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Abstract

Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and 

contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger 

RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription 

and DNA damage responses. FET proteins are of medical interest because chromosomal 

rearrangements of their genes promote various sarcomas and because point mutations in FUS 

or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and 

frontotemporal lobar dementia. Recent results suggest that both the normal and pathological 

effects of FET proteins are modulated by low-complexity or prion-like domains, which can form 

higher-order assemblies with novel interaction properties. Herein, we review FET proteins with 

an emphasis on how the biochemical properties of FET proteins may relate to their biological 

functions and to pathogenesis.
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INTRODUCTION

The proper control of messenger RNA (mRNA) production and function is a key 

aspect of gene expression in mammalian cells. Important steps in the mRNA life cycle 

include transcription, splicing and polyadenylation, base methylation, nuclear–cytoplasmic 

transport, translation, and degradation.

Three insights have changed how we view mRNA biogenesis and function over the past 

few decades. First, multiple steps in mRNA biogenesis and function are mechanistically 

coupled such that RNA-binding proteins and RNA-processing machines can affect numerous 

steps in mRNA function (1–3). Second, the composition of any messenger ribonucleoprotein 

(mRNP) can dictate both the RNA processing of the transcript (e.g., alternative splicing) 

and the rates of mRNA translation and degradation (4, 5). Third, the composition of an 
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mRNP can be influenced by (a) transcription-coupled processes that promote loading of 

proteins on nascent transcripts, (b) the competition for binding sites between different 

individual proteins, and (c) the competition for a given protein between different sites in 

the transcriptome (6, 7). The biogenesis of an mRNP has to be considered a process that is 

initiated and influenced by the transcription machinery with downstream consequences for 

mRNA function.

Key aspects of assembling a nascent mRNP are the mRNA–protein interactions that 

occur during transcription (1, 2). Such cotranscriptional assembly is dominated by the 

heterogeneous nuclear ribonucleoprotein particle (hnRNP) proteins, which tend to be highly 

abundant and ubiquitous RNA-binding proteins. hnRNP proteins are generally present in the 

nucleus, but many such proteins shuttle between the nucleus and cytosol (8, 9). Given their 

abundance and role in nascent precursor mRNA (pre-mRNA) packaging, hnRNP proteins 

have a significant impact on mRNA biogenesis and function (10). Moreover, some hnRNP 

proteins can also bind DNA as well as interact with the transcription machinery (11, 12). For 

these reasons, understanding the roles of hnRNP proteins in mRNA biogenesis and function 

is important.

A noteworthy family of hnRNP proteins is the FET proteins, which in vertebrates are FUS, 

EWSR1, and TAF15 (13, 14). These are abundant RNA- and DNA-binding proteins that 

interact with thousands of transcripts and affect multiple steps in mRNA biogenesis. FET 

proteins are interesting for three additional reasons. First, each FET protein contains an 

N-terminal domain (NTD) of low sequence complexity, which can form intermolecular 

assemblies with unique biochemical properties (15–18). Thus, understanding FET protein 

function may reveal new aspects of protein design and function. Second, translocation 

of a FET protein’s low-complexity (LC) domain onto various DNA-binding proteins is a 

genetic abnormality that contributes to the formation of several different cancers (13, 14, 

19). Finally, point mutations in either FUS or TAF15, some of which affect their nuclear–

cytoplasmic shuttling, can cause neurodegenerative diseases such as amyotrophic lateral 

sclerosis (ALS) and frontotemporal lobar dementia (FTLD) (20, 21). Thus, understanding 

both normal and pathological FET protein function may further our understanding of these 

human diseases. In this light, we review the literature on FET proteins.

DOMAINS OF FET FAMILY MEMBERS

FET family members are found in multicellular organisms including vertebrates, plants, 

nematodes, and insects. Given the role of FET proteins in transcription and RNA processing 

(see the next two sections), one speculation is that the FET protein family evolved to 

facilitate the more complex coupling of transcription with RNA processing that occurs in 

multicellular organisms. Invertebrates and plants contain a single FET protein, which is 

called cabeza in Drosophila melanogaster (Figure 1). The family of three FET proteins 

arose in vertebrates, and each member is highly conserved from fish to mammals. The 

conservation of the three FET proteins in vertebrates suggests that they have specialized 

functions.

Schwartz et al. Page 2

Annu Rev Biochem. Author manuscript; available in PMC 2022 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FET proteins have a common domain organization, including an N-terminal LC domain, 

RGG domains, a zinc finger (ZnF) domain, and an RNA recognition motif (RRM) (Figure 

1). RRMs directly bind RNA in many RNA-binding proteins and are distinguished by their 

β1α1β2β3α2β54 secondary structure. FET RRMs are distinguished from other hnRNP 

RRMs because of the extended “KK-loop” between α1 and β2, and because of the 

conspicuous lack of two aromatic amino acids on β3 (22, 23). The lysines in the KK-loop 

of FUS are important for RNA binding (23). For other hnRNP proteins, the two aromatic 

residues on β3, which are not found in FET proteins, make important stacking interactions 

with nucleotides and can contribute to sequence-specific RNA recognition by the domain 

(24, 25). NMR chemical-shift analyses suggest that RNA binds the traditional β-sheet face 

of the FET protein RRM. However, the absence of these key aromatic residues on β3 

suggests that the specific contacts between the RRM and RNA may differ from the canonical 

RRM–RNA interaction (23).

The RGG and ZnF domains also contribute to the binding of FUS to RNA. All FET 

proteins (Figure 2) share a ZnF domain with four cysteines coordinating the zinc ion 

(26). The isolated ZnF domain, along with its flanking RGG motifs, has at least as much 

affinity for RNA as that of the RRM (see the section titled Biochemical Properties of 

FET Proteins, below) (18). RGG domains in other hnRNP proteins mediate non-sequence-

specific recognition of RNA (24, 27). Thus, both RNA-binding domains are likely to 

contribute to the RNA-binding properties of FET proteins (5), potentially allowing FET 

proteins to bind a greater diversity of RNA targets than a single domain.

The LC and RGG domains of FET proteins promote protein self-assembly into higher-order 

structures. These self-assembly domains are of interest for several reasons. First, many 

RNA-binding proteins contain either prion domains or “prion-like” LC and RGG domains, 

which form higher-order self-assemblies (15–18, 28, 29). In these cases, prion or prion-like 

domains are defined as regions of amino acid sequences with a computationally predicted 

tendency to form stacked β-amyloid assemblies. In some cases, such domains are important 

for the assembly of intracellular RNP granules, including P-bodies and stress granules (28–

30). This finding suggests that cells use such prion-like domains as reversible assembly 

modules for large RNA–protein complexes.

In mammals, the LC domain of FET proteins possesses a repeated prion-like [S/G]Y[S/G] 

motif (Figure 1) (17, 18). This degenerate motif is weakly conserved in FET proteins 

throughout multicellular organisms, although at times the motif places an asparagine 

(N) adjacent to the tyrosine (Y). NY-rich motifs also have prion-like properties (31). 

