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Abstract

This work proposes an interpretable radiomics approach to differentiate between malignant and 

benign focal liver lesions (FLLs) on contrast-enhanced ultrasound (CEUS). Although CEUS has 

shown promise for differential FLLs diagnosis, current clinical assessment is performed only by 

qualitative analysis of the contrast enhancement patterns. Quantitative analysis is often hampered 

by the unavoidable presence of motion artifacts and by the complex, spatiotemporal nature of liver 

contrast enhancement, consisting of multiple, overlapping vascular phases. To fully exploit the 
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wealth of information in CEUS, while coping with these challenges, here we propose combining 

features extracted by the temporal and spatiotemporal analysis in the arterial phase enhancement 

with spatial features extracted by texture analysis at different time points. Using the extracted 

features as input, several machine learning classifiers are optimized to achieve semiautomatic 

FLLs characterization, for which there is no need for motion compensation and the only manual 

input required is the location of a suspicious lesion. Clinical validation on 87 FLLs from 72 

patients at risk for hepatocellular carcinoma (HCC) showed promising performance, achieving a 

balanced accuracy of 0.84 in the distinction between benign and malignant lesions. Analysis of 

feature relevance demonstrates that a combination of spatiotemporal and texture features is needed 

to achieve the best performance. Interpretation of the most relevant features suggests that aspects 

related to microvascular perfusion and the microvascular architecture, together with the spatial 

enhancement characteristics at wash-in and peak enhancement, are important to aid the accurate 

characterization of FLLs.
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Medical imaging; medical signal and image processing; medical tissue characterization; 
ultrasound (US) contrast agents

I. INTRODUCTION

Liver cancer is the third leading cause of cancer-related death globally, accounting for about 

906 000 new cases and 830 000 deaths worldwide [1]. The incidence and mortality rates 

keep increasing in the United States [2]. According to the American Cancer Society, the 

five-year survival rate for liver cancer is only 20%, the second lowest among all cancers 

[2]. Due to the limitations of current diagnostics, focal liver lesions (FLLs) are often found 

incidentally and many patients with malignant FLLs are thus diagnosed in an advanced 

stage [3], [4]. Early differentiation between benign and malignant FLLs is thus of uttermost 

importance so that appropriate treatment may be initiated. Benign lesions include focal 

nodular hyperplasia, cysts, adenomas, and hemangiomas, as well as a wide variety of 

regenerative and dysplastic nodules seen in patients with cirrhosis, while malignant lesions 

include hepatocellular carcinoma (HCC), accounting for 75%–85% of all liver cancers, 

cholangiocarcinoma, biliary cystadenocarcinoma, and hepatic metastasis [5], [6].

Imaging plays an important role in the diagnosis and management of liver cancer [7]–[11]. 

As standardized by the American College of Radiology Liver Imaging Reporting and Data 

System (ACR LI-RADS) for patients at risk of HCC [8], surveillance is performed by 

ultrasound (US), followed by classification that is performed by computed tomography 

(CT), magnetic resonance imaging (MRI), or contrast-enhanced ultrasound (CEUS).

Differently from CT and MRI, contrast agents used for CEUS are purely intravascular and 

allow for real-time assessment of the vascular enhancement patterns without the use of 

ionizing radiation at higher spatial and temporal resolution [9]–[11]. Moreover, since they 

are not nephrotoxic, they are safe to use in patients with renal insufficiency [9], [10].
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Current assessment of FLLs with CEUS is performed by purely qualitative evaluation of 

the vascular enhancement patterns, with emphasis on presence, type, and degree of arterial 

phase enhancement of the FLL, as well as presence, timing, and degree of contrast wash-out 

[8], [11], [12].

Besides requiring expertise in both acquisition and interpretation [8], [13], current 

qualitative evaluation of CEUS images acquired at the different phases is a labor-intensive 

and time-consuming task, which could be affected by inter-reader variability [14], [15]; 

moreover, it does not fully exploit the rich spatiotemporal information present in the 

CEUS images. Over the years, several methods have been developed to extract quantitative 

information from CEUS, ranging from analysis of time-intensity curves (TICs) to full 

spatiotemporal assessment of the contrast agent transport [16], [17]; however, in the liver, 

motion artifacts due to probe and respiratory motion make quantitative analysis of CEUS 

challenging [18], [19].

