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Abstract

Motivation: Continuous emergence of new variants through appearance/accumulation/disappearance of
mutations is a hallmark of many viral diseases. SARS-CoV-2 variants have particularly exerted tremen-
dous pressure on global healthcare system owing to their life threatening and debilitating implications.
The sheer plurality of variants and huge scale of genomic data have added to the challenges of tracing
the mutations/variants and their relationship to infection severity (if any).
Results: We explored the suitability of virus-genotype guided machine-learning in infection prognosis and
identification of features/mutations-of-interest. Total 199,519 outcome-traced genomes, representing
45,625 nucleotide-mutations, were employed. Among these, post data-cleaning, Low and High severity
genomes were classified using an integrated model (employing virus genotype, epitopic-influence and
patient-age) with consistently high ROC-AUC (Asia:0.97 ± 0.01, Europe:0.94 ± 0.01, N.America:0.92 ± 0
.02, Africa:0.94 ± 0.07, S.America:0.93 ± 03). Although virus-genotype alone could enable high predictiv-
ity (0.97 ± 0.01, 0.89 ± 0.02, 0.86 ± 0.04, 0.95 ± 0.06, 0.9 ± 0.04), the performance was not found to be
consistent and the models for a few geographies displayed significant improvement in predictivity when
the influence of age and/or epitope was incorporated with virus-genotype (Wilcoxon p_BH < 0.05). Neither
age or epitopic-influence or clade information could out-perform the integrated features. A sparse model
(6 features), developed using patient-age and epitopic-influence of the mutations, performed reasonably
well (>0.87 ± 0.03, 0.91 ± 0.01, 0.87 ± 0.03, 0.84 ± 0.08, 0.89 ± 0.05). High-performance models were
employed for inferring the important mutations-of-interest using Shapley Additive exPlanations (SHAP).
The changes in HLA interactions of the mutated epitopes of reference SARS-CoV-2 were then subse-
quently probed. Notably, we also describe the significance of a ‘temporal-modeling approach’ to bench-
mark the models linked with continuously evolving pathogens. We conclude that while machine
learning can play a vital role in identifying relevant mutations and factors driving the severity, caution
should be exercised in using the genotypic signatures for predictive prognosis.

� 2022 Elsevier Ltd. All rights reserved.
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Introduction

Continuous evolution of SARS-CoV-2 and
emergence of virulent variants have burdened the
global healthcare system at unprecedented levels.
With more than 485 million cumulative reported
cases and over 6 million causalities (worldwide),
Covid-19 continues to challenge the adequacy of
global healthcare infrastructure (https://covid19.
who.int/, accessed 1 April 2022). This has been
further complicated by the lack of knowledge
pertaining to the factors driving the severity of the
SARS-CoV-2 infection. Previous attempts have
indicated variable success in predicting the
infection prognosis using machine learning and
deep learning (interpretable as well as black-box)
methods based on the symptom profile, co-
morbidities, blood biomarkers, chromosomal-scale
length variation, epitope profiling of infected
individuals.1–6 Such efforts are important as they
lay the ground for a much-needed thought towards
predictive prognosis which may aid in mitigating the
potential burden on healthcare system. Mutations in
the SARS-CoV-2 genome have a link to the Covid-
19 virulence. While the severity of an infection is
rightly attributed to host immunity, it is well founded
that certain variants of concern (VoCs) are more
infectious owing to their mutational peculiarity.7

Identification of the key mutations, their functional
relevance or physiological consequence (infection
severity) and emergence of concerning variants of
SARS-CoV-2 has therefore become one of the
major goals of global genome sequencing efforts.8

The latter has been exceptional in the entire history
of infectious diseases as close to 10million genome
sequences have already been deposited to public
repositories like Global initiative on sharing all influ-
enza data (GISAID) (https://www.gisaid.org/,
accessed 1 April 2022). The traceability of health
status of sequencing sample donor is also apprecia-
ble, which is reflected in the large cohort of more
than 200,000 such samples (and corresponding
sequence data) deposited globally with GISAID
alone (https://www.epicov.org/epi3/, accessed 1
April 2022). Given the large scale of such ‘labelled’
datasets, an ample ground for obtaining clinical
intelligence by employing biology-informed data
science methods is eminent.9–10 Supervised
machine learning approaches can potentially learn
important mutation signatures from these labelled
sequences of SARS-CoV-2 genomes and guide
prediction of infection severity based on observed
mutation signatures.11 Concerted efforts are there-
fore required to utilize not only the existing methods
rooted in biology (e.g., employing the symptom pro-
file, family history, genetic predisposition, sequence
analysis, phylogenetics, structural biology, etc.), but
also apply unconventional data driven approaches
that have conventionally and consistently been pro-
ven to yield actionable intelligence in a domain
agnostic fashion.12–14 As rightly quoted in a news
2

piece published in Nature last year, “scientists can
spot mutations faster than they can make sense
of them”.15 This situation has only aggravated fur-
ther with identification of hundreds of thousands of
unique mutations in over 9 million SARS-CoV-2
genome sequences shared by researchers from
across the globe through GISAID as on 1 April,
2022.16

Like humans, machines or computers can learn
from experience. For machines, this experience is
derived from the data, which could be labelled or
unlabeled. While labelled data refers to the data
which is well annotated (e.g., blood biochemistry
of diseased and healthy individuals), unlabeled
data refers to a data without any ancillary
information (e.g., blood biochemistry of unknown
samples). These two available forms of data drive
the two important types of machine learning
approaches, namely, unsupervised and
supervised machine learning methods.17 Unsuper-
vised algorithms, like Principal Component Analysis
(PCA) and t-distributed stochastic neighbor embed-
ding (t-SNE), aim to decipher unobserved patterns
in the unlabeled data and potentially group the input
data points based on patterns of similarity. On the
other hand, supervised algorithms, like decision
trees and logistic regression, are built on an
assumption that there exists a relationship between
the input data and their labels, and are therefore
aimed at inferring the said relationship. The latter
class of machine learning algorithms are therefore
cornerstone of predictive analytics and through this
article we intend to highlight the possibilities and
bottlenecks of predictive prognosis of Covid-19
infection by exploiting the large scale ‘labelled gen-
ome sequence’ data. Importantly, we highlight the
applicability of a now emerging facet of machine
learning – ‘explainable machine learning’18–20 in
identifying the mutations of interest, which can sig-
nificantly aid the global efforts in understanding
the molecular evolution of SARS-CoV-2. Figure 1
provides a graphical summary of the underlying
idea of (machine) learning the labelled genome
sequence (and mutation) data of SARS-CoV-2,
developing severity predictor(s) and using explain-
able machine learning to identify mutations of
interest.
However, caution must be exercised in reporting

the accuracies and clinical applicability of
predictive models, especially where model
features (mutations or symptoms) are not
expected to exhibit a temporally stable
profile.11,13–14 Current approaches, in addition to
over speculating the goals of predictive model
development, under-utilize the large label space
for infection outcomes.11 While the former leads to
over-ambitious speculation on clinical applicability
of machine learnt models (trained using reported
mutations or symptoms in the past) in predicting
infection severity; the latter (under-utilized label
space) under-estimates the span of significant
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Figure 1. Exploring utility of machine learning in capturing the mutation signatures of SARS-CoV-2 for
predicting severity outcomes. Mutation profile in a given SARS-CoV-2 genome is an important feature that may
drive the course of infection. This can be engineered into derived features like epitope load created by the features. A
numeric encoded (presence-absence) matrix of observed mutations along with patient age/gender/geography
information for each genome can serve as an input data for machine learning (ML) methods. Supervised machine
learning may therefore potentially enable prediction of infection severity by analyzing the patterns of important
mutations in the large number of sequenced genomes and in the process, particularly through explainable machine
learning techniques, enable identification of key features including mutations that drive the prediction.
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mutations of concern. It is therefore prudent to
acknowledge the limitations of a predictive progno-
sis exercise while trusting its ability to guide the pre-
diction goals by identifying the mutations of
interests from reported severity labelled genomes
of SARS-CoV-2.
The main goals of our present work are (i)

