreted by BV2 cells were measured using 

BV2 cell culture media and TNFα and TGFβ DuoSet 
ELISA (R&D Systems). The optical density was measured 
at 450  nm using a microplate reader (Versamax Micro-
plate Reader, USA). All fold changes were expressed rela-
tive to those in the control group.

Live cell imaging
CDr20 is a microglia-specific biofluorescence probe with 
high performance for visualizing live microglia both 
in vitro and in vivo [31]. For time-lapse imaging, 5 × 104 
BV2 microglia in 1  mL were seeded into 4-well cham-
bers and cultured for 2–3 h before live-cell imaging was 
performed. Approximately 5 × 104 mouse Tregs were 
seeded onto each chamber containing microglia. Micro-
glia were continuously observed from pre-activation to 
post-activation with TMT (3 µM) treatment in the pres-
ence of 0.5  mM CDr20 (1  µM) every 3  min for a total 
of 30  min under the red fluorescent channel (excitation 
at 570  nm and emission at 600  nm). The change in the 
region of intensity (ROI) of each cell was measured for 
30 min. All observations were performed using a DeltaVi-
sion imaging system (GE, Boston, MA, USA). To assess 
the intensity of fluorescence live-cell imaging, the Soft-
WorX software (v.6.1.3, GE) was used. CDr20 was kindly 
provided by Dr. YT Chang (Pohang University of Science 
and Technology, Pohang, Korea).

Statistical analysis
All data were analyzed using GraphPad Prism 5.01 
(GraphPad Software Inc., CA, USA). The data are pre-
sented as the mean and standard error of the mean 
(SEM) where indicated. All statistical significance of each 
variable was evaluated by one-way analysis of variance 
(ANOVA), followed by Tukey multiple comparison test 
for multiple comparisons except the intensity of PKC and 
time-lapse live imaging: *p < 0.05, **p < 0.01, ***p < 0.001. 
The intensity of PKC and time-lapse live imaging were 

Table 1  The base sequence of primers for rtPCR

Primer name Forward primer sequence (5′-3′) Reverse primer sequence (5′-3′)

β-actin GTG CTA TGT TGC TCT AGA CTT CG ATG CCA CAG GAT TCC ATA CC

NOS2 CAG CTG GGC TGT ACA AAC CTT​ CAT TGG AAG TGA AGC GTT TCG​

IL-1β AAG CCT CGT GCT GTC GGA CC TGA GGC CCA AGG CCA CAG G

IL-6 TTC CAT CCA GTT GCC TTC TTG​ GGG AGT GGT ATC CTC TGT GAA GTC​

TNFα GGC AGG TTC TGT CCC TTT CAC​ TTC TGT GCT CAT GGT GTC TTT TCT​

TGFβ GAG GTC ACC CGC GTG CTA​ TGT GTG AGA TGT CTT TGG TTT TCT C

BDNF GGA ATT CGA GTG ATG ACC ATC CTT TTC CTT AC CGG ATC CCT ATC TTC CCC TTT TAA TGG TCA GTG​

Mrc1 TTC GGT GGA CTG TGG ACG AGC​ ATA AGC CAC CTG CCA CTC CGG​

Ym1 TGG AGG ATG GAA GTT TGG AC GAG TAG CAG CCT TGG AAT GT

Arg1 CTC CAA GCC AAA GTC CTT AGA G AGG AGC TGT CAT TAG GGA CAT C
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analyzed using two-tailed Student’s t-test and two-way 
ANOVA followed by Bonferroni post-tests, respectively. 
All experiments were performed in a blinded manner 
and repeated independently under identical conditions.

Results
Isolation and ex vivo expansion of Tregs
To prepare Aβ-specific Tregs, CD4+CD25+ Tregs were 
isolated after 4  days of co-culture of CD11c+ DCs and 
CD4+ T cells. After ex  vivo expansion, Tregs were 
injected into TMT-intoxicated mice (Fig.  1A). The iso-
lated cells were analyzed using flow cytometry. FACS 
analysis demonstrated that CD11c+ DCs and CD4+ T 
cells were more than 90% enriched for these subsets. 
The purity of CD4+CD25+ Tregs was greater than 97% 
(Fig.  1B). During expansion, the changes in phenotypes 
were analyzed for 2  weeks. Various subsets depend on 
the phenotype of Tregs. For example, CD62L is highly 
expressed in the naïve phenotype, and CD127, the IL-7 
receptor α chain, is considered a memory marker [32, 
33]. Some studies have suggested the importance of the 
Treg phenotype, especially the CD62L+ naïve pheno-
type, for clinical manipulation. The CD62L+ Treg subset 
is an optimal suppressor that expands far more easily in 
culture [34]. Therefore, the phenotypes of Tregs were 
divided into CD62LhiCD127low naïve, CD62LlowCD127low 
effector, and CD62LlowCD127hi memory phenotypes 
(Fig.  1C). At week 2, the transferred Tregs were mainly 
effector phenotypes (96.69%).