A number of methods have been proposed to quantitatively analyze CEUS images for 

computer-aided FLLs characterization [15], [20]–[28]. Initial attempts mainly focused 

on assessing the temporal characteristics US contrast enhancement by analysis of TICs 

[15], [20], [22], [23]. In a parametric imaging approach, dynamic vascular patterns were 

mapped into a color-coded image by classifying each pixel TIC in the lesion into four 

distinct vascular signatures, based on comparison with the average TIC in an adjacent 

region-of-interest (ROI), representative of the liver parenchyma [20]. Compared to visual 

inspection of the full CEUS exam, interpretation of the obtained parametric images by 

radiologists showed superior diagnostic performance and better interobserver agreement 

[15]. Machine learning methods were also proposed for automatic TIC interpretation and 

FLLs characterization, achieved either by first extracting features from analysis of TICs in 

the lesion core, lesion periphery, and parenchyma, and then feeding these features to an 

artificial neural network (ANN) [22], or by an end-to-end approach combining automatic 

TIC extraction from the arterial and portal phases by factor analysis of dynamic structures 

with a deep-belief network for classification of the lesion into benign or malignant [23].

Focusing on spatial characteristics at different temporal phases, Liang et al. [26] proposed 

a fully automated method, which first trains several local classifiers to find discriminative 

ROIs in the arterial, portal, and late phases, from which spatial features are then extracted by 

texture and local-phase analysis and used for lesion classification. In a study by Huang et al. 
[27], spatial semantics extracted at multiple frames by analysis of local binary patterns also 

proved useful for differentiation of atypical HCC.

Spatial and temporal characteristics have also been combined by adding to the temporal 

features, obtained by TIC analysis, a set of spatial features, obtained by analysis of the 

image intensity spatial patterns at different temporal phases of the CEUS cines [21], [24], 

[25] and the B-mode image prior to contrast injection [24]. The obtained features were then 

concatenated and fed to machine learning models such as ANNs [24] or support vector 

machines (SVMs) [21], [25] for different classification tasks.
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Recently, a method based on convolutional neural networks was also proposed to achieve 

end-to-end lesion classification, avoiding the need for hand-engineered feature extraction 

[28]. The method, however, still requires the manual selection of the lesion ROI by an expert 

radiologist, based on which 50 ROIs from each vascular phase (arterial, portal, and late) are 

then manually selected.

One major limitation of previous studies is the lack of analysis and interpretation of the 

importance of each feature in producing the output prediction, which could offer useful 

clinical insights and provide a better understanding of the decision process, possibly 

allowing for debugging and improvements at all steps of the acquisition and processing 

chain. Moreover, most of the methods require a motion compensation step [15], [20]–[22], 

[25] and the definition of a parenchyma ROI prior to feature extraction [15], [20], [22], 

[24], [25]. Motion compensation is notoriously challenging in liver CEUS, requiring careful 

fine-tuning and appropriate validation [19]; for currently standard 2-D CEUS acquisitions, 

the presence of out-of-plane motion makes motion compensation even more challenging 

and often leads to discarding a large number of frames [18], [19]. Delineation of an 

appropriate ROI to represent the lesion parenchyma, either manually or automatically, is 

also a critical step, as the ROI should ideally be at the same imaging depth of the lesion ROI 

to avoid depth-dependent differences in image intensity and should also avoid areas with 

large vessels; these conditions are often difficult to meet for large and highly vascularized 

lesions. Some methods additionally require long acquisition times up to 30 min [21], [24], 

[25] to observe the postvascular phase and the injection of a second bolus followed by 

a high-pressure US pulse to sample the replenishment curve by inflowing microbubbles 

[24]. More complex models can achieve end-to-end classification, avoiding the need for all 

preprocessing and feature extraction steps, but often require large patient dataset due to the 

large number of trainable model parameters [26], [28] and they are generally more difficult 

to interpret [23], [26], [28].

In this work, we propose an interpretable machine learning approach to differentiate benign 

and malignant FLLs on CEUS, requiring minimal manual input and avoiding the need for 

motion compensation. Our approach is based on the extraction of features that are relatively 

robust to motion. Similar to previous work, this is achieved by spatial and spatiotemporal 

analysis of the CEUS loops; however, our method differs from existing work in a number 

of aspects. First, we intentionally avoid the use of model fitting for TIC analysis, as the 

presence of motion and the overlap between the arterial and portal phase generally make 

model fitting unreliable. Second, we propose for the first time in the liver a set of CEUS-

based spatiotemporal features to capture simultaneously TIC characteristics in time and 

space [29], [30]. Third, we focus on short CEUS acquisitions of about 60 s, capturing mainly 

the arterial phase and part of the portal phase, thus avoiding the need for long examination 

times and a double contrast injection. Fourth, we implement an automatic method for 

selection of the most suitable frames for spatial analysis at three different phases of the 

short CEUS cine based on their spatial correlation with a reference frame, making them 

more robust to motion. Finally, we perform the analysis and interpretation of the feature 

relative importance for the output prediction, possibly providing useful insights for clinical 

decision-making and the further optimization of computer-aided diagnostic methods.
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II. METHODS

A. Patient and Data Acquisition

This HIPAA-compliant study was approved by the Institutional Review Board of all 

participating institutions. Informed consent was obtained from each patient prior to data 

collection. All data were deidentified and pseudonymized prior to analysis.