By promoting the higher-order assembly of FET proteins, these extensive self-assembly 

domains appear to play important roles in modulating FET protein biological and 

pathological functions (see the sections titled Biochemical Properties of FET Proteins and 

Role of FET Proteins in Transcription, below).
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BIOCHEMICAL PROPERTIES OF FET PROTEINS

FET Proteins Bind DNA

FET proteins bind single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). As 

with other hnRNP proteins, FET proteins were initially purified from mammalian cells 

and identified using immobilized ssDNA (32). Recombinant FET proteins shift ssDNA by 

electrophoretic mobility shift assays (EMSAs), and the binding can be competed with RNA, 

suggesting that both nucleic acids bind to the same site(s) or overlapping site(s) (22, 33, 

34). Recombinant FET proteins also bind ssDNA and dsDNA in pull-down assays (35), but 

at least for FUS, this protein binds dsDNA in EMSAs with a much weaker dissociation 

constant (Kd) than that of ssDNA (X. Wang, J.C. Schwartz & T.R. Cech, unpublished data). 

Thus, a key question is whether weak DNA binding is simply a consequence of general 

and promiscuous nucleic acid binding (e.g., polyanion binding), or whether it is biologically 

meaningful.

The extent to which FET proteins directly bind DNA in vivo remains to be determined. 

FUS does precipitate from cells with chromatin and is released only upon DNase treatment 

(36). Moreover, FUS–DNA interactions recovered following formaldehyde cross-linking 

have been used for chromatin immunoprecipitation sequencing (ChIP-seq) or ChIP-array 

experiments. However, formaldehyde cross-linking also recovers tertiary interactions such as 

FUS interactions with other DNA-binding proteins (34, 37). Additional uncertainty comes 

from the observation that a UV cross-linking assay in cells failed to recover DNA bound 

to the FUS protein (38). FUS binds ssDNA in cell lysates but only when the FUS is 

phosphorylated in cells expressing the fusion protein BCR/ABL (39). Finally, FET proteins 

pull down from lysates with DNA substrates designed to model dsDNA breaks and Holliday 

junctions, although these interactions may be indirect (40).

Each FET protein can promote ssDNA invasion of dsDNA. This activity was discovered for 

FET proteins by use of an in vitro pairing on membrane (POM) assay, in which proteins 

immobilized on a nitrocellulose membrane show the ability to anneal DNA strands (41–43). 

This assay requires the protein to maintain activity after denaturing sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and immobilization on a nitrocellulose 

membrane. Because the RGG domains are predicted to be unstructured and therefore 

less affected by SDS denaturation, much of the POM activity (i.e., annealing activity) 

is presumably mediated through the RGG domains. One model of how RGG domains 

contribute to POM activity provides that nonspecific association of RGG repeats along 

the phosphodiester backbone may neutralize charge repulsion and thereby promote strand 

annealing. Promotion of the formation of duplex DNA is proposed to be a mechanism by 

which FET proteins can contribute to DNA break repair (see the section titled FET Proteins 

and DNA Damage Repair, below) (13, 41). The ability of FET proteins to promote ssDNA 

invasion of dsDNA raises the possibility that FET proteins can also promote ssRNA invasion 

of dsDNA or even dsRNA and, as such, may play unanticipated roles in higher-order nucleic 

acid interactions.
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FET Proteins Bind RNA

Many observations clearly demonstrate that FET proteins directly bind RNA both in vitro 

and in vivo. This ability is consistent with the presence of domains shared with other 

RNA-binding proteins—the RRM and RGG–ZnF–RGG domains (22, 44–47). FET proteins 

can be purified by immobilized RNA in a manner similar to that using ssDNA (32). All three 

recombinant FET proteins either pull down with RNA or shift RNA by EMSA (18, 22, 26, 

33–35, 38, 45, 46, 48–52). Moreover, FET proteins can be UV cross-linked to RNA targets 

in cells (37, 38, 51, 53–55), and the recognition of RNA by FUS promotes the latter’s ability 

to form self-assemblies and to bind other proteins, including RNA polymerase II (RNA Pol 

II) and CBP/p300 (18, 37, 53).

FET proteins bind nucleic acids through two domains, the RRM and the RGG–ZnF–RGG 

motifs. For FUS and EWSR1, the RGG–ZnF–RGG domain possesses significant affinity 

for RNA and ssDNA (18, 48). Surface plasmon resonance (SPR) and NMR experiments 

confirm that the RRM of FUS binds RNA (23). However, by itself the RRM alone binds 

nucleic acids very weakly, and chemical shifts for the RRM are very similar whether bound 

to RNA, ssDNA, or dsDNA (23). Inclusion of one of the flanking RGG domains gives the 

RRM the ability to bind RNA with a Kd of nearly 100 nM (when corrected for protein 

activity), which is the same as that for the RGG–ZnF–RGG domain (18, 44, 50). In short, 

each of these two domains (RGG–RRM and RGG–ZnF–RGG) can bind RNA and DNA 

with the same affinity as the full-length protein in vitro (18).

Whether both domains are necessary for RNA binding in vivo has been difficult to 

establish. Domain deletions seriously impair binding on the basis of in vivo cross-linking 

and pull-down assays. However, because the protein appears to possess strong interdomain 

interactions, deletion of an entire domain could have indirect effects through structural 

destabilization (18, 53). Similarly, published point mutations in the RRM have been 

interpreted as demonstrating that RNA binding is important for cellular function; however, 

note that these mutations are in the hydrophobic core of the RRM, which may affect protein 

folding (56).

Distribution and Specificity of RNA–FET Protein Interactions In Vivo

Several observations suggest that FET proteins may be relatively promiscuous in their 

interactions with RNA (38, 57). First, on the basis of cross-linking experiments, FET 

proteins bind many thousands of RNAs in the cell (37, 51, 54, 55, 57, 58). Second, there 

is little to no similarity between several different published RNA motifs for FET proteins 

binding (50, 51, 58–60). Third, a SELEX study of FUS by the Moreau–Gachelin lab (50) 

identified a prevalent GGUG motif; however, all sequences identified were GU rich, arguing 

against the uniqueness of this motif, and half of the sequences bound lacked the GGUG 

motif. Fourth, a cross-linking immunoprecipitation sequencing (CLIP-seq) study of FUS by 

the Yeo lab (58) has probably come closest to saturating signals from in vivo targets and 

provides significant evidence of proteins oligomerizing along introns. This last point seems 

to argue that specificity may be difficult to observe because, as with heterogeneous nuclear 

ribonucleoprotein A1 (hnRNPA1), one binding event potentiates binding to adjacent sites 

that may lack any preferred binding motif.
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Whereas FET proteins may lack strong specificity of RNA sequence recognition, at least the 

FUS protein shows patterns of distribution along mRNAs. By cross-linking, FUS binding 

sites are enriched in 5′ untranslated regions (UTRs). The Yeo lab (58) has shown a fivefold 

enrichment for 5′ UTRs over what would be expected on the basis of their length. Also, 

Ishigaki et al. (55) showed that averaged FUS CLIP-seq signals are highest near 5′ ends and 

steadily diminish toward 3′ ends. This pattern was also observed by Schwartz et al. (37); 

more CLIP-seq reads piled up near the 5′ ends of mRNAs. This enrichment for 5′ UTRs is 

especially noteworthy because standard CLIP-seq protocols are biased against the detection 

of 5′ ends of mRNAs because they possess a methyl-G cap, which inhibits adaptor ligation. 