exploring the utility of machine learning towards
viral-genotype based predictive model
development for infection prognosis, using the
patient health status labelled genome sequences
of SARS-CoV-2 and (ii) contributing fundamental
knowledge towards the utility of machine learning
in deciphering the latent molecular signatures and
other factors driving the severity. Notably, these
goals, rooted in machine learning, are different
from probing the hypothesis tested association of
viral clades or individual mutations to different
severity outcomes. The latter (class comparison
through hypothesis testing) is fundamentally
different from class prediction (through machine
learning) but has previously yielded interesting
insights into the relationship of infection severity
with the genotype of evolving virus (captured in
the phylogenetic clades).21 Corroborating the previ-
ous observations across geography/country speci-
fic viral clades and their potential severity
association (e.g. GR clade by GISAID clade defini-
tion being predominantly observed in low severity
cases and GK clade in low severity cases of Europe
3

and North America), through Pearson’s Chi-
squared test of independence for observed distribu-
tions (Supplementary Table 1,2), we try to dig dee-
per by probing for the ability to predict the infection
severity using supervised machine learning and, in
the process infer mutations and features of interest
(including predictive contribution of clades).
We adopted a graduated approach of building

multiple machine learning classifiers to gauge the
predictive power of SARS-CoV-2 mutation
signatures towards prognosis of a Covid-19
infection. It involved an initial (data cleaning)
exercise of manually curating the patient health
status into incremental severity levels namely, (i)
Asymptomatic (ii) Mild (iii) Moderate (iv) Severe
and (v) Fatal. These were grouped into two
primary classes of Low and High severity
genomes as well. The entire mutational landscape
of the genomes in the cleaned data was analyzed
for quantifying its potential epitopic influence (e.g.
epitopic load and VaxiJen score,22 as detailed in
the Methods section). Patient age, viral genotype
and epitopic influence informed integrated feature
space based binary classifiers (models) for Low
and High severity health statuses, were able to cor-
rectly recall genome sequences causing high
severity symptoms with greater than 0.92 ROC
AUC in all cross folds across all major geographical
regions of the world. Same was observed for an age
informed genotypic model. Notably, age or epitopic



S. Nagpal, Nishal Kumar Pinna, N. Pant, et al. Journal of Molecular Biology 434 (2022) 167684
influence alone couldn’t yield models as robust as
the combined feature space of age/epitopic influ-
ence and genotype together. Furthermore, across
all geographies (except Africa with sample insuffi-
ciency), the Asymptomatic vs Fatal binary classifier
using integrated feature space was able to consis-
tently classify the target classes with > 0.94 ROC
AUC across all cross folds. The observations of
model performances were gender agnostic. An
interesting observation however pertained to the
ability of models, developed using only age and five
quantified metrics for potential ‘epitopic and poten-
tial antigenicity’ influence of mutations (Methods
section 2.1), to predict severity with good accu-
racy/ROC AUC (>0.8 ROC AUC) as described
later. This, we opine, opens possibilities for tracing
severity outcome by transforming the entire muta-
tional space of the genomes (at any time point in
evolution) into potential metrics of antigenicity/epi-
topic consequence (derived from total epitopic load
and VaxiJen scores in our research).
The important mutations were inferred from the

high accuracy genotype incorporated models
using SHapley Additive exPlanations (SHAP), a
concept adopted from coalitional game-theory but
frequently being employed for interpretable
machine learning.20 In order to arrive at mutations
of interest among these machine-learnt mutations,
analysis of (statistically significant) influence on
HLA interactions was probed.3,23 In addition, these
were surveyed against the literature evidences per-
taining to mutations observed in variants of concern
(VoCs). Many of the identified mutations of interest
from the machine learning exercise were observed
to have significant impact on epitopic load and con-
sequent interactions with population specific HLA
alleles. An additional temporal modeling exercise
benchmarked the suitability of non-temporal valida-
tion strategies which are currently being adopted to
report mutation based predictive prognosis (ML
based) methods. We argue that while non-
temporal machine learning methods are well adapt
for identifying themutation signatures, their applica-
bility for predictive prognosis, when using genotype
(which can potentially change with the evolving
virus) should be cautiously reported (and adopted).

Methods

Mutation profiles

A total of 199519SARS-CoV-2 sequences
labeled with patient status information were
obtained from Global Initiative on Sharing Avian
Influenza Data (GISAID). Details of downloaded
genomes are provided in acknowledgement
section (as per GISAID data sharing policy). The
complete genome sequence of coronavirus-2
isolate (Wuhan-Hu-1) corresponding to NCBI
Genbank accession NC_045512 (GISAID ID
EPI_ISL_402125) was employed as the reference
(REF.fa) for the purpose of mutation profiling.
4

Fasta files corresponding to each of the
downloaded individual genomes (INPUT.fa) were
mapped on the reference genome using
minimap224 with the following flags:

minimap2 --cs -cx asm5 INPUT.fa REF.fa > OUT.paf

The generated PAF (pairwise alignment format)
files were subsequently used for variant calling
through the paftools.js module in minimap2
package using the following command in a Linux
environment:

Sort -k6,6 -k8,8n OUT.paf | paftools.js call -l 200 -L
200 -q 30 -f REF.fa > input.vcf

Amino acid changes corresponding to the
identified nucleotide variations were predicted
using BCFtools/csq program.25 In total, 45,625
unique nucleotide mutations were identified in
199,519 high quality genome sequences down-
loaded from GISAID (fulfilling the high coverage,
complete sequence and low coverage exclusion cri-
teria of GISAID).
The mutation vector for all the genomes was

numeric encoded to create a 199519 � 45,625
matrix of nucleotide mutation data. This matrix
was processed using a prevalence filter to trim the
mutations that occur in less than 10 genomes
across the entire data. This resulted in a
198935 � 14885 matrix. Subsequently, in order to
capture the contextual neighborhood (e.g., codon
context) and functional consequence (e.g.,
synonymous, missense, UTR, stop codon, etc.)
we transformed the entire dimension of mutations
into N-grams (monograms, bi-grams and tri-
grams) along with the annotation of functional
consequence (e.g., TTTTTGGGTG21980T_infram
e_deletion_Spike, G28280C_A28281T_T28282A_
missense_Nucleocapsid, G28881A_G28882A_mis
sense_Nucleocapsid, etc.). This resulted in a
mutation consequence and context informed
space of corresponding genomes, represented in
the 198935 � 15313 matrix of mutation data, post
which genomes were filtered based on the label
quality (described below).
Data cleaning and choice of target outcomes
for prediction

Based on the goal of predicting Covid-19 severity,
we sought to initially identify unambiguous patient
health status labels among the � 200,000
genome sequences. This was intended to ensure
definitive assessment of severity levels without
noise which would be important for developing
reliable models (avoiding the ‘garbage in, garbage
out’). Consequently, we ignored genomes
pertaining to ambiguous labels (like Hospitalized,
Inpatient, Outpatient, Released, etc.), as they do
not provide conclusive indication of health status.
Our stringent criteria of data selection ensured
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retention of 30,556 genomes after removing
ambiguous or noisy labels for the study.
Consequently, the mutational data was filtered
down to a matrix of size 30556 � 12477. Since it
was crucial to perform training on a consistent set
of genomes for statistical comparability of
performance of different models, we further
omitted the genomes without age information,
thereby resulting in a 21301 � 12117 matrix. Age
imputation for missing data points was avoided to
ensure confidence in model training.
Given our goal to assess prediction of

incremental severity levels, SARS-CoV-2 genome
sequences pertaining to 5 unambiguous target
outcomes namely, Asymptomatic, Mild, Moderate,
Severe and Fatal, were stratified for the study.
These chosen genomes were then segregated
into Low and High severity categories based on
the reported health status (e.g. status pertaining to
mild or asymptomatic or symptomatic, moderate
symptom associated genomes was tagged as Low
severity while those leading to fatality or very
severe symptoms were all labelled as High
severity genomes). It may be noted that
‘Symptomatic’ label was the only apparently
ambiguous class of sample that was employed (in
later phases of study, post data analysis). This
was done after observing a high classification
accuracy between Symptomatic class and the
unambiguous labels (especially Asymptomatic,
Mild and Fatal outcomes), hinting towards a
potential employability of this class as Moderate
outcome (a label which has not been used often in
the patient status data). We however report
results by omitting the genomes labelled with
‘Symptomatic’ status as well. This led to the total
target space of incremental severity prediction to
five labels or disease outcomes: (I) Asymptomatic
(II) Mild (III) Moderate (IV) Severe and (V) Fatal
(Figure 2). Caution however must be exercised in
conclusive interpretation of ‘Symptomatic’ label as
moderate, and it is recommended that
unambiguous labeling be preferred over
ambiguous labels.