The study included 72 patients at risk of HCC who were examined for evaluation of 

FLLs at the Thomas Jefferson University Hospital (Philadelphia, PA, USA) or the Stanford 

University Medical Center (Stanford, CA, USA). CEUS was performed by injection of a 

bolus of Lumason, according to the ACR CEUS LI-RADS Working Group [31]. Recordings 

of approximately 60 s were obtained to visualize the contrast wash-in, peak enhancement, 

and beginning of wash-out. Each recording presented a side-by-side view of the B-mode 

and the contrast-specific acquisition [see Fig. 1(a)]. When multiple FLLs were present, up to 

two of the most visible lesions were investigated. Each lesion was examined independently 

and considered an independent sample, as different lesion types can be present in the same 

patient. All CEUS investigations were assessed by board-certified body/abdominal imaging 

radiologists and the final diagnosis was obtained by further evaluation with CT, MRI, 

and/or histopathology. A total of 87 lesions were included, of which 13 were benign and 

74 malignant. Malignant lesions included 71 HCC and 3 intrahepatic cholangiocarcinoma 

(ICC). Details on the US acquisition settings and the breakdown for different lesion types 

of CEUS LI-RADS, liver disease etiology, and cirrhosis are provided in Tables S1–S4, 

respectively (see the Supplementary Material).

B. Data Processing and Feature Extraction

Fig. 1 schematically shows the data processing and feature extraction pipeline. For each 

lesion, the US examination consisted of a cine loop with a side-by-side view of the B-mode 

acquisition next to the CEUS acquisition. The lesion was first manually delineated on the 

B-mode window, and a square ROI was then automatically obtained around the lesion. 

In parallel, CEUS loops were first linearized based on the known dynamic range [32] 

and then quantitatively analyzed by spatiotemporal and texture analysis to obtain pixel-

based parametric maps. Using a radiomic approach, the parameter values in the ROI were 

condensed by extracting summary statistics. These were finally used as input to the machine 

learning models. The processing pipeline is further detailed hereafter. Data processing and 

feature extraction was performed on MATLAB (The MathWorks Inc, Natick, MA, USA) 

version 9.8.0.1323502 (2020a).

1) Lesion Delineation and ROI Definition: For each lesion, a certified radiologist 

indicated the location of the lesion on one frame of the US cine, where the lesion was well 

visualized, as shown, for example, in Fig. 1(a). Based on this indication, each lesion was 

segmented manually on the B-mode side of the CEUS loop by using ITK-SNAP [33] [Fig. 

1(b)]. The manual segmentation was performed in 1–3 frames where the lesions were clearly 

visible to increase robustness toward motion artifacts. In fact, motion is unavoidably present 

in liver CEUS cines due to US probe displacement, respiration, and other physiologic 

movements [19]. Based on the manually segmented frames, a square ROI was automatically 
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selected, centered around the center of mass of manual delineation(s), and included also part 

of the structures surrounding the lesion [Fig. 1(c)]. The ROI size ranged from 200 × 200 to 

278 × 278 pixels, that is, 2.74 × 2.74 cm2 to 8.24 × 8.24 cm2, depending on the actual lesion 

size in centimeters.

2) Spatiotemporal Analysis: CEUS is an established modality for assessment of 

microvascular perfusion [16], [17]. From the TIC analysis, several semiquantitative and 

quantitative parameters can be extracted that are related to blood flow and volume and the 

microvascular architecture [16]. Generally, it is advisable to fit the obtained TICs to suitable 

indicator dilution models prior to parameter extraction, as it increases robustness to noise, 

provides more accurate parameter estimates, and allows for the estimation of parameters 

that are more directly related to the underlying physiology [16]. However, in the liver, the 

arterial phase, which starts at 10–20 s and ends at 30–45-s postcontrast injection, partially 

overlaps with the portal phase, which starts at 30–45 s [11], hiding the contrast wash-out in 

the arterial phase. Thus, in this work, we intentionally avoided the use of TIC model fitting, 

as the overlap between the arterial and portal phases at the beginning of contrast wash-out, 

together with the unavoidable presence of motion, makes model fitting unreliable. Instead, 

focusing on the arterial phase, we directly extracted semiquantitative parameters from the 

TIC. After preprocessing by a 5-s moving average filter, the following parameters were 

extracted: peak intensity, peak time, appearance time, wash-in time, and wash-in rate [34]. 