The reason for this enrichment of 5′ UTRs may be that FET proteins transition early during 

transcription from binding to the polymerase to binding the elongating pre-mRNA (see the 

section titled Role of FET Proteins in Transcription, below). Alternatively, FET proteins may 

be binding truncated RNA transcripts and helping to sequester them within the nucleus.

Two labs have suggested that FUS also shows some enrichment in binding 3′ UTRs. The 

Yeo lab (58) found threefold enrichment of 3′ UTR sequences over what would be expected 

on the basis of their length. Ishigaki et al. (55) showed enrichment for introns and 3′ UTRs 

when normalized for transcript length; however, this result seems inconsistent with the 

averaged pattern of binding included in the same figure, with more reads near the TSS and 

fewer toward the 3′ end. However, both the Yeo lab (58) and the Ule lab (57) note binding of 

FUS along 3′ UTRs of specific mRNAs, particularly genes with alternative polyadenylation 

sites. A reasonable interpretation is that FET proteins may associate with particular 3′ UTRs 

to affect 3′-end processing or mRNA function in the cytosol (see the section titled FET 

Protein Effect on RNA Processing, below).

FUS has also been proposed to preferentially bind introns (51, 54, 55, 57, 58). This idea is 

based on the observation that a large number of FUS-associated sequence reads in CLIP-seq 

experiments are within introns (51, 57). However, introns constitute nearly 90% the length 

of the average mammalian gene; FUS binding to introns may not be preferred over other 

regions of the pre-mRNA. A reasonable model is that FET proteins are indiscriminately 

loaded along the nascent transcript, binding both introns and exons in a transient manner, 

and are then removed from most mRNAs either before nuclear export or shortly after 

transport to the cytosol (58).

Two papers (57, 58) have noted a prominent “sawtooth” pattern of FUS enrichment on 

particular long introns, and also along certain long exons such as 3′ UTRs (58). In 

a sawtooth pattern, FUS signals accumulate at a 5′ splice site and diminish gradually 

throughout the length of a long intron, then sharply increase at the next 5′ splice site or even 

at the 5′ end of a long exon, such as a 3′ UTR. The mechanism of a sawtooth pattern of 

binding is likely that some sequence or event in transcription triggers FUS to load onto the 

pre-mRNA at a particular site, and then the cooperative binding properties of FUS promote 

the protein to oligomerize along the RNA in a 5′-to-3′ direction.

Several important questions about FET proteins’ interactions with nucleic acids remain 

unanswered. First, what is the in vivo significance, if any, of FET protein affinity for ssDNA 

or dsDNA? Second, do both the RRM and RGG domains contribute to FET protein affinity 
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for RNA in vivo, or does one domain dominate? To answer this question, a detailed map 

of the RNA-binding surface of these proteins is needed to target mutations that specifically 

disrupt RNA binding without denaturing the entire domain or the protein itself. Third, 

which in vivo functions of FET proteins are affected by RNA binding? To find the answer, 

investigators will need specific separation-of-function mutations similar to those described 

for the second question. Fourth, does any yet-to-be-defined specificity in binding contribute 

to in vivo targeting of FET proteins toward regulating the transcription or splicing of 

particular mRNAs? Such a hidden specificity could be one of the sequence motifs previously 

described or a specificity acquired through interactions with other RNA- and DNA-binding 

proteins. Fifth, do FET proteins associate primarily with full-length mRNA transcripts or 

with 5′ truncations created by premature abortion of transcription?

Self-Assembly of FET Proteins

Another striking biochemical property of FET proteins is their oligomerization to 

form higher-order self-assemblies. These fibrous assemblies have been observed with 

recombinant proteins in the presence or absence of RNA by changes in turbidity (16, 

18, 61). Higher–molecular weight assemblies of recombinant FUS protein have also been 

observed by formaldehyde cross-linking, in which they run as larger species on SDS-PAGE 

(18). FET fibers grown with recombinant proteins are also readily visible by fluorescence, 

transmission electron, and atomic force microscopies (16–18, 61, 62).

The precise nature of FET protein higher-order interactions is unclear but appears to 

be related to the β-sheet structures that β-amyloids can form. In support of this idea 

is the finding that FUS and its two assembly domains form mostly β-strand structures, 

as determined by circular dichroism spectroscopy (18). Moreover, desiccated fibers of 

recombinant FUS protein (J.C. Schwartz, D.B. McKay & T.R. Cech, unpublished data) 

or the LC domain alone (16) give X-ray diffraction at 4 and 10Å, characteristic of stacked 

β-sheet structures such as those in amyloid fibers, although the desiccation required for 

diffraction could drive the proteins into a very stable β-zipper structure that is biologically 

irrelevant. Evidence that FUS interactions lack highly stable β-amyloid structures is that 

the protein fibers readily dissolve in SDS (15, 16) and stain only weakly with the amyloid-

specific dye thioflavin T (18, 61). Whereas high FUS protein concentration can be used to 

drive the formation of fibrous assemblies, RNA binding allows assembly formation at more 

physiological concentrations (Figure 3) (18).

The ability of FET proteins to form fibrous assemblies arises from two types of domains: the 

LC and RGG domains. Both domains in isolation form fibers that are visible by microscopy 

(16–18). The most studied of these assembly domains are the LC domains. The LC domains 

of each FET protein contain numerous [S/G]Y[S/G] repeats. The tyrosines in this repeated 

motif are required for recombinant protein to form fibrous assemblies, because mutation of 

two or more of the repeated tyrosines abolishes fiber formation (17). TAF15 is unique in 

that, in addition to the [S/G]Y[S/G] motif, it also possesses five SYD repeats, which appear 

to endow the domain with stronger self-assembly interactions (17).

The second type of assembly domain in FET proteins is the C-terminal RGG–ZnF–RGG 

domain. Fibrous assemblies have been shown only for the RGG–ZnF–RGG domain of FUS. 
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Whether the equivalent domains of TAF15 and EWSR1 (18) also form fibrous assemblies 

has not been explored. The RGG domains are the least conserved regions between members 

of the FET family. TAF15 lacks the first RGG domain situated between the LC and RRM 

domains (Figure 2b). TAF15 also has the most identical repeats of the motif DR(G)nYGG in 

its C-terminal domains (CTDs). FUS possesses simple RGG repeats and a more degenerate 

repeated DRGG[F/Y]G motif. EWSR1’s RGG motifs are broken up by many prolines, 

which would be predicted to disrupt the secondary structure. EWSR1 RGG domains do 

mediate self-association, but whether the assemblies are fibrous is unknown (63).