Choice of machine learning strategy
Unsupervised machine learning exercise. In
addition to the primary goal of exploring
supervised machine learning based mutation
inference and predictive prognosis, a preliminary
unsupervised learning of segmentation between
genome groups (based on associated disease
outcome) was attempted using the non-linear t-
Distributed Stochastic Neighbor Embedding (t-
SNE), Principal Component Analysis (PCA) and
Uniform Manifold Approximation and Projection
(UMAP).26–27 The three methods were chosen to
explore the consistency in observed patterns (if
any). This was done for all datatypes (as described
later) from all geographical regions for which quality
5

filtered and unambiguously labelled genomes were
available (i.e., Europe, North America, Asia, Africa
and South America) to minimize any geography dri-
ven confounding effect. Separate analysis was also
performed for the available gender information of
the patients to account for the effect of gender as
a confounder. The purpose of this exercise was to
explore and visualize the large number of genomes
and to obtain an initial intuition for the role of muta-
tion signatures in segregating genomes in the
space of reduced dimensions. All three methods
were adopted from the implementations available
in the yellow brick library of python (Supplementary
File 1).
Supervised machine learning exercise. Given
the non-linear nature of the label encoded
mutation data, we chose decision tree learning
approach for the machine learnt model
development and used the well-founded highly
efficient gradient boosted tree system of XGboost
algorithm.28 The choice of XGboost algorithm, apart
from its efficiency, flexibility and portability, is also
rooted in the optimized and fast integration of Shap-
ley20 value assessment for feature importance
extraction from the gradient boosted models of
XgBoost (https://github.com/slundberg/shap/). The
latter, as introduced later, is critical for inferring
important mutations in order to guide subsequent
identification of mutations of interest, which is a
key goal of this study. It may however be noted that
a preliminary exercise of testing the performance of
different machine learning algorithms, including
random forest, support vector classifier, logistic
regression, chain classifier and AdaBoost was also
performed. However the performance was compa-
rable XgBoost which is highly time efficient for
SHAP coupled analysis. The gain of performance
through hyper-parameter tuning was also moni-
tored and was observed to be comparable to default
XgBoost parameters. The results of the trials of dif-
ferent algorithms and tuning approaches have not
been included in this report for brevity. Notably, as
performed for unsupervised machine learning, all
models of supervised machine learning approach
were developed independently for various geo-
graphical regions and gender groups to avoid con-
founder bias arising due to these underlying
differentiators of the patients.
Having chosen XgBoost for machine learning, it

was prudent to adopt the classification strategy.
Given the binary (Low and High severity) and
multi-class (five incremental outcomes) nature of
patient-status labels, we adopted two approaches
for developing unified model(s) to probe predictive
power for disease outcomes:

a) Binary classification of non severe and severe
outcomes

https://github.com/slundberg/shap/


Figure 2. Summary of the label cleaning exercise and the size of desired label space for SARS-CoV-2 genomes.
The figure represents statistics before trimming the genomes that lacked patient-age information.
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The initial broad categorization of data into Low
and High severity outcomes was rationally
processed through a binary classification routine
using XgBoost. The single model developed using
this data therefore aimed at predicting a non-
specific severity level by scanning the input
feature space associated with the patients (virus
genotype, age, epitopic influence, etc.).
6

b) Multi-classification using the One-vs-One and
One-vs-Rest approach

We employed the two commonly adopted
strategies for arriving at multi-class predictors of
five chosen target outcomes.29 The first strategy
used One-vs-One (OVO) approach, wherein dis-
criminant functions were developed for all possible
binary combinations of classes (n(n � 1)/2 or
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5(5–1)/2 = 10 models in present case for each data-
type (i.e., age/genotype/integrated etc.), as well for
each confounder (i.e., geography/gender). On the
other hand, in the second strategy of utilizing One-
vs-Rest (OVR) approach, discriminant functions
were developed for each individual class by treating
rest of the data as opposing single-class of samples
(n or 5 models in the present study for each
datatype/confounder). Both these approaches
aimed at developing a single model for predicting
one among all the target incremental classes by
ensembling the underlying binary predictors.
The datatypes employed for each exercise of

model development (across geographies/genders)
were of three types (i) patient age (ii) virus
genotype (mutation profile) and (iii) five metrics of
potential antigenicity or epitopic influence of
mutations (details in the next section – 2.3.3).
Each of these data types were employed for
supervised machine learning in three settings (i)
Independent (ii) Coupled (iii) Integrated. The
independent setting employed only one datatype
for developing the predictive models. Coupled
setting employed a pair of datatypes (e.g., patient
age and virus-genotype) and integrated setting
employed all datatypes for model development.
Additionally, GISAID clade information of the
genomes was also employed for probing utility in
severity prediction through machine learnt model
development. Clade information was not
integrated into genotype data in order to avoid
bias arising out of already embedded mutational
information in clade definitions. It was however
coupled with age to probe predictive-performance
changes. The statistical significance of the
differences observed in model performances was
computed for each model pair.
Engineering a reduced functional feature space
from entire mutational dimension. Given the
plurality of mutations fed to the genotype driven
models, it may be expected that the resultant
model, even if efficient, may or may not be simple
and general enough for capturing signatures of
severity. This is particularly true for mutations
which may appear as a result of the evolution and
which were never captured during training. It is
therefore important to use or engineer features
which are more functional and less structural or
compositional in nature. To this end, we attempted
to reduce the entire mutational dimension of the
labelled genomes into their epitopic influence and
tried to compute potential metrics of functional
consequence of the mutations in each genome.
The underlying assumptions, concept and
methodology of the approach is as follows:
Viral epitopes that are crucial for immune

response against SARS-CoV-2 can be altered by
mutations causing changes in their amino acid
signature. These changes may lead to an
alteration in their antigenicity which can ultimately
7

affect the immune response against the virus.
Such alterations were examined by mapping
mutation profile of SARS-CoV-2 genomes to a set
of epitopes predicted using worldwide pool of HLA
alleles. 487 predicted T-cell epitopes (from
reference SARS-CoV2 genome) were obtained
from the study by Bose et al.23 Mis-sensemutations
observed in the � 30000 genomes obtained from
GISAID were mapped with these epitopes to gauge
changes, if any, in the said epitopic regions due to
the observed mutations in all these genomes. The
reference epitopes as well as the peptides (potential
variants of reference epitopes), obtained as a result
of the mutations, were subjected to prediction of
their potential antigenicity (indexed by the VaxiJen
score) using VaxiJen server (https://www.ddg-
pharmfac.net/vaxijen/VaxiJen/VaxiJen.html). The
peptides with length less than eight amino acids
were not able to generate a VaxiJen score and
hence were not considered. Difference between
the VaxiJen score for each (mutated) peptide as
well as the corresponding reference epitope was
computed. Total epitopes affected by the mutations
present in each genome (Epitopes_n), number of
epitopes with a potential increase in antigenicity
(i.e. increased VaxiJen score with respect to the ref-
erence, Epitopes_pos), number of epitopes with a
potential decrease in antigenicity (i.e., reduced Vax-
iJen score as compared to the reference, Epi-
topes_neg) and cumulative excess Vaxijen score
of Epitopes_pos (Pos_Vax) as well as cumulative
reduced VaxiJen score of Epitopes_neg (Neg_vax),
were calculated for each genome. This derived fea-
ture space (Epitopes_n, Epitopes_pos, Epi-
topes_neg, Pos_Vax and Neg_Vax) was
subsequently employed to train models in various
settings as described previously. Supplementary
Table 3 represents a sample of the total employable
feature space for machine learning exercise.