Regulatory T cells prevent cognitive impairments 
in TMT‑intoxicated mice
To measure the effect of regulatory T cell transfer on 
spatial learning and memory ability in TMT-induced 
mice, the MWM test was conducted. TMT–intoxicated 
mice exhibited longer latency times than control mice 
on days 2, 3, and 4. However, the latency times of Treg 
groups (2 × 105, 1 × 106) were decreased compared to 
those of the TMT group (Fig. 2A). The time spent in the 
target quadrant was also significantly increased in the 
2 × 105 and 1 × 106 Treg groups compared with those in 
the TMT group (Fig.  2B). The elevated plus maze test 
was used to measure anxiety in TMT-intoxicated mice. 
The number of entries into the closed or open arms was 
recorded. The number of open arm entries in the TMT 
group was significantly decreased compared with that of 
the control group, whereas that of the 1 × 106 Treg group 
was significantly increased compared with that of the 
TMT group (Fig. 2C, D). These data indicate that adop-
tive transfer of Tregs reverts cognitive deficits in TMT-
intoxicated mice.

Regulatory T cells improve synaptic strengthening 
and memory function in TMT‑ intoxicated mice
CREB immunostaining was performed on sections of 
the mouse brain (Fig. 3A). Remarkable losses of CREB-
positive cells in both CA1 and CA3 were observed in 
the TMT group compared to the control group. How-
ever, adoptive transfer of 1 × 106 Tregs resulted in a 

Fig. 1  Isolation and ex vivo expansion of Tregs. CD11c+ dendritic cells and CD4+ T cells were isolated from bone marrow leukocytes and 
splenocytes, respectively. CD4+CD25+ Tregs were isolated after 4 days of CD11c+ DC and CD4+ T cell co-culture and expanded for 2 weeks. For the 
in vivo study, TMT was injected into all groups except the non-treated control group. The TMT group consisted of only TMT-intoxicated mice. Aricept 
group was treated with Aricept as a positive control. For the Treg group, 4 × 104, 2 × 105, or 1 × 106 expanded Tregs were injected per mouse. After 
the behavioral test, mice were killed (A). The purity (B) and phenotype (C) of the isolated cells were analyzed by flow cytometry
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Fig. 2  Treg improved the behavioral disorder of TMT-intoxicated mice. The MWM test was performed 10 days after Treg injection. Latency time 
(s) on a hidden platform (A) and time in quadrant (%) (B) were measured (n = 10–13 mice/group). The EPM test was performed 10 days after Treg 
injection. Number of closed arm entries (C) and number of open arm entries (D) were recorded (n = 10–13 mice/group). Error bars represent the 
mean ± SEM. Significance was determined by Tukey’s HSD test (*p < 0.05, ***p < 0.001 vs. the Con group and #p < 0.05, ##p < 0.01, ###p < 0.001 vs. the 
TMT group)

Fig. 3  Treg increased the expression of CREB and PKC in the brain of TMT-intoxicated mice. Immunohistochemistry was performed for CREB 
expression in the hippocampi of TMT-intoxicated mice (A). The number of CREB-positive cells among CA1 and CA3 (B) cells was measured 
(n = 10–13 mice/group). PKC expression was assessed in the hippocampi (C), and the intensity of PKC in CA1 and CA3 (D) was measured using 
ImageJ software (n = 5–8 mice/group). Data are presented as the mean ± SEM. Significance was determined by Tukey’s HSD and t-test (*p < 0.05, 
***p < 0.001 vs. the Con group and #p < 0.05, ##p < 0.01, ###p < 0.001 vs. the TMT group)
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significantly greater number of CREB-positive cells 
(Fig. 3B). The expression of PKC, an upstream protein 
kinase that activates CREB, was measured in the CA1 
and CA3 regions (Fig. 3C). TMT intoxication reduced 
the intensity of PKC in both CA1 and CA3 compared 
to that in the control (Fig.  3D). The intensity of PKC 
in CA1 was not altered significantly following adoptive 
transfer of Tregs; however, adoptive transfer of Tregs 
increased the intensity of PKC in CA3, especially at 
doses of 4 × 104 and 1 × 106 cells/mouse.