An unresolved issue is whether FET proteins form these types of fibers in cells. At a 

minimum, genetic experiments suggest that some type of related structure does form and 

has functional consequences. Fibers of recombinant FET proteins bind RNA Pol II through 

its CTD (17, 18) and mutations in the LC domain of FUS that abolish the ability to form 

fibers also abolish the ability to promote transcription in vivo (17). FET proteins also are 

incorporated in vivo into the fibrous poly-Q assemblies of the HTT and ataxin proteins 

(62). In ALS patients, FUS proteins with mutations in their nuclear localization signal 

(NLS) accumulate in the cytoplasm and form aggregates that are visible in histological and 

immunofluorescence staining and that sediment upon high-speed centrifugation (21, 64–69). 

When expressed in yeast, FUS protein goes into cytoplasmic aggregates; these aggregates 

are only marginally reduced by deletion of either the LC or RGG domain, suggesting that 

each of these domains contributes to self-assembly (61, 70).

Many questions remain about the ability of these proteins to form fibrous self-assemblies. 

Do these fibrous assemblies form in vivo? Are they homogeneous (i.e., with a single protein 

component) or heterogeneous assemblies (i.e., with a mixture of LC domain proteins) 

in vivo? How do FET protein fibers contribute to each protein’s in vivo functions? 

Fibers form spontaneously at high concentrations and upon RNA binding, but what is 

it in cells that regulates the disassembly of fibers? Do FET protein fibers interact with 

structural assemblies (e.g., lamin, actin, tubulin) in vivo and contribute to the structural 

integrity or organization within the cell and nucleus? What are the physiologically important 

differences between normal and pathological FET protein assemblies? What is the biological 

significance of phosphorylation of the LC domain of FET proteins?

FET Protein Interactions

Another property of FET proteins is their interaction with numerous other cellular proteins. 

Coimmunoprecipitation and direct binding experiments have revealed hundreds of protein–

protein interactions involving FET proteins (71). For FUS, these interacting partners include 

the U1 small nuclear ribonucleic particles (snRNPs), Gemin proteins, Sm proteins, SR 

proteins, hnRNP proteins, other RNA-binding proteins, and transcription-related proteins 

(52). FET proteins also interact with the microRNA (miRNA)-processing protein Drosha, 

as well as many miRNAs, and may play a role in miRNA processing and stability (72, 

73). Public databases reveal large overlaps between the interactomes of FET proteins 

(71). Indeed, the FET proteins form robust interactions with one another (51, 52, 74). 

These interactomes are consistent with the implication that FET proteins are involved in 

transcription and RNA processing.
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Moreover, the individual biochemical properties of FET proteins are likely coupled, possibly 

through an allosteric mechanism. Supporting this hypothesis, FUS binds the proteins CBP, 

p300, and RNA Pol II in an RNA-dependent manner (37, 53). Additionally, FUS forms 

protein assemblies in an RNA-dependent manner, suggesting that RNA binding promotes 

or stabilizes an alternative structural organization for the protein (18). Lastly, the LC 

and RGG–ZnF–RGG domains interact with each other in trans in an RNA-dependent 

manner (53). Analogous allosteric regulation of nucleic acid binding proteins that triggers 

self-assembly has been proposed for the bacterial SgrAI and eukaryotic IreI proteins (75, 

76).

Important questions about the coupling of FET protein biochemical properties remain. Are 

these properties linked by allostery or some other mechanism? Are contacts between the 

LC and RGG domains in trans maintained in the full-length proteins? The RGG domains 

both bind RNA and form self-assemblies; can these domains perform both functions 

simultaneously in the context of the full-length protein, or are they mutually exclusive?

ROLE OF FET PROTEINS IN TRANSCRIPTION

FET Proteins Can Affect Transcription

The most-studied cellular function of FET proteins, at the mechanistic level, is the regulation 

of transcription. Initial evidence that the FET proteins can affect transcription was provided 

by the increases or decreases in the mRNAs for numerous genes found by RNA-seq or 

microarray experiments in cells following knockdown of FET proteins (34, 37, 51, 54, 55, 

58, 77–79).

Several lines of evidence demonstrate that the effects of FET proteins on mRNA levels are 

at least partly due to direct changes in transcription levels. First, FUS can affect the gene 

distribution and modification status of RNA Pol II. Specifically, ChIP-seq has found that 

FUS is associated with thousands of genes and is highly enriched near the transcription start 

site (TSS) (37). When FUS is knocked down, RNA Pol II accumulates near the TSS for 

genes in which FUS is localized to the TSS (37). The alteration in RNA Pol II distribution 

upon FUS knockdown probably occurs due to either an increase in transcriptional pausing 

or a failure to clear stalled polymerases from the TSS (37). Additional evidence for a 

direct role in transcription is that FET proteins physically interact with several transcription 

components, including RNA Pol II (17, 18, 22, 37, 80–82). Finally, in cell lysates, addition 

of FUS can stimulate RNA Pol II transcription and inhibit RNA Pol III transcription (79).

FET proteins were also suggested to enhance transcription because genomic translocations 

of the LC domain of FET proteins observed in leukemia and sarcomas are involved in the 

creation of a transcriptional activator (44, 45, 49, 83, 84). In these cases, the fusion of the 

strong FET protein promoter and the LC domain to a DNA-binding domain from ERG, 

CHOP, or FLI1 creates a potent oncogene (13, 14, 85). Additional evidence that the LC 

domain can have transcription activation activity is that an engineered fusion of LC to the 

DNA-binding domain of Gal4 can recruit RNA Pol II and activate transcription (17, 45, 

86–88). Cells expressing the oncogenic fusions of FUS or EWSR1 show both activation and 

repression of numerous gene targets, foreshadowing the diversity of mechanisms by which 
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FET proteins can affect transcription (see the section titled FET Proteins and Cancer, below) 

(19, 89, 90).

Consistent with FUS playing a role in transcription is the observation that FUS preferentially 

localizes to active chromatin. Immunofluorescence studies have found that the FET homolog 

in D. melanogaster, cabeza, is sequestered to actively transcribed regions with loose 

chromatin compaction on polytene chromosomes (46). During meiosis, FUS protein coats 

autosomes but not X or Y chromosomes, which are held transcriptionally silent (91). 

Moreover, on the basis of immunofluorescence, FUS is not bound to chromatin during 

mitosis, while transcription is off (36).

FET Proteins Affect Transcription by Multiple Mechanisms

FET proteins have been suggested to both activate and silence transcription. This duplicity is 

likely the result of the multiple mechanisms by which FET proteins affect transcription.