Training and evaluation

Throughout the study, it was ensured that sample
size distribution was equated to the size of minority
class population during the model development
process in order to avoid unfair learning due to
bias arising from skewed sample sizes
(unbalanced classes). The data with equal
proportion of all classes was split into training and
testing sets using stratified splitting into 80:20
proportion. In other words, while models were built
using 80% of the data, testing of models were
performed based on the remaining 20% held out
testing set. A stratified 10-fold cross validation was
also performed for each model (using the 80%
training data) to evaluate the model performance
and to ensure that models are not overfitted.
Accuracy (average accuracy for cross validation),
Precision, Recall, ROC AUC, F1-score and the
confusion matrix were assessed to evaluate the
models in terms of quantifiable metrics.
Classification reports were generated for each of
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the model consisting of important features
(mutations) contributing to model accuracy,
confusion matrix, precision-recall-f1 report for each
outcome and AUC ROC plot. Each individual
model’s mean ROC value was subject to one
sample Wilcoxon test to test the null hypothesis
(l = 0.5 ROC) that there is no discriminative power
in the models whose performance is reported. BH
correction was employed for adjusting the
observed p-values given the multiple-testing.
Comparison of models

As there were three primary feature types (age,
virus-genotype and epitopic influence), it was
prudent to note the statistical significance of
model performance enhancement (or
depreciation) in presence or absence of one or
more of the feature types with respect to each
other. Towards this goal, provisions for Wilcoxon
signed rank test were enabled (through retention
of state of the function calls for data splits) while
performing stratified k-fold cross-validation of
every model in the study. Wilcoxon signed rank
addresses the violation of independence between
individual observations of model performances
during cross-validation. Since a paired t-test on
cross-validation performance of two models is
known to have high type 1 error but avoids type 2
error, it was prudent to use it (as well) for testing
the hypothesis that there is no difference between
models being compared.30 For both the testing
strategies, Benjamini-Hochberg (BH) procedure
was employed for correcting the p-values. The lat-
ter, notably, corrects for type 1 error.
Identifying mutations that guide the prediction

Inferring mutations of interest first requires
identification of important mutations (features) that
contribute towards the outcome of the model. For
this purpose, manually developed (outside the
one-vs-one framework of sci-kit learn library of
python) individual binary models/classifiers (using
genotype and age informed genotype feature
space) for all possible pairs of disease outcomes
were employed. We employed a three-step
strategy to identify important mutations for each of
the models. The first strategy included creation of
a union of model reported important mutations
from each iteration of 10-fold cross-validation, in
which multiple models were developed across 10
iterations. A union of mutations with non-zero
model linked importance helped in identifying a
significantly smaller but important set of features
that control the predictive capability of the final
model. Once a sparse set of mutations were
identified, in the second strategy, Shapley20 values
for each of the features were computed. The con-
cept of Shapley values is originally from coalitional
game theory for optimal distribution of game-
payout to the team players.20 However, this concept
8

has grown popular in the domain of machine learn-
ing for assigning outcome contributions to the con-
stituting features (players) of the model towards a
given prediction (model payout).18–20,31–32 Shapley
values > 0 were therefore used for identifying the
features (mutations) contributing to the positive out-
come (High in case of Low vs High severity predic-
tion) and values < 0 were used to get important
features contributing to the negative outcome
(Low in case of Low vs High). Subsequently, all
SHAP values of the model linked mutations were
plotted using a Bee-swarm plot for visual inspection
of the contribution of each mutation to the disease
outcome. Among these, top 20mutations from each
model were retained for performing a union with
mutations from all trainedmodels. Given that recog-
nition of epitopes by the Human Leukocyte Antigen
(HLA) system plays a vital role in T-cell immune
response against pathogens, potential epitope vari-
ants (peptides) resulting from the union of mutations
were selected for assessing the consequent
change in immune recognition ability of HLA alleles
to recognize SARS-CoV2. For this, all potential vari-
ants of SARS-CoV2 epitopes corresponding to
MHC class I (CD8) and MHC class II (CD4) were
subjected to binding affinity prediction with the set
of 342 most frequent HLAs present in worldwide
populations.23 Epitope prediction tools NetMHCpan
4.1a (https://www.cbs.dtu.dk/services/NetMHC-
pan/index_4.1a.php) and NetMHCIIpan 4.0
(https://www.cbs.dtu.dk/services/NetMHCIIpan/)
were used for MHC I and MHC II variants respec-
tively to obtain the prediction score of these pep-
tides with the set of target HLA alleles. Default
parameters of the tools were used for this process.
Peptides with high prediction score (>0.95) were
retained and identified as variants of reference epi-
topes (VREs).
To get estimates of allele frequencies of each

geography, geography-wise cumulative allele
frequencies of the chosen 342 alleles were
computed by taking population-wise frequencies
of the alleles from the study by Bose T. et al
[Supplementary Table 5 of Bose T. et al].23 The
data depicted in the cited study was obtained by
combining frequency data from the Allele Fre-
quency Net Database and the 1000 Genomes Pro-
ject.33 Weighted allele frequencies for the four
geographies of interest (Asia, Europe, Africa, North
America) were calculated by summing up the pro-
duct of frequencies of each allele in a population
(belonging to the respective geographical region
of interest) with the total number of samples present
in that population. Resulting value was then divided
by the sum of samples present in each population of
a geographical region to obtain the final cumulative
frequency for each geography. Combined fre-
quency of reference and variant alleles was then
computed by combining the cumulative frequencies
of the alleles of each geography that were able to
recognize the listed epitopes or VREs. At every step

https://www.cbs.dtu.dk/services/NetMHCpan/index_4.1a.php
https://www.cbs.dtu.dk/services/NetMHCpan/index_4.1a.php
https://www.cbs.dtu.dk/services/NetMHCIIpan/
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of mutation set filtration (from creating union till find-
ing high affinity VRE causing mutations) the cumu-
lated sum of the occurrence of each mutation, in
each geography (as well across the globe), in low
and high severity causing genomes, was counted.
This distribution of frequencies was subjected to
Pearson’s chi-square test for significance of
observed association of distributions. We also sub-
sequently performed a genome wide association
study using treeWAS34 on training datasets with
ordered mutational profile for genomes of individual
geographies employed for Low/High severity pre-
diction. This was intended for performing an unbi-
ased search for mining significant associations
between the Low/High severity outcome associated
with each genome and its genotype. Notably
though, the goal of this exercise was to report com-
mon signatures picked by ML exercise and GWAS
exercise. Neither of these are intended to support
or oppose the fundamentally different methodolo-
gies rooted in the said exercises. It is therefore pru-
dent to appreciate that statistical significance
doesn’t necessarily imply predictivity and vice
versa. Features which are observed to be statisti-
cally significant may or may not have high predictive
value and features perfected by the ML methods
(e.g., rigorous gradient boosting routines of
XGBoost) for making a reliable prediction may not
necessarily pass the standard measurements and
thresholds of p-values of hypothesis testing. Addi-
tionally, feature tables and GFFs for each individual
protein in the reference SARS-CoV-2 genome
(https://www.ncbi.nlm.nih.gov/nuccore/NC_
045512) were downloaded and curated to create a
map of the mutation loci against the genomic region
specific to the protein(s) for the mutations of inter-
est. This ensured that the fundamental information
pertaining to the genomic/ structural context of the
identified mutations is available. This was followed
by the literature mining of the SARS-CoV-2 case
reports as well as mutations observed in variants
of concern (VoCs).