Tregs inhibit neuronal loss in TMT‑intoxicated mice
To evaluate the effect of Tregs on TMT-induced neu-
ronal loss, mouse brain sections were stained for 
NeuN, a neuronal biomarker (Fig. 4A). The number of 
NeuN-positive cells was significantly reduced in TMT-
treated mice compared with that in the control in both 
CA1 and CA3 (Fig.  4B). All groups adoptively trans-
ferred Tregs showed more NeuN-positive cells than 
the TMT group. Additionally, the expression of NGF, a 
neurotrophic factor, was assessed (Fig. 4C). Similar to 
that for NeuN, the intensity of NGF staining that was 
significantly decreased in CA3 upon TMT intoxica-
tion was recovered upon Treg transfer (Fig. 4D). These 
results suggest that adoptive transfer of Tregs inhibits 
TMT-induced neuronal loss.

Tregs reduce pro‑inflammatory microglial activation 
in TMT‑intoxicated mice
To assess microglial activation, mouse brain sections 
were stained for Iba1, an activated microglial marker 
(Fig. 5A). The number of Iba1-positive cells in the TMT 
group was significantly increased compared with that 
in the control group, whereas that in all Treg-transfer 
groups was significantly decreased compared with that 
in the TMT group in CA3. Similar tendencies were 
observed in CA1, but the difference was not signifi-
cant (Fig.  5B). The protein levels of pro-inflammatory 
cytokines, such as TNFα, IL-1β, and IL-6, were meas-
ured using ELISA (Fig.  5C). The expression of these 
cytokines was significantly increased in TMT-intoxicated 
mice compared with that in the control. When Tregs 
were adoptively transferred, the levels of these cytokines 
showed decreasing tendencies compared with those in 
the TMT group. Next, mRNA levels in the brain were 
measured using real-time PCR (Fig. 5D). The mRNA lev-
els of pro-inflammatory microglial markers TNFα, IL-1β, 
IL-6, and NOS2 in the TMT group were significantly 
increased compared with those in the control group. In 
all Treg-transfer groups, the mRNA levels of NOS2 and 
IL-6 were significantly decreased compared with those 
in the TMT group. The mRNA levels of TNFα and IL-1β 
showed similar trends. However, the mRNA levels of 
TGFβ, Mrc1, Arg1, and BDNF showed tendencies oppo-
site to those shown by the pro-inflammatory microglial 

Fig. 4  Treg increased the expression of NeuN and NGF in the brain of TMT-intoxicated mice. Immunohistochemistry was performed for NeuN 
expression in the hippocampi of TMT-intoxicated AD mice (A). The number of NeuN-positive cells among CA1 and CA3 cells (B) was measured 
(n = 5–8 mice/group). Immunohistochemistry was performed for NGF expression in the hippocampi of TMT-intoxicated AD mice (C). The intensity 
of NGF-positive cells in CA1 and CA3 (D) was measured (n = 5–8 mice/group). Data are presented as the mean ± SEM. Significance was determined 
by Tukey’s HSD (***p < 0.001 vs. the Con group and #p < 0.05, ##p < 0.01, ###p < 0.001 vs. the TMT group)
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markers. Collectively, the results indicate that adoptive 
transfer of Tregs inhibits TMT-induced microglial activa-
tion, especially that of pro-inflammatory M1 microglia.