Directing binding of RNA Pol II by FET protein fibers.—One mechanism by which 

FET proteins affect transcription is by directly binding RNA Pol II, which may recruit 

the polymerase and/or modulate its phosphorylation status. In this model, either noncoding 

RNAs expressed near gene promoters or nascent pre-mRNA transcripts can serve as the 

seed to promote FET proteins to oligomerize. Once higher-order assemblies are formed 

around TSSs, they interact with the CTD of RNA Pol II. This interaction has two functional 

consequences: (a) RNA Pol II is more efficiently recruited to the TSS and (b) the CTD 

is protected from premature Ser2 phosphorylation, which stimulates the transition of the 

polymerase from initiation to active elongation. Subsequently, higher-order assemblies may 

disassemble and leave a promoter upon posttranslational modification of the FET protein, 

either phosphorylation of the LC domain or other modifications.

Evidence suggests that the ability of FET proteins to bind RNA Pol II, specifically the CTD, 

is promoted by the oligomerization of the LC domain into fibers (17, 18). For example, 

the LC domain of FET proteins can form fibers in vitro, and mutations that disrupt fiber 

formation also disrupt the ability of the LC domain to promote transcription in vivo using 

a GAL4–LC fusion protein (17, 22, 92). Moreover, the interaction between FUS and the 

CTD is RNA dependent (37), and this RNA dependence appears to arise from the ability of 

RNA to promote oligomerization of FUS (18). Taken together, these observations suggest a 

general model wherein FET proteins regulate transcription by being recruited to promoters 

by local RNA transcripts, forming an oligomer fiber that is capable of interaction with 

the RNA Pol II CTD and can recruit more polymerases to the gene’s promoter, then 

modulating access of the CTD to kinases and thereby regulating the transition from initiation 

to elongation (Figure 4a).

FUS regulation of the phosphorylation status of Ser2 on the CTD of RNA Pol II was 

observed by ChIP-seq of the Ser2-phosphorylated RNA Pol II with or without small 

interfering RNA knockdown of FUS (37). This regulation is especially pronounced in 

HEK293T/17 cells (37). The kinases P-TEFb and CDK12 phosphorylate the CTD on 

Ser2 to help the transition to elongation and ultimately signal for efficient splicing and 

polyadenylation. FUS specifically inhibits Ser2 phosphorylation by the kinases P-TEFb and 
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CDK12 in both in vivo reactions and in reactions performed with recombinant purified 

proteins in vitro (37). Another kinase, the transcription factor II human (TFIIH)-associated 

CDK7 kinase, phosphorylates the CTD on Ser5 and signals for initiation of transcription and 

capping of the new mRNA. FUS does not inhibit Ser5 phosphorylation in vivo, nor does it 

inhibit TFIIH phosphorylation of the CTD in vitro. One explanation for this difference in 

phosphorylation may involve the way in which FUS interacts with the CTD. The CTD may 

bind along the stacked β-sheets of FUS assemblies to occlude Ser2 recognition by the Ser2 

kinase P-TEFb or CDK12, but leave Ser5 exposed for targeting by the Ser5 kinase CDK7 

(17). In this model, FET proteins, or FUS in particular, may affect the transition of RNA Pol 

II from the initiation phase to the elongation phase by controlling the accessibility of CTD to 

be phosphorylated by P-TEFb or CDK12.

Because FET proteins can be phosphorylated and phosphorylation of the LC domain 

prevents oligomerization (16, 40, 41, 93), which is required for CTD interaction, FET 

phosphorylation events may affect the ability of FET proteins to regulate transcription (17, 

18). For example, phosphorylation of Ser266 affects the ability of EWSR1 fusion proteins to 

influence transcription (94).

Other protein modifications also modulate FET protein function. The LC domain of EWSR1 

is modified by O-GlcNAcylation. Reduction of O-GlcNAcylation with small-molecule 

inhibitors reduces the expression level of the fusion protein EWSR1–FLI1 and represses 

the expression of genes regulated by EWSR1–FLI1 (95). Finally, methylation of EWSR1 

or TAF15 by protein arginine N-methyltransferase 1 (PRMT1) causes these FET proteins to 

relocalize to the cytoplasm and subsequently reduces their ability to regulate transcription in 

the nucleus (96–98).

Phosphorylation of the CTD on Ser2 or Ser5 may inhibit CTD–LC interactions in vitro 

(17). However, full-length FUS and EWSR1 bind the phosphorylated forms of RNA Pol II 

in pull-down assays from cell lysates or using recombinant purified proteins (37, 81, 99). 

One possible explanation for these different results is that the oligomeric form of the LC 

domain strongly prefers unphosphorylated CTD, but other regions of FUS can bind the CTD 

independently of its phosphorylation status.

Direct interactions with other transcription factors.—FET proteins also directly 

bind and promote or inhibit the activity of several transcription factors. FUS prevents 

transcription activation of the factor Spi-1 by binding Spi-1’s DNA-binding domain and 

preventing DNA recognition (100). FUS interacts with nuclear hormone receptors, including 

retinoid X receptor, estrogen receptor, thyroid hormone receptor (TR), and glucocorticoid 

receptor. For TR, addition of FUS promotes a much stronger activation than does stimulation 

with TR alone (92). FUS interacts with the nuclear factor κB (NF-κB) factor p65 and 

activates p65-dependent transcription in a reporter assay (101). FUS binds and inhibits 

CBP and p300 histone acetyltransferases. FUS recruitment to the in vivo target gene 

CCND1 correlates with reduced histone acetylation and reduced transcription. Interestingly, 

recruitment of FUS seems to depend on the expression of noncoding RNAs in the CCND1 

promoter, expression of which is induced by DNA damage (53). Additionally, EWSR1 binds 
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and activates the transcriptional activity of transcription factors Oct-4, CBP, and HNF4α 
(77, 78). EWSR1 inhibits the activity of retinoic acid receptor (Figure 4b) (77).

The diversity of transcription factors at different promoters and the multiple mechanisms 

by which FET proteins can affect transcription provide a reasonable explanation for why 

FET proteins show gene-specific increases or decreases in transcription activity. Several 

important questions about FET proteins’ role in transcription remain. Is there specificity or 

redundancy in the functions of different FET proteins on transcription? Do FET proteins 

regulate primarily interactions between RNA Pol II and other transcription regulators, or do 

they have direct effects on RNA Pol II in vivo? What is the mechanism by which some genes 

avoid regulation by individual FET proteins? If FET proteins were found to possess any 

sequence specificity in vivo, this finding would provide one simple explanation for targeting 

of specific genes for regulation. Is there a common function of FET proteins for every gene 

they associate with, which subsequently activates or represses transcription on the basis of 

downstream effects of other local transcription factors? Or do FET proteins possess two 

distinct mechanisms for interacting with genes, one activating and one repressing?

FET PROTEINS AND CANCER

The ability of FET proteins to stimulate transcription directly connects to their roles in 

tumor promotion. Our treatment of the role of FET proteins in cancer is relatively brief, as 

more extensive reviews can be found elsewhere (13, 14, 19, 85).