Temporal validation

As discussed previously, a reliable model for
predictive prognosis should ideally be
benchmarked on unobserved ‘chronologically
recent’ data which was not included in the training
of the model. This would validate the suitability of
proposed models for clinical implementation
wherein the viral genome is expected to
continuously evolve and accumulate new
mutations. Given that it is well founded that
SARS-CoV-2 has been evolving with time, an
unconditional applicability of models learnt on past
data (mutation profiles) must not be assumed.
We therefore devised a chronological data

sampling technique with incrementally increasing
time windows to test models trained on historical
data against a held out unobserved data from a
future time-period. For this purpose, entire data
9

(specific to the target outcomes) was first sorted
according to the date of collection of samples
(only those samples were selected for which
complete date of collection was available –
including the day, month and year of collection)
and multiple held-out test-datasets were created
using the chronologically recent subset of data
windows. The incremental time window approach
was used to create the future test data for
observing the effect of time-gap on model
performance (where time gap refers to the time-
duration between the sample collection day of
latest data record used in the training data and the
oldest data record of test data). Increase in time
gap was approximated by reducing the number of
old samples (close to the date of collection of the
most recent training sample) in the test data
without changing the size of training data. Each
test window was however kept the same size as
previous window. It was important not to change
the size and content of the training data to ensure
that variations in the performance of model are
only time driven (and not training data or size
driven). Given the high performance observed for
Asymptomatic and Fatal outcomes in non-
chronological data sampling approach, binary
model specific to Asymptomatic-Fatal combination
was employed for temporal validation across Asia,
Europe and North America (Africa and South
America were not considered due to sample
insufficiency). Accuracy and ROC AUC values for
each time-gap based model development exercise
were compared for assessing the importance of
time as a confounding factor in developing
accurate models of predicting the prognosis of
SARS-CoV-2 infection using mutation signatures.
The data splits were created to ensure that three
held out test-datasets, each of � 50% the size of
training data each were created. Each test data
had a greater average time gap with respect to
the most recent sample in the training dataset.

Databases, tools and implementation

Supplementary Table 4 provides the details of
various key resources including databases, tools
and packages employed in this study. Additionally,
in an attempt to conform with TRIPOD guidelines,
the workflow employed has been provided in the
Supplementary File 1. This can seamlessly be
plugged to any machine learning framework to
enable development of customized models,
updating existing models and testing thereof using
a simple tabulated form of mutation lists (provided
by platforms like GISAID). All machine learning
related analyses were performed on an AMD
Ryzen 5 laptop with 4 cores and 8 logical
processors, 2.1 GHz and 8 GB RAM. The genome
wide association study using TreeWAS was
performed on a 20 core Xeon 51 series 2.4 GHz
machine with 64 GB RAM to accommodate the
memory and computational requirements. The

https://www.ncbi.nlm.nih.gov/nuccore/NC_045512
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512


S. Nagpal, Nishal Kumar Pinna, N. Pant, et al. Journal of Molecular Biology 434 (2022) 167684
latter was observed to fail due to resource
constraints of the standard laptop used for ML
exercise.

Results

Unsupervised learning provides cues to key
factors discriminating the disease outcome

It was interesting to observe that while virus-
genotype displayed partial signs of discriminative
power (through t-SNE, PCA and UMAP based
spatial distribution of genomes – Supplementary
Figure 1 and 2(a-j)) towards low/high severity
outcome, the discrimination ability was evidently
distinct when age was integrated to the genotypic
data, in a geography and gender agnostic manner
(Supplementary Figure 1 and 2(a-j)). Age of
patient and epitopic consequence information,
when coupled to virus genotype (creating an
integrated data), were consistently able to spatially
segregate the genomes according to their severity
association (Supplementary Figure 2(a-j)). The
engineered feature space of epitopic influence
alone displayed some signs of discrimination, but
the same were not comparable to segregation
achieved by genotype, age informed genotype, or
integrated data (Supplementary Figure 2(a-j)).
Interestingly, age informed epitopic influence
alone (total six features) provided encouraging
evidence of spatial segregation providing cues to
the suitability of a transformed mutational space
(especially pertaining to epitopic load or influence)
when coupled to patient age for predicting severity
of an infection (Supplementary Figure 2(a-j)).
Clade information was observed to exhibit some
power of discrimination (albeit not as evident as
genotypic information), which improved when
coupled with the age information of the patients
(Supplementary Figure 2(a-j)). Expectedly, as
evident in Supplementary Figure 3, multiclass
labeled samples were segregated in a manner
that genomes pertaining to fatal class were clearly
distinct as compared to other severity levels (i.e.,
asymptomatic, mild and moderate). The genomes
pertaining to severe class (sample insufficiency in
each geography) were omitted in multi-class case,
as our approach aimed at stratified and balanced
sampling of genomes from each class of severity
label.

Supervised machine learning for unified multi-
class classifier shows limited success, binary
models show encouraging signals of
discriminative power
Mutations and their consequence indeed drive
the Low-High severity outcomes. Binary models
developed using SARS-CoV-2 genome
sequences associated with Low and High severity
of infection revealed high but differential
10
classification accuracy across 10 fold cross-
validations (0.90 ± 0.02, 0.81 ± 0.03, 0.77 ± 0.04,
0.9 ± 0.09, 0.84 ± 0.05)) and an encouraging
ROC AUC 0.97 ± 0.01, 0.89 ± 0.02, 0.86 ± 0.04,
0.95 ± 0.06, 0.90 ± 0.04 using the observed virus
genotype alone (mutation data) in the different
geographical regions of Asia, Europe, North
America, Africa and South America, respectively.
Enhancement of feature space by including
patient age and/or epitopic influence of the
mutations marginally improved the predictive
performance and consistency in high predictivity
across all geographies (Figure 3, Supplementary
Table 5–7). The gain in performance was not
statistically significant though (Wilcoxon paired
p > 0.05, BH corrected, Supplementary Table 7).
Notably, neither of the age or epitopic
consequence alone could outperform the
performance of an integrated or in-silo model
(Wilcoxon paired p < 0.05, BH corrected) based
on virus-genotype (untransformed mutational
space) as summarized in Figure 3 and
Supplementary Table 7. Importantly, the
integrated model consistently outperformed (or
performed as good as) other models across all
geographies. These trends were consistent not
only across geographies, but also for gender
(Boxplots in Supplementary File 2,3,
Supplementary Table 8,9). Clade information
alone displayed better classification ability than a
random classifier, however the ROC AUC and
accuracy were quite lower than genotype-based
models (Figure 3). Inclusion of age information
with the clade improved the performance and was
found to be significantly lower than the integrated
model and were also seen to perform as good as
genotype-alone (mutations) model for Europe and
North America. A detailed comparison of the key
model pairs for Low vs High severity prediction is
provided in Figure 3, while Supplementary
Table 7–9 provides the comparison summaries of
all possible pairs of models. It may be noted that
the performance of individual models for Low vs
High severity prediction (Supplementary
Table 5,6) was consistently observed to be
statistically significantly (p < 0.05, BH corrected,
Wilcoxon one sample statistic) better than a
random classifier (l = 0.5 ROC for null
hypothesis) except in many cases for the
graduated outcome models developed using only
age (especially in Africa) and in some cases only
epitopic influence as the composite feature of the
models (Supplementary Table 5,6).
Notably, the held-out test performance (ROC

AUC) of genotype-based models (e.g. integrated
model) was also consistently greater than 0.93
across geographies with sample sufficiency (Asia:
0.97, Europe: 0.94 and North America: 0.93)
(Supplementary Table 10). These results were
observed without any mutation filtration or
elimination, i.e. using the entire corpus of