Tregs induce transition of M1–M2 phenotypes 
in TMT‑treated microglia
To confirm the direct impact of Tregs on microglial 
activation, we utilized murine BV2 microglia under 
TMT-induced inflammatory conditions in vitro. For live 
imaging, live BV2 cells were imaged using CDr20, a high-
performance fluorogenic chemical probe for activated 
microglia [31], during which, the intensity of the labeled 
cells was recorded for 30 min (Fig. 6A). As BV2 cells were 
activated upon TMT treatment, the intensity gradually 
increased for 30  min. However, co-culture with Tregs 
showed inhibitory effects on the TMT-induced activa-
tion of microglia. To further confirm the effect of Tregs 
on microglial polarization, the release of the pro-inflam-
matory cytokine TNFα and anti-inflammatory cytokine 
TGFβ was measured using ELISA (Fig. 6B). TNFα levels 
were higher in TMT-treated BV2 cells than in normal 
BV2 cells. Furthermore, in co-culture with Tregs, the 
level of TNFα significantly decreased, whereas that of 
TGFβ increased compared with that in TMT-treated BV2 
cells. The mRNA expression of the M1 microglial mark-
ers TNFα, NOS2, and IL-1β and M2 microglial mark-
ers TGFβ, Mrc1, and Ym1 were also measured (Fig. 6C). 
As expected, the levels of the pro-inflammatory M1 

microglial markers were increased in TMT-treated BV2 
cells, and co-culture with Tregs substantially decreased 
the mRNA expression of these markers. Conversely, the 
expression of the M2 microglial markers increased upon 
co-culture with Tregs. Taken together, these data suggest 
that Tregs modulate microglial polarization upon TMT 
treatment.

Discussion
In this study, we investigated the effects of Tregs on 
TMT-induced hippocampal neurodegeneration. We 
found that Tregs not only improved cognitive func-
tion, but also reduced anxiety in TMT-intoxicated mice. 
Moreover, Tregs inhibited neuronal loss, and the neuro-
protective effects of Tregs could potentially be attributed 
to suppression of microglia-mediated neuroinflamma-
tion. Compared with Aricept, a drug used for AD, adop-
tive transfer of Tregs was found to be similarly or more 
effective. Our study supports the potential of Treg ther-
apy for hippocampal neurodegeneration.

Tregs are considered attractive therapeutic targets for 
attenuating inflammation. Tregs play roles in inhibiting 
pro-inflammatory cytokines and inducing neurotrophic 
factors and apoptosis of pro-inflammatory microglia, 
ultimately promoting neuroprotection [35]. In a previ-
ous study from our laboratory, adoptive transfer of Tregs 
was attempted in 3×Tg-AD mice, upon which a clear 
delay in the onset of AD neuropathology was observed. 

Fig. 5  Treg inhibited pro-inflammatory factors via microglial activation in the brain of TMT-intoxicated. The expression of Iba1 was observed 
in the hippocampi of TMT-intoxicated mice using immunostaining (A). The number of Iba1-positive cells in CA1 and CA3 (B) was measured 
(n = 10–13 mice/group). The protein levels of pro-inflammatory cytokines, including TNFα, IL-1β, and IL-6, in the brain were measured using ELISA 
and calculated as a relative for Con (C) (n = 3–5 mice/group). The relative mRNA levels of pro-inflammatory microglia-associated markers, including 
TNFα, NOS2, IL-1β, and IL-6, and anti-inflammatory markers, TGFβ, Mrc1, Arg1, and BDNF in the brain were analyzed (D) (n = 3–5 mice/group). Data 
are presented as the mean ± SEM. Significance was determined by Tukey’s HSD (*p < 0.05, **p < 0.01 vs. the Con group and #p < 0.05, ##p < 0.01, 
###p < 0.001 vs. the TMT group)
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In addition, the neuroprotective effect of Tregs was dem-
onstrated, including reduction in Aβ deposition and 
microglial activation in the hippocampus. However, Treg 
adoptive transfer has never been attempted in the TMT-
induced neurodegenerative model, although it has been 
considered as a model of AD-like disease in rats [36]. 
Therefore, in this study, we transplanted Tregs into TMT-
intoxicated mice to alleviate TMT-induced hippocampal 
neurodegeneration.

For clinical application, various strategies were pro-
posed to improve the effects of Treg therapy. The most 
common method is developing antigen-specific Tregs 
instead polyclonal Tregs which may lead to off-target 
suppression. Antigen presentation could enhance the 
therapeutic utility of T cell transfer to induce target sites 
[37, 38]. Aβ is also present in the normal brain; however, 
it is misfolded and deposited in the hippocampus in sev-
eral pathological conditions such as AD. Therefore, it is 
regarded as one of the characteristics of these diseases 
[39]. Moreover, since Aβ accumulation was detected in 
TMT-intoxicated mice, we chose Aβ as an antigen for 
presentation to adoptively transfer Tregs [40]. Addition-
ally, we treated bvPLA2 during antigen presentation to 
expand the Treg population. It was reported that bvPLA2 

induces Treg population both in  vivo and in  vitro and 
significantly suppresses apoptosis in Tregs [21, 22]. 
The combination of antigen presentation via DCs and 
bvPLA2 treatment for the generation and expansion of 
Aβ-specific Tregs is an important attempt of this study. 
The effects and mechanism of action of Aβ presentation 
and bvPLA2 treatment on the efficacy of Tregs remain 
unclear. This will be investigated in a future study.