FET protein translocations involved in cancer always involve the fusion of the NTD of a 

FET protein to the DNA-binding domain of a transcription factor. The C-terminal parts of 

these fusion proteins come from a number of transcription factors (13). Translocations are 

observed in Ewing sarcoma, small round cell tumor, bone sarcoma, myxoid liposarcoma, 

clear cell sarcoma, myxoid chondrosarcoma, fibromyxoid sarcoma, and acute leukemia (13, 

19, 85). In fact, half of all fusion proteins observed in sarcomas involve one of the FET 

proteins (13). More than 90% of Ewing sarcomas involve a translocation in EWSR1 (19). 

More than 85% of myxoid liposarcomas have a translocation involving FUS (14, 85).

Each of the FET fusion proteins is a powerful oncogene that is sufficient to promote 

tumorigenesis for a specific tissue (44, 45, 48, 49, 77, 83, 84, 87–90, 102–105). Even 

a synthetic fusion protein involving the LC domain of the Drosophila protein cabeza is 

transformative (46). The unique translocation of a FET protein to each transcription factor 

specifically promotes tumorigenesis in a particular tissue (102, 103). For example, mice 

expressing the FUS–CHOP fusion protein develop only liposarcoma and not tumors of 

different tissues (102). Furthermore, through the use of reporter gene transcription assays, 

FET fusion proteins appear to be transcription activators (45, 48, 87, 88, 92, 97, 101, 106, 

107). In contrast, genome-wide studies confirm that equal numbers of genes are activated or 

silenced by expression of either FUS or EWSR1 fusion proteins (19, 89, 90).

In conclusion, broad questions remain about the role of FET proteins in oncogenesis. Are 

repeated translocations within the same exons due to evolutionary selection or a preferred 

mechanism for translocation in cells? Is there a core set of genes targeted by FET fusion 
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proteins for each tumor type? What is the basis for the cell-type specificity of transformation 

by FET fusion proteins? Is there a role for alternative splicing in cell transformation?

FET PROTEIN EFFECTS ON RNA PROCESSING

FET proteins affect RNA-processing events. Evidence for a role of FET proteins in splicing 

is that a knockdown of FUS (55, 57, 58) or EWSR1 (108) alters splicing for many gene 

products, as analyzed by RNA-seq. There is no bias for exon inclusion or exclusion. 

Changes in splicing can be validated by semiquantitative reverse transcription polymerase 

chain reaction assays (58). In addition, RNA-seq of cells with FUS depletion shows multiple 

changes in the site of polyadenylation (37).

The RNA-processing functions of FET proteins could be linked to their role in transcription. 

RNA splicing and polyadenylation are thought to largely occur cotranscriptionally (1, 2, 6), 

and FET proteins could affect these processes by altering the loading of splicing factors such 

as SR proteins onto the polymerase (82, 99, 109). Another model is that FET proteins affect 

the rate of transcription elongation, which can also affect splicing (37, 110). Consistent with 

the idea that at least part of FET proteins’ effects on splicing is due to transcriptional effects, 

FUS, EWSR1, and the transcription factors with which they interact have similar effects on 

RNA splicing (81, 99, 100).

Some evidence suggests that FUS may also directly affect splicing through interactions 

with splicing factors or the pre-mRNA itself. First, FET proteins are also implicated in 

splicing because they bind introns, as well as other parts of the mRNA, based on numerous 

CLIP-seq studies (51, 55, 57, 58). At a minimum, the interaction between FET proteins 

and pre-mRNAs can alter the availability of splice sites and binding sites for other factors. 

In addition, because FET proteins can interact physically with many hnRNP proteins, FET 

protein binding to pre-mRNAs could more broadly alter nascent mRNP assembly and 

splice-site accessibility.

Additional evidence that FET proteins affect splicing is the finding that in many cases 

transfection of FET proteins into cells can alter splicing patterns—although, for the 

popular E1A splicing assay, whether this is due to effects on transcription remains to 

be determined (80, 81, 99). FUS does affect β-globin pre-mRNA splicing in HeLa cell 

lysates (50, 100, 109). In that case, the β-globin pre-mRNA assay shows effects on splicing 

by immunodepleting and adding back recombinant FUS into cell lysates, which offers 

direct evidence for a role for FUS in splicing. This will be an interesting area for further 

investigation (109).

Finally, FET proteins interact with the splicing machinery. Most notably, FET proteins bind 

SR proteins (80, 82, 109) and the U1 snRNP complex (32, 35, 52, 58, 111). One report 

argues that FET proteins bind the snRNP but not the U1 RNA itself (35). U1 is one of 

the most prominent RNAs that copurifies with FUS protein, and potential cross-link sites 

between FUS and U1 have been identified in CLIP-seq data (52, 58). FUS binds hnRNP 

proteins, which also affect splicing (32, 45, 52, 82, 109, 112). Also, note that FUS regulates 

Ser2 phosphorylation on the CTD of RNA Pol II. This particular modification regulates the 
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interactions of splicing factors with RNA Pol II and splicing itself (110, 113). FUS and 

EWSR1 also interact with SMN proteins, suggesting they may affect snRNA biogenesis (52, 

63, 114, 115).

Questions remain about the role of FET proteins in RNA processing. Are FET protein 

effects on RNA processing due to direct interactions with RNA and RNA-processing factors 

and/or downstream effects of changes in transcription itself? Do FET proteins help load 

splicing and RNA-processing factors onto the polymerase at the initiation of transcription? 

Do FET proteins make any specific interactions with a pre-mRNA that might specifically 

regulate splicing or RNA processing?

NUCLEAR–CYTOPLASMIC SHUTTLING OF FET PROTEINS

Although FET proteins are predominantly nuclear, multiple lines of evidence show that 

FET proteins cycle in and out of the nucleus. FET protein shuttling is important because 

mutations in the NLS of FUS both increase cytosolic FUS protein and lead to the 

neurodegenerative diseases ALS and FTLD (21, 116, 117). Heterokaryons, fusions of mouse 

and human cells, provide strong evidence for FET protein shuttling. In a heterokaryon 

cell, proteins that are trapped in the nucleus, such as hnRNPC, remain only in the original 

nucleus. Proteins that cycle, such as hnRNPA1 and FUS, are equally likely to be imported 

to either nucleus; therefore, the human proteins are observed to accumulate in the mouse 

nucleus (38).

The shuttling of FET proteins suggests a “life cycle” wherein FET proteins first interact 

with the transcription machinery and, in some cases, the nascent pre-mRNA, followed by 

nuclear export of FET proteins in conjunction with the mature mRNP. An unresolved issue 

is the extent to which FET proteins are exported with mature mRNA and what differences 

exist between exported FET proteins and the bulk of the protein resident in the nucleus. 

Once in the cytosol, FET proteins are released from their bound mRNAs by one of the 

following: mRNP remodeling components, posttranslational modifications that decrease 

RNA binding, displacement by elongating ribosomes, or ultimately degradation of the bound 

mRNA. Cytoplasmic FET proteins are then reimported into the nucleus upon transportin 

recognition of a nontraditional nuclear localization signal (PY-NLS) found at the C terminus 

of FET proteins (118–120). Modifications near this PY-NLS sequence, including arginine 

methylation and tyrosine phosphorylation, alter the cytoplasmic accumulation of the FET 

proteins (96–98, 118, 120–123). Arginine methylation of FUS or EWSR1 causes these 

proteins to accumulate in the cytoplasm and prevents their nuclear functions (97, 98, 120–

122).