Figure 3. Box plots and significance map for comparison of Low vs High severity model performance (ROC
AUC value) observed in cross validation results of all feature-specific models and combinations. Bottom right
panel represents the results of statistical significance test on ROC AUC values performed for each pair of models,
where a green star represents rejection of null hypothesis at p < 0.05 (significant performance difference), while a red
star indicates the contrary. Wilcoxon signed rank test was performed for each comparison and p-values were
corrected through BH correction. Order of the stars (each indicating statistical significance of comparison in a given
geography) maps with the geographical regions namely Asia, Europe, North America, Africa and South America.
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nucleotide mutations in each geography specific
samples pertaining to low (asymptomatic, mild,
moderate) and high (severe, fatal) class of
severity. Results were however equally
encouraging (as presented for held-out test
results, as an example, in Figure 4 for Asia –
Panel (A) Integrated model (B) Age informed
genotype (c) Genotype alone, wherein feature
space was significantly reduced from the original
corpus (4172, 4167, 4166) to a reduced set (187,
182, 181), after eliminating features with
consistently null importance across 10-fold cross
validations.
As apparent, while the accuracies and ROC AUC

are indicative of good discriminative power of
mutations, the high recall of > 91% for high
severity cases using virus genotype linked models
11
points towards suitability of developing mutation
signature-based severity estimators for SARS-
CoV-2 infection. Binary models were developed
for each possible pair of graduated outcomes as
well using all possible features and their
combinations (Supplementary File 2,3 and
Supplementary Table 11,12). Among these, while
asymptomatic vs fatal model consistently yielded
very high performance using a combination of
‘age, genotype and/or derived features’ (e.g.
accuracy: 0.89 ± 0.04 and AUC ROC 0.96 ± 0.02
in Asia using Integrated model), models targeting
‘severe’ as one of the outcomes, especially severe
vs fatal, were frequently observed to be weak
learners due to consistent sample insufficiency as
observed in Figure 2 (e.g. severe vs fatal,
accuracy: 0.40 ± 0.13 and AUC ROC: 0.39 ± 0.19



Figure 4. Classification reports generated for the binary model trained using Low vs High severity status linked
SARS-CoV-2 genomic sequences from Asia. In each of the models, filtered set of features were employed. The report
consists of important features (mutations) contributing to model accuracy (top-left), confusion matrix (top-right),
precision-recall-f1 report (bottom left) for each outcome and AUC ROC plot (bottom right) in each panel. Panel A
refers to the report for model developed using integrated feature space. Panel B refers to the model developed using
age informed genotype model and Panel C represents classification report for model developed using virus genotype
alone.

S. Nagpal, Nishal Kumar Pinna, N. Pant, et al. Journal of Molecular Biology 434 (2022) 167684
in North America using Integrated model). Among
the features, as observed for Low vs High severity
model development, weakest models (no better
than a random classifier) were developed if only
age, only clade or only epitopic influence were
considered as composite features of the models
(Supplementary File 2,3 and Supplementary
Table 11,12). Coupling of features like age with
epitopic influence (1 + 5 features), age with
mutations and all integrated feature space
performed statistically significantly better than any
model developed using former two features in
silos (Supplementary File 2,3 and Supplementary
Table 11,12). Sample of data structure for all
feature types (mutations, age, epitopic influence,
clade etc) is provided in Supplementary File 4.
These were obtained by processing the labelled
genome sequences (Supplementary File 5)
downloaded from GISAID (as described in
methods section).
It was interesting to observe that the sparse

AgeEpitope model constituted by 6 features, i.e
patient age and five derived features (indicating
potential antigenicity influence of each mutation)
from the entire mutational landscape performed
consistently well (�0.8 AUC for Low vs High
severity across geographies, Figure 3). It was
therefore prudent to probe the model developed
using these features. As a representative
example, we discuss the results for Asia (Low vs
High AUC 0.87 ± 0.03). Initial signs of
discriminative power in the age informed epitopic
influence feature space (total 6 features) was
observed during unsupervised machine learning
(t-SNE, PCA and UMAP), wherein genomes
corresponding to Low and High severity were
12
observed to be segregated across all geographies
in a gender agnostic manner, exhibiting good
scope for a fair decision boundary (Supplementary
Figure 2(a-j), Figure 5(A)). The classification
model developed using these features
corroborated the same wherein the model was
observed to have an AUC of 0.87 ± 0.03
(p < 0.05, BH corrected Wilcoxon) and a decent
performance (AUC: 0.89, Figure 5(B,C)) on held
out test data (270 samples, 135 corresponding to
each of Low and High severity class). Given the
good performance of the model, interpretation of
the same using SHAP values was prudent. It was
observed that a higher patient age, total epitopic
load (Epitopes) and very high value of cumulative
positive VaxiJen score (Pos_Vax) contributed by
the mutations were driving the direction of the
decision towards high severity (Figure 5(D)). On
the other hand, a very high value of cumulative
negative VaxiJen score (Neg_Vax) for genomes
was driving the decision towards low severity
outcome. However, there was high
interdependence of all the features in driving the
overall decision of the model (as indicated by the
dispersion in the SHAP values of each feature).
As described in methods section, VaxiJen score
serves as an index of potential antigenicity of a
target peptide. We had computed the positive
scores (Pos_Vax) and negative scores (Neg_Vax)
by cumulating the difference between VaxiJen
scores of reference and mutated epitope linked to
each mutation. For example, mutated epitopes
with a reduced potential antigenicity were counted
as Epitopes_neg, and sum of their reduced
VaxiJen scores as Neg_Vax. indexing high
potential antigenicity and negative scores.



Figure 5. Utility of age informed epitopic influence feature space in machine learning the severity outcomes
in Asia. Panel A represents PCA plot generated using these features with overlay of Low and High severity labels.
Panel B represents the confusion matrix of predictions made by the model (for a held-out test data) developed using
the six features of age informed epitopic influence space. Panel C represents the ROC curve for AUC estimation.
Panel D represent the bee-swarm (global SHAP value) plot for model interpretation.
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Interestingly, this derived feature space (including
patient age) were observed to have significantly
different mean value between low and high
severity linked genomes across all major
geographies (Welch’s t test BH pval < 0.05,
Supplementary Table 14). Africa was an exception
where difference between mean Epitopes_neg,
Neg_Vax and Pos_Vax was not observed to be
statistically significant. Notably, given this analysis
considered only the mutations that mutated
reference epitopes in a non-synonymous manner,
it doesn’t capture the impact of every mutation
(including those in UTRs). Nevertheless,
corroborating previous reports at various
geographic levels, it points towards the rational
13
utility of viewing mutations from the point of view
of their immunological consequence (e.g., number
of reference epitopes mutated, their
immunogenicity potential, etc.). A possibility for
further improving this approach of transformation
of mutational space into potential epitotpic-
influence dimensions, for inferring severity
outcomes may be useful, in absence of
comprehensive medical, genetic, and other meta-
information about patients.
Importantly, in a similar exercise of model

interpretation, key mutations driving the
performance of each of the models, can also be
developed using genotype-based data. This can
aid identification of severity specific important



Figure 6. Mutations of interest selected using model importance coupled SHAP value assessment for Low
vs High severity prediction across important geographies of the world. Bee-swarm plot indicates the
contribution of presence/absence of a mutation towards High or Low severity outcome of XgBoost based
classification model. Values greater than zero indicate contribution towards a severe outcome, while SHAP values
less than zero indicate contribution to less severe outcome of the model. Additionally, the labels of the mutations have
been colored according to the protein in which the said mutations appear.
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mutations which may be further be probed for their
relevance, and are described later.
Also, it is prudent to point that given these

observations pertain to random sampling of entire
dataset, without consideration to the continuous
evolution of the virus over time, conclusions
cannot (and should not) be made without temporal
benchmarking of machine learning exercise for
proposing any potential models for clinical
predictive prognosis (described later in Temporal
validation section).