For decades, TMT-induced neurodegenerative mod-
els, especially rats and mice, have been used as good 
research tools. In the rat model, TMT administration 
induces a progressive cell death accompanied by micro-
glial activation in CA1 and CA3 like AD [36, 41]. Nota-
bly, TMT injection into mice can also cause dentate 
gyrus (DG) granular cell apoptosis. Many studies on 
TMT-induced mouse model focused on neuropathology 
in DG [42–46]. DG is the site where adult hippocampus 
neurogenesis occurs and most information of DG is sent 
to CA3 to CA1 according to the tri-synaptic pathway in 
the hippocampus [47]. Some studies reported neuronal 
self-repair following TMT-induced neuronal loss in DG. 
These data indicated that neuronal regeneration occurs 
in DG approximately 7–10  days after TMT intoxica-
tion [48–51]. Therefore, TMT has been considered as a 

Fig. 6  Treg modulates TMT-induced microglial activation and polarization. Time-lapse live imaging of BV2 microglial cells was monitored for 
30 min with a CDr20 live microglia-specific probe (A). Representative images show microglial activity at 0 and 30 min with TMT treatment in the 
presence of CDr20 under the red fluorescent channel (excitation at 570 nm and emission at 600 nm). BV2 microglial cells were co-cultured with 
Tregs and stimulated with TMT for 24 h. The secreted levels of TNF-α and TGF-β (B) were measured using ELISA with supernatants. Relative mRNA 
expression of M1 cytokines, TNF-α and IL-1β; M1 microglial maker, NOS2; M2 cytokine TGFβ; M2 microglial makers, Mrc1 and Ym1 was examined and 
normalized to actin (C). Data are presented as the mean ± SEM. Significance was determined by Bonferroni’s correction and Tukey’s HSD (*p < 0.05, 
**p < 0.01, ***p < 0.001). Scale bar = 50 μm
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toxicant that acts exclusively on DG in mice. However, 
there are several reports that TMT induced neurode-
generation was not restricted in DG. KR Reuhl and col-
leagues reported extensive degenerative and necrotic 
changes in CA3 after TMT intoxication [52]. In another 
report, IB4, a microglial marker, and Fas, an apoptotic 
molecule, were increased in CA1 after TMT intoxication 
[53]. Nevertheless, degenerative change in neurons of CA 
was unremarkable than DG, TMT has been considered as 
a neurotoxicant that selectively affects in DG [54]. How-
ever, studies on TMT-induced cognitive dysfunction have 
emerged [55, 56]. In recent studies, it was reported that 
memory impairment accompanied by neurodegeneration 
in CA induced by TMT intoxication in mice. According 
to these studies, neuronal loss was observed in CA1 even 
after 7 days of TMT intoxication, unlike in DG [57–60]. 
This implied that the timing of TMT-induced neurotox-
icity on DG and CA is different, probably it occurs later 
in CA than in DG. It is a very interesting topic that these 
events could affect the tri-synaptic circuit related disor-
ders and will be revealed in further studies. In the present 
study, we focus on TMT-induced cognitive disorders and 
molecular change in CA1 and CA3.

It is reported that TMT-intoxicated animals developed 
cognitive impairment and hyperactivity [7]. The results 
of MWM and EPM test showed that high dose of Tregs 
improved these behavior changes. But Aricept, a posi-
tive control, showed no significant effect. It is probably 
because Aricept is not an effective drug for long-term 

treatment. In fact, it has been reported that Aricept treat-
ment for 16 weeks did not improve cognitive function in 
APPswe/PS1dE9 mice [61]. These results imply that Treg 
possess a sufficient potential as a more effective treat-
ment option than Aricept.