In some cell types, or in response to environmental cues, FET protein levels are increased 

in the cytosol. For example, examination of 35 different tissues for FUS distribution showed 

significant cytoplasmic accumulation of FUS in several tissue types (65). Similarly, in 

neurons, FUS protein is localized to dendritic spines, where many mRNAs are stored in a 

translational repressed state for later local translation in response to synaptic activity. This 

finding suggests that FUS is important for mRNA trafficking along dendrites (124–126). 

FUS−/− mice show significantly reduced dendritic spines (126). During cell adhesion, FET 
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proteins also accumulate in cytoplasmic spreading initiation centers (SICs), along with 

several hnRNP proteins (112, 127). SICs occur near newly formed focal adhesions between 

cell membranes and an adherent surface. SICs incorporate many proteins involved in 

integrin-mediated adhesion, such as RACK1 and vinculin (112). One intriguing possibility 

is that SICs, which are known to contain ribosomal RNA, might also contain mRNA 

associated with FUS, and FUS might play a role in controlling SICs’ cytoplasmic location or 

translation.

Evidence that FUS controls translation in the cytosol has come from the analysis of mRNPs 

associated with the tumor suppressor adenomatous polyposis coli (APC) in cell protrusions 

(128). In this case, FUS appears to be associated with mRNAs targeted to cell protrusions, 

and in the absence of FUS, those mRNAs are translated less efficiently. Thus, FET proteins 

may also modulate mRNA function in the cytosol; this area is ripe for further investigation.

FET proteins can accumulate in cytoplasmic stress granules, which are cytoplasmic mRNP 

granules containing translationally silenced mRNA that is associated with some translation 

initiation factors and RNA-binding proteins. The accumulation of FET proteins in stress 

granules depends on both their concentration in the cytosol and stress, which triggers 

stress granule formation by the inhibition of translation. For example, overexpression of 

FUS and Taf15 proteins by transient transfection can lead to the spontaneous formation of 

stress granules (127). In contrast, endogenous FUS protein accumulates in stress granules 

only during osmotic stress and remains nuclear during oxidative stress, heat shock, or 

endoplasmic reticulum (ER) stress (129). However, when the FUS NLS is mutated, the 

cytosolic FUS concentration is increased, and FUS then accumulates in stress granules in 

response to multiple stresses (64, 67, 129, 130).

FET PROTEINS AND NEURODEGENERATIVE DISEASE

FET proteins have been implicated in neurodegeneration in a manner that is at least partly 

related to their cytoplasmic shuttling. Extensive reviews of the role of FET proteins in 

neurodegenerative diseases are available elsewhere (20, 31, 131–134). Mutations in FUS are 

currently tied for the third leading cause of the neurodegenerative disease ALS, and they 

account for 5% of familial and 1% of sporadic cases (31, 132–134). FUS attracted particular 

attention when mutations were discovered to cause ALS. This finding, along with evidence 

that mutations in the RNA-binding protein TDP-43 are associated with neurodegenerative 

disease, began a trend implicating perturbations in RNA processing as contributing to 

neurodegeneration (20, 68, 69, 131). TAF15 mutations have been associated with only a 

few ALS cases, and no mutations have been confirmed for EWSR1 (135). Mutations in FUS 

also cause or associate with FTLD, which is related to ALS (116, 117).

In ALS patients, FUS accumulates in cytoplasmic inclusion bodies, which include additional 

markers of stress granules (136, 137). Strikingly, all three FET proteins are found in 

cytoplasmic aggregates in the neurons of patients with FTLD (116). Mutations in FUS that 

trigger neurodegenerative disease cluster in the NLS but may also be distributed throughout 

the protein (138). Several mutations near a putative nuclear export sequence within the first 

RGG of FUS appear in familial ALS (139), as do numerous mutations identified throughout 
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the protein in sporadic ALS (138). Although all of these mutations are predicted to be 

deleterious, the extent to which they cause pathology remains to be determined.

The accumulation of FET proteins in cytoplasmic aggregates and the fact that some disease-

causing mutations limit nuclear import have led to a two-hit model for FUS malfunction in 

neurodegeneration (120). In this gain-of-function model for pathology, mutations limiting 

FUS nuclear import lead to a cytoplasmic pool of protein, which can aggregate into stress 

granules during times of stress. The pathological consequence of FET protein accumulation 

in stress granules is unknown (130). One possibility is a gain-of-function effect in which 

FET protein aggregates may sequester other key regulators or trigger abnormal signaling 

pathways and alter cell physiology in a manner leading to cell death (131).

An alternative, but not mutually exclusive, model is that FUS contributes to 

neurodegeneration due to the loss of normal FUS function. For example, aggregates of FUS, 

whether nuclear or cytoplasmic, may deplete the cell of functional FUS protein (64, 67, 119, 

140, 141). Cells expressing a mutant FUS show a loss of Gemini of coiled bodies (Gems), 

consistent with a loss of FUS function (52, 115). Defects in RNA splicing detected in ALS 

patients’ brains are consistent with a loss of function for FUS (58). Moreover, a zebrafish 

FUS knockout mutant demonstrates neurodegenerative phenotypes, and reintroduction of 

ALS-causing mutant FUS fails to rescue these phenotypes, suggesting a loss of function 

(142). Similarly, a mouse expressing a severe ALS-causing mutant, FUS R521C, shows 

numerous deficits consistent with a loss of FUS function (143). Finally, in ALS patient–

derived fibroblasts, defects in phosphorylation of RNA Pol II and localization of RNA Pol II 

within the nucleus, consistent with a loss of FUS function, have also been observed (141).

That most mutations in FUS or TAF15 causing ALS or FTLD are located in the NLS 

sequence strongly suggests that nuclear–cytoplasmic shuttling is important in FET protein 

function. A long list of questions remains about the role this function plays in FET protein 

biology: Do FET proteins perform predominantly different functions in different tissues 

depending on their nuclear or cytoplasmic distribution? Does the presence of the same 

PY-NLS on several interacting partners of FET proteins speak to a common molecular 

pathway for their function, or are they merely the result of convergent evolution? Do FET 

proteins perform fundamentally similar roles (perhaps a structural role) in each of the 

subcellular locations (transcriptionally active chromatin, dendritic spines, SICs) in which 

they accumulate? How does the mislocalization of FET proteins that have disease-causing 

mutations in their NLS affect each of their various nuclear and cytoplasmic functions?