Multi-class classification, repurposed-regression
and validations thereof. A single (Integrated) model
developed using One-vs-Rest (OvR) approach for
all five incremental severity based target classes
(Asymptomatic, Mild, Moderate, Severe and Fatal)
didn’t yield a high accuracy (e.g. 0.39 ± 0.16,
using 10-fold cross validation for Asia). Accuracy
however cannot be considered as a perfect metric
for a multi-class (5 classes in this case) predictor.
Specifically, this classifier was trained (100
14
samples) and tested (25) using 25 samples from
each class (total 125 samples, as the size of each
class was reduced to the minority (Severe: 25)
class size in Asia) to enable an unbiased/stratified
learning. Nevertheless, it was encouraging to
observe that the majority prediction for each of the
target outcomes was not significantly skewed
(confusion matrix in Supplementary Figure 4). An
ROC AUC macro-average of 0.69 ± 0.01 through
10-fold cross validation indicated a fair degree of
discrimination of individual classes from rest of the
data (One Vs Rest) even after having used a very
small sample size, which was also indicated in the
held-out testing where the model was able to
separate fatal class from the rest with an ROC
AUC of 0.93 (Supplementary Figure 4). ROC AUC
plots in Supplementary Figure 4 were plotted
using the held-out test data (20% of 125).
These results pertain to unfiltered features with

no feature selection routines. Filtered features
gave comparable results as well. Given the
expectation that Severe class (25 samples) could



Figure 7. Group chart embedded illustration of the genomic context of the mutations of concern identified
through SHAP based explainable machine learning followed by potential epitopic influence profiling.
Horizontal lines above the bars indicate aggregate observed count for the mutations identified in the given protein or
genic region. Individual bars pertain to the observed mutation count for the domains/regions/sites specific to the
modular protein/genic region. Dots under the genic regions indicate that the bars pertain to the said sites or regions or
domains in the given protein.
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be driving the sub-optimal training of otherwise
large data size for each of the other target classes
(greater than 100 samples each in Asia,
Supplementary Figure 5), we therefore sought to
ask if it was possible to improve the learning of
discriminating function by omitting this minority
class. The OvR classifier was therefore re-trained
using only Asymptomatic, Mild, Moderate and
Fatal classes (Supplementary Figure 5). Omitting
Severe class, yielded significantly improved
accuracy (0.60 ± 0.05) and macro-average of
ROC AUC (0.82 ± 0.03). The held-out testing also
yielded high ROC AUC for individual classes
against rest of the samples (e.g. Fatal vs Rest
ROC AUC: 0.97, Supplementary Figure 5) Model
developed using One-vs-One (OvO) approach
yielded comparable results (Supplementary
Figure 6) on held-out data as well as 10-fold cross
validation accuracy. While these results indicated
a need for caution while developing an ambitious
‘single multiclass model’ to predict multiple
incremental outcomes of Covid-19 severity, it was
encouraging to observe latent signals of mutation
peculiarity in the average ROC AUC (>0.8) from
the contributing models of the unified OvR model
(Supplementary Figure 5), i.e., Rest Vs
Asymptomatic, Rest Vs Mild, Rest vs Moderate
and particularly Rest vs Fatal.
15
Identification of the important mutations is crucial
to trace the evolution of the virus without missing
the hitherto unobserved variants through
traditional exercise of variant tracing rooted in
epidemiology and phylogenetics. Can biology
informed machine learning potentially aid this
task? We explore this further.

Identification of mutations and features of inter-
est. The SHAP value-based contribution inclination
of each of the composite feature among top 20 for
Low vs High severity models across geographies
is summarized in the Bee-swarm plots of Figure 6.
The density of genomes (dots in the plot) with
SHAP > 0 presents contribution of the large/small
(e.g., for age) quantum of features or presence/
absence (e.g., for mutations) of features, indicated
by red/blue dots respectively to the higher severity
outcome and SHAP < 0 indicates contribution
towards lower severe outcome. Across all the
geographies, a higher age was consistently
observed to contribute to the prediction of high
severity outcome by the model. A universally
consistent pattern was however not apparent for
effect of the mutations (except for few common
signatures) on severity outcome in different
geographies. Each geography in fact had a rather
peculiar signature of top mutations contributing to
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the severity predictions. Consensus mutations if
any were observed to have opposite effects in
different geographies. This underscores the
importance of probing the individual and
population specific factors like variations in human
leukocyte antigen (HLA) alleles that are known to
affect the severity (and even susceptibility) of
infections. For example, how (and if) the epitopes
resulted by the mutations in the SARS-CoV-2
interact with the individual alleles may decide the
outcome of the infection. For example, while a
deletion in N-terminal domain (NTD) of Spike
protein (GAGTTCA22028G, i.e., EFR156G) was
observed to be consistently contributing to the
high severity predictions in Asia, its contribution
was completely but consistently reversed in North
America. A missense substitution in Spike NTD,
G21987A (i.e., G142D) was another such
example of a mutation observed to contribute to
severe outcome prediction in both Europe and
North America, but the effect was reversed in
Asia. Factors like co-morbidities, prior or ongoing
pharmaceutical/ non-pharmaceutical interventions,
environmental factors and more can also affect
the way an infection would manifest in an
individual, thereby mandating that the signatures
and predicted severities may have scope for
further improvement before they can be utilized
clinically. The intelligence generated by the
predictive models and the interpreted mutations,
however, seek to help reduce the combinatorial
complexity of a large size of mutational landscape
that the scientific community is trying to decipher.
In order to infer mutations of interest from these
model specific corpora, we carried out an exercise
of inferring the impact of the observed mutations
on generation of epitopes that might interact with
HLA alleles with strong binding affinity (refer
Methods section 2.6).
We also employed treeWAS to probe whether a

rigorous genome wide association analysis can
reveal statistically significant signs of mutational
association with severity outcomes. Signs of
mutational association were indicated only in Asia
and North America, while Europe, South America
and Africa were not observed to have statistically
significant signs of mutational association to
severity outcomes (i.e., Low and High severity).
Synonymous mutation C313T and codon linked
mutations G28881A, G28882A and G28883C
were observed to have severity implications by
treeWAS (Supplementary File 6). In North
America, association with low severity were
attributed to A25336C, GAGTTCA22028G,
G24410A_missense_Spike and AGATTTC28247A
(Supplementary File 7). Mutational contribution to
phylogenetic clustering of genomes according to
their severity affiliation were apparent in Asia and
North America.
As a similar exercise of SHAP value assessment

(e.g., as exemplified in Figure 6) on all virus-
16
genotype based models, a total of 254 mutations
were obtained from the union of top 20 SHAP
value based important mutations (Supplementary
Table 13). Among these, a total of 76
synonymous, 13 UTR, 155 missense, 6 in-frame
deletions and two stop gained mutations were
present. 155 missense and 6 in-frame deletion
mutations positions were considered for mapping
on the epitopic regions present on the reference
genome. Out of these, 44 mutations were mapped
to 73 reference epitopes (REs) resulting in 74 (49
CD8 + 25 CD4) potential variants of the REs.
Further, binding affinity prediction of the potential
variants (with the set of 342 most frequent HLAs
present in worldwide populations23 resulted in 28
mutations corresponding to 44 VREs that were able
to be recognized by the chosen pool of HLA alleles
(>0.95 prediction score). 16 mutations were found
to cause a possible escape of the 23 potential VREs
from recognition by the entire set of HLA alleles (i.e.,
no significant binding affinity observed) (Supple-
mentary Table 13). We additionally mapped these
28 mutations (resulting in high binding affinity
VREs) to the Low vs High age informed genotype-
based models to identify 11 unique nucleotide
mutations associated with either of the outcomes,
potentially due to the underlying allelic interactions
(in addition to host age and other unknown factors)
as summarized in Supplementary Table 13.
Studies have reported that a coordinated SARS-