CREB is a key molecule in synaptic strengthening, 
memory formation, and neurogenesis. It controls the 
transcription of genes involved in neuronal growth 
and survival and the lack of CREB gene results in neu-
rodegeneration. Indeed, disruption of the CREB phos-
phorylation mechanism results in a reduction in CREB 
activation following memory impairment in AD [62–
64]. Likewise, TMT-induced memory impairment was 
observed upon inhibition of CREB activation and was 
alleviated by regulation of the CREB-signaling pathway 
in the hippocampus [65]. Since CREB plays a critical 
role in short- to long-term memory, drugs targeting 
CREB itself have been proposed for memory modifica-
tion [66]. One of the molecules present the upstream of 
CREB and regulating it is PKC. Therefore, activation of 
PKC leads to CREB phosphorylation [67, 68]. In addi-
tion, PKC itself performs neurogenesis-related func-
tions, including cell differentiation and proliferation 
and immune-related processes. In a previous study, 
Bacopa monnieri (L.) Wettst. extract prevented TMT-
induced hippocampal damage via PKC [69]. NGF is also 
a neurotrophic factor that enhances neurogenesis [70]. 
We showed that TMT intoxication induced neuronal 
cell death, represented by the expression of NeuN, in 

Fig. 7  Treg has neuroprotective effects by modulating microglial polarization in TMT-intoxicated mice. Ex vivo expanded and adoptively transferred 
Tregs ameliorates hippocampal neurodegeneration in TMT-intoxicated mice. Tregs promotes microglial phenotype shift from pro-inflammatory M1 
to anti-inflammatory M2, resulting in a neuroprotective effects on behavioral deficits, memory formation, neuronal loss, and neuroinflammation
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both CA1 and CA3, whereas there was no difference 
in DG (data not shown). These results are consistent 
with the possibility of different TMT toxicity timing on 
DG and CA mentioned above. And Tregs, especially at 
high dosage, increased the expression of CREB, PKC, 
and NGF as well as NeuN. This suggests that adoptively 
transferred Tregs not only prevent neuronal loss, but 
also induce neurogenesis in the hippocampus.

Microglia are phagocytic macrophages that comprise 
10–15% of the total cells in the CNS. Since they can be 
either beneficial or harmful depending on their activa-
tion status, their polarization is considered a potential 
therapeutic target in neurodegenerative diseases such 
as AD. Classically activated “M1” microglia contrib-
ute to inflammation by secreting free radicals, NOS2, 
and pro-inflammatory cytokines such as IL-1, IL-6, and 
TNFα. Neuroinflammation amplifies microglial activa-
tion and further worsens the disease. In contrast, alter-
natively activated “M2” microglia promote tissue repair 
by releasing neuroprotective cytokines such as IL-10, 
TGFβ, and IGF1. Therefore, microglial polarization is 
considered an attractive therapeutic strategy against 
cognitive disorders [71, 72]. Indeed, there have been 
many studies that treat neurodegenerative diseases by 
shifting microglial phenotypes. Some studies reported 
behavior recovery following enhancing M2 microglia in 
not only AD, but also traumatic brain injury and spinal 
cord injury [73–75]. It is well known that pro-inflam-
matory microglial activation and cytokine secretion 
are associated with TMT intoxication [76–79]. There-
fore, we confirmed the activation and polarization 
of microglia in  vivo and in  vitro. As expected, micro-
glial activation and pro-inflammatory marker expres-
sion were increased upon TMT intoxication. However, 
Tregs inhibited the activation of M1 but enhanced M2 
microglia in  vivo. Additionally, we observed micro-
glial activation over time using time-lapse live imaging 
in vitro. TMT treatment activated microglia for 30 min, 
but co-culture with Tregs suppressed this activation. 
ELISA and RT-PCR data showed that this inhibition 
by Tregs targeted M1 microglia. Based on these in vivo 
and in  vitro results, Tregs could effectively inhibit 
microglial activations and covert microglial phenotype 
from M1 to M2. These changes in microglia phenotype 
lead to neurogenesis and ultimately improve cognitive 
impairment. It is in line with those of previous studies 
showing that Tregs modulate microglia and alleviate 
neurodegenerative disorders [11, 72, 80, 81].

Conclusions
Taken together, as shown in Fig. 7, we report that adop-
tive transfer of Tregs reduces behavioral deficits in 
TMT-intoxicated mice. Tregs inhibit neuronal loss and 

increase the expression of factors that enhance neu-
rogenesis. In particular, Tregs dramatically modulated 
the activation and polarization of microglia upon TMT 
intoxication both in  vivo and in  vitro. These findings 
support the potential of Treg therapy in hippocampal 
neurodegeneration.
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