FET PROTEINS AND DNA DAMAGE REPAIR

FET proteins are also implicated in DNA damage repair. This function of FET proteins 

is interesting because it may contribute to pathology in neurodegenerative diseases. A 

knockdown of either FUS or EWSR1 expression in cell culture causes deficiencies in DNA 

damage recovery, as measured by the comet-tail assay or by cell-colony survival following 

treatment with ionizing radiation (108, 144–146). FUS or EWSR1 knockout in cells and 

mice leads to accumulation of DNA breaks and high sensitivity to ionizing radiation (91, 
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147–149). In fact, merely overexpressing the ALS-causing mutant FUS R521C also causes a 

defect in DNA damage recovery, as observed by the comet-tail assay (143).

FUS is one of the earliest proteins recruited to DNA lesions, as observed by 

immunofluorescence following laser microirradiation (144, 145). In contrast, EWSR1 

accumulates in nucleoli following DNA damage by UV irradiation (108). Phosphorylated 

FUS binds dsDNA breaks and Holliday junctions (40). A loss of FUS inhibits or delays 

the recruitment of the DNA repair factors histone deacetylase 1 (HDAC1), γH2AX, 

phosphorylated ATM, and DNA-PK to sites of DNA damage (144). EWSR1 interacts with 

DNA-PK and PARP1 in a DNA damage–dependent manner (150). FUS is phosphorylated 

by ATM following DNA damage (40); however, inhibitors of this kinase still allow 

FUS recruitment to sites of DNA damage (145). An inhibitor of the poly(ADP-ribose) 

polymerase, PARP1, does inhibit FUS recruitment to sites of DNA damage (145). 

Interestingly, both FUS and EWSR1 undergo phosphorylation by protein kinase C, a pro-

apoptotic kinase also involved in the DNA damage response (94, 151). Additionally, FUS 

protein is phosphorylated by the fusion kinase BCR/ABL, which in turn promotes binding 

to ssDNA (93). This phosphorylation may regulate the POM activity of FUS and EWSR1 

proteins or the promotion of invasion of dsDNA by ssDNA in cells (41–43).

Lastly, FUS binds upregulated noncoding RNAs following DNA damage by ionizing 

radiation. For the gene CCND1, the recruitment of FUS to noncoding RNAs expressed 

from the gene promoter is coordinated with inhibition of CBP/p300-dependent acetylation of 

histones and a reduction in CCND1 gene expression (53). The regulation of CBP/p300 by 

FUS can be reconstituted in vitro. Pull-down and activity assays suggest that the NTD and 

CTD of FUS work in concert to accomplish this function, reportedly through the following 

allosteric mechanism. The LC domain is sequestered by the RGG–ZnF–RGG domain until 

the latter binds RNA. Upon RNA binding, the LC domain is released to bind and inhibit 

CBP and p300.

In short, much remains to be learned about the role of FET proteins in DNA damage repair. 

Important questions include the following: What is the relationship between transcription 

and DNA damage repair with respect to FET protein function in each? How do DNA 

damage–repair factors recruited by FET proteins know whether the targeted site is a site of 

transcription or a DNA lesion? Could DNA damage–repair factors possibly also be recruited 

to TSSs by FET proteins and perform a function there? Do EWSR1 and TAF15 mimic FUS 

function at sites of DNA damage? Are these functions redundant or unique? What role, if 

any, do posttranslational modifications have in FET protein response to DNA damage? Do 

FET proteins aid in strand annealing at sites of dsDNA breaks in a manner analogous to 

reported POM activities? Does impairment of FUS protein DNA damage–repair functions 

contribute to the pathology of ALS and FTLD?

SUMMARY

FET proteins are abundant nuclear RNA-binding proteins that are structurally related to 

hnRNP proteins. They bind RNA with broad sequence specificity, as evidenced by the 

large number of RNAs that are bound by FET proteins in vivo. FET proteins regulate both 
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transcription and RNA processing, and the mechanisms by which protein–RNA, protein–

DNA, and protein–protein interactions contribute to this regulation are the subject of much 

current research. FET proteins also have DNA damage–repair functions. FET proteins 

have prion-like domains of low amino acid sequence complexity, which can promote 

higher-order assembly and fiber formation. An attractive model posits that the controlled 

formation of fibrous assemblies is critical to some or all normal FET cellular functions, 

but that uncontrolled aggregation (e.g., due to mutation or posttranslational modification) 

is pathogenic in neurodegeneration. Protein aggregation may contribute to disease both 

by toxic gain of function and by depletion of the normal functions of the FET proteins. 

Finally, in sarcomas the fusion of a FET LC domain to a new DNA-binding domain leads 

to inappropriate transcriptional activation that drives oncogenesis. Thus, the biochemical 

properties of the FET proteins are contributing to our understanding of both their biological 

functions and their roles in disease.
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Figure 1. 
Conservation of FET proteins throughout multicellular organisms. The diversity of FET 

proteins expands in multicellular organisms in parallel to the expansion of heterogeneous 

nuclear ribonucleoprotein particle (hnRNP) proteins. The domain composition of the FET 

proteins is consistent, although—at least for Arabidopsis thaliana—the order of the domains 

is somewhat altered. Low-complexity (LC) domains, with their repeated LC motif, are 

conserved, and the number of motif repeats can vary. RGG domains contain repeats of 

Arg–Gly–Gly. The asterisk indicates that there are 24 sea urchin hnRNP proteins, although 

tubeworms are reported to possess only 16 hnRNP proteins. Abbreviations: C4 ZnF, zinc-

finger domain anchored by four cysteine residues; RRM, RNA recognition motif.
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Figure 2. 
(a) Summary of the activities and characteristics associated with the domains of FET 

proteins. The asterisk indicates that the first RGG domain is not very apparent in the protein 

TAF15 or cabeza and is limited to two RGG motifs within the low-complexity (LC) domain. 

(b) The relative size of domains (color coded as in panel a) for FUS, EWSR1, TAF15, and 

cabeza. Abbreviations: ALS, amyotrophic lateral sclerosis; CTD, C-terminal domain; NLS, 

nuclear localization signal; RNA Pol II, RNA polymerase II; RRM, RNA recognition motif; 

ZnF, zinc-finger domain.
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Figure 3. 
Model for RNA-nucleated assembly of FUS proteins and recruitment of RNA polymerase II 

(Pol II). FUS binds RNA highly cooperatively. The FUS–RNA complex forms the seed for 

fiber growth. FUS fibers are composed of a seed of FUS protein bound to RNA and FUS 

proteins not bound to RNA. The C-terminal domain (CTD) of RNA Pol II may interact with 

this fiber either by intercalating into the growing fiber or by binding alongside the fibrous 

structure.
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Figure 4. 
Two mechanisms by which FET proteins affect transcription. (a) FET proteins, based 

on the local concentration of RNA transcripts, may form higher-order assemblies near 

the promoters and transcription start sites of genes. These assemblies recruit more RNA 

polymerase II (RNA Pol II) through interactions with the C-terminal domain (CTD) and 

protect the CTD from premature phosphorylation at position Ser2. (b) FUS and EWSR1 

interact with several transcription factors to stimulate or repress their activity.
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