CoV2 specific CD8 + T, CD4 + T cells and
adaptive immunity response to be linked with
protective immunity against the disease.35 On the
other hand, a dysregulation among these can influ-
ence severe inflammatory immune response,
thereby leading to organ damage. The HLA profiling
of SARS-CoV2 epitopes indicated mixed outcomes
in terms of association between disease severity
and T cell based immune recognition ability of the
individuals of each geographical region. For exam-
ple, Mutation NSP3_A85Vwhich was identified as
a key mutation in European region, was found to
be affecting two SARS-CoV2 epitopes, both of
which showed potential increase in immune recog-
nition after mutation. Earlier Epitope 235 was iden-
tified by one HLA allele (HLA-B*18:01) which
increased to 4 alleles (HLA-B*18:01, HLA-
B*18:02, HLA-B*18:03, HLA-B*18:05) predicted to
be identifying its variant (VRE). Epitope 329 could
not be identified by the European population earlier,
as HLA-B*18:02 was not found to be present in
European population. However, after this mutation,
it was predicted to be recognized by around 7% of
the population. Disease outcome as predicted by
the ML model indicated that the absence of this
mutation is associated with high severity, which
leads to the speculation that because of less
immune recognition of the wild type/reference epi-
tope, a compromised immune response may have
been generated against the infection. A study done
by Wilson et al.36 has also indicated the possibility
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of inverse correlation between total population epi-
tope load and death rates which supports this
speculation.
On the contrary, the mutation NSP3_A994D,

affecting six epitopic regions on the SARS-CoV2
proteome, resulted in potential loss of significant
(with > 0.95 prediction score) epitope-allele
interaction in three VREs after the mutation. This
indicated the possibility of VREs being not
recognized by as many alleles as compared to the
reference epitopes in the Asian population with
the percentage of population potentially
recognizing Epitope 113 dropping from around
21% to 0. This raises a speculation whether it
potentially indicates low T-cell based immune
recognition of the population after mutation.
Although theoretically, the presence of this
mutation could be associated with a high disease
severity, the prediction model indicated the
opposite. It is worth further investigation to
evaluate if there is a direct connection between
number of epitopes/ VREs identified by the
individuals of a geographical region and the
observed COVID-19 severity in that region. A few
mutations, as we discussed earlier (like
NSP4_T492I) were noted to show different
disease outcomes with respect to different
geographical regions (absence indicating low
severity in Africa and same indicating high
severity in North America). This observation might
be because of the varied HLA signature present in
the population of these two regions. While HLA-
A*24:03 potentially recognizing Epitope 195 is
present in 0.07% of the African population, 0.4%
of North American population were found to have
this allele. These speculations, notably, do not
account for the immigration driven ethnicity
mixtures, which should be considered for more
comprehensive research (once such metadata are
available). It must also be noted that in our
approach of inferring mutations of interest, only
one arm of immune recognition, namely, T-cell
epitope recognition, has been assessed using in-
silico techniques. In case of any infection, several
other players of the human immune system come
into play, B-cell antibodies being one of them. A
conclusive statement can only be provided after
analyzing the effect of these mutations on the
overall human immune system validated
experimentally by immune assays. Figure 7
provides the observed genomic context of the 44
genic mutations whose epitopic influence was
profiled for significant HLA allelic interactions
(Supplementary Table 13), indicating a high
prevalence of mutations of concern in Spike,
ORF1a and ORF1b regions.

Temporal validation

The incremental time window approach of
creating three chronologically recent held-out test
datasets (for which complete dates of sample
17
collection were available) revealed the rational
limitation of mutation based predictive prognosis
models. With increase in the time gap between
the constant training data and the chronological
test datasets, model performance was observed
to drop for the pathogen (SARS-CoV-2) which
evolved to accumulate new mutations leading to
lesser overlap with the learnt mutation corpus and
greater size of exclusive mutation corpus
(Figure 8). These observations were consistent
across all available geographies and gender
information. For example, as shown in Figure 8, in
Asia, a model trained using mutational profile
of � 300 SARS-CoV-2 genomes/samples and
tested on chronologically distinct 3 separate
windows of 150 samples each, had highest
accuracy and ROC AUC in Window 1 (closest to
training data records). The performance dropped
in Window 2 (chronologically distant from training
data). This drop may be attributed to appearance
of more exclusive or new mutations (388 in
window 2 as compared to 327 in window 1) and
similar number of overlapping mutations (347 in
window 2 as compared to 342 in window 1).
Model performance worsened further in window 3
where overlapping mutations were very less (311)
even though the new or exclusive mutations were
slightly lesser than window 2 (377). This
dependency of model performance on mutational
space is further revealed in results of temporal
validation for Europe where the model
performance was found to recover in Window 3
due to greater overlap and smaller exclusive
mutation set as compared to previous window.
This leads to the below mentioned three important
inferences –.

� As long as the virus is mutating, it may be over-
speculative to propose models rooted in mutation sig-
nature for prognosis in a clinical setting.

� A judicious use of predictive models can however
take place where reliability of the prediction is
indexed by the fraction of mutations that are already
accounted for in the model (as indicated in the Venn
diagrams and grouped line plots for mutational space
in Figure 8).

� The role of machine learning in identifying the impor-
tant mutations among the large existing corpus of
SARS-CoV-2 mutations should not be ignored as this
can significantly aid the ongoing activities of tracing
variants of concern. Importantly, it is apparent that
machine learning can yield high predictivity models
when mutational space is recent. It can do so even
in the absence of available information of patient
symptoms (which is possible in early diagnosis or
when disease hasn’t already progressed to advanced
stage). The predictive prognosis exercises can in
such cases turn fruitful provided models are continu-
ously updated with available genomic records. The
proposed temporal benchmarking would prove useful
for such use cases.
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Caveats and Conclusions

Machine learnt models are rarely perfect. The
imperfection is attributed to fractional
representation of information in the chosen
18
datasets (i.e., complete data for any case/event/
population is rarely available). Consequently,
there is always a scope for improving the learnt
models by incorporating new data to the machine
learning framework. This limitation is particularly
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pronounced for viral genomes which are
continuously evolving. New data will always be
useful in updating the mutation feature profile of
the models which will help in improving the
accuracy of the prospective predictions.
Development of well streamlined machine learning
frameworks can potentially simplify the process of
accommodating new data, updating the predictive
models and for obtaining quick insights into the
newfound mutations of concern. Through this
study, we attempted to provide evidence towards
suitability of using SARS-CoV-2 mutation data (as
well as using a highly sparse but reliable
transformation of entire mutational space into
epitopic influence) to develop machine learning
methods of severity classification. By profiling the
epitopic load and HLA interactions enabled by
mutations identified through interpretable machine
learning, we also explored a potential approach
towards identification of mutations of interest. Our
demonstration of a temporal validation strategy
further seeks to attract the attention of the
community towards methods to avoid over-
speculation for predictive prognosis approaches,
especially when it pertains to continuously
evolving pathogens (like SARS-CoV-2 in this
case). We propose that the while caution should
be exercised for clinical implementation of models
learnt on past molecular signatures of a pathogen,
reporting of metrics indicating reliability of the
model can improve acceptance of the predictive
prognosis exercises. This reliability can be scored
based on the observed overlap or exclusivity of
feature space in the tested samples, as compared
to the feature space employed in the trained
model(s). The issue of unsuitability of an
otherwise useful technique may therefore be
avoided. We emphasize that the need for
concerted efforts in the direction of building
dynamic machine learning workflows should also
not be ignored, as that can aid in updating the
previously learnt models as and when new
mutation data is available, thereby making the
entire approach more acceptable. This can greatly
support the ongoing efforts of deducing the
mutational landscape/relevance of SARS-CoV-2
and potentially, help in predictive prognosis.
Figure 8. Temporal validation of Asymptomatic-Fatal p
at various time gap windows (as shown on X axis), wh
chronologically closest to the most recent SARS-CoV-2 ge
distant samples (number of samples employed in training a
geography specific panel). Y axis represents the value of tw
line) and accuracy (red line) of the model. The total n
(overlapping) mutations in each test window, with respect to
Venn diagrams. Number of exclusive and overlapping muta
also presented through the Venn diagrams.
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