These are further defined in Table I.

To go beyond temporal TIC analysis, we also performed a spatiotemporal similarity analysis 

by comparing each pixel TIC with neighboring TICs in a ring kernel [29], [30], with an 

inner radius of 1 mm and an outer radius of 2.5 mm.

These dimensions were chosen based on the known tumor size limit of 1 mm3 in volume 

(1.25 mm in diameter, assuming a spherical volume), after which the formation of a vascular 

network is required to permit further tumor growth, a concept known as angiogenesis 

switch [30], [35]. Linear similarity was quantified in the frequency domain by the spectral 

coherence and in the time domain by the linear correlation [30]. As described in [30], prior 

to similarity analysis, anisotropic spatial filtering for speckle regularization is performed, 

and a time window is selected, starting from the bolus appearance time. In this work, 

however, we reduced the time window to 20 s to focus on the arterial phase only, avoiding 

confounding effects from the overlapping portal phase. In addition, the mutual information 

between neighboring TICs was estimated as a measure of nonlinear similarity, as described 

in [30], and again reducing the time window to 20 s.

3) Texture Analysis: Spatial information at different vascular phases was extracted by 

applying texture analysis at three different frames of the CEUS loop, selected at fiducial 

time points during contrast wash-in, peak intensity, and contrast wash-out. To make the 

search for these time points more robust toward motion artifacts, first, the correlation 

between the reference frame, i.e., the frame which the radiologist used to indicate the lesion, 

and all other frames was calculated on the B-mode images. Only frames with a correlation 

higher than the empirically chosen threshold of 0.8 were considered valid, thus filtering 

out frames with large motion artifacts. The B-mode was only used for the selection of 
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the reference frame and valid frames, while the rest of the analysis was performed on the 

CEUS data. A mean TIC (TICmean) was calculated on the CEUS loop by averaging over 

all pixels in the manually segmented lesion at the reference frame. A straight line was fit 

to the TICmean wash-in, in the interval defined by the time points at which the TICmean 

intensity is between 5% and 50% of the intensity at peak, using only valid frames. Similarly, 

a straight line was fit to the wash-out in the second half of the time window defined from 

the appearance time to the end of the recording (Fig. 2). The intersection between these two 

straight lines was then used to find an initial guess for the peak time. The peak frame was 

found as the frame at which TICmean was maximum, in a window including 20 samples 

before and 50 samples after the initial peak guess, including only valid frames. The wash-in 

frame was defined as the frame with the highest correlation with the reference frame, in a 

window starting five samples after the appearance time and ending five samples before the 

peak time. Finally, the wash-out frame was defined as the frame with the highest correlation 

with the reference frame, in a window starting ten samples after the peak time until the end 

of recording.

Once the wash-in, peak, and wash-out frames were defined based on the fiducial time points, 

texture analysis was performed separately for each of these frames by using the texture 

feature extraction module of the radiomics MATLAB toolbox implemented by Vallières et 
al. [36], [37]. Typically, this analysis requires the definition of an ROI, from which a single 

value for each texture feature is calculated. In order to retain the local characteristics of 

the features, possibly highlighting structures with different textures in the image, here, we 

performed the analysis defining the ROI as a moving window. In this way, parametric maps, 

showing the texture feature values at each imaging pixel, could be obtained (see Fig. 3). 

The window was chosen of size 21 × 21 pixels and was moved with a stride of 3 pixels. 

These settings were optimized empirically to balance between excessively noisy or smooth 

feature maps, preserving at best structures with different textures. Prior to feature extraction, 

the intensity range in the window was quantized to 64 gray levels, as described in [36]. 

The 43 texture features summarized in Table II were extracted for each of the three selected 

frames (wash-in, peak, and wash-out). Global features are calculated from the histogram of 

the intensity values in the ROI, while the rest of the features are calculated from matrices 

estimated by calculating the second (GLCM) and higher order spatial statistical properties 

(GLRLM, GLSZM, and NGTDM) of an image. These features are calculated on the CEUS 

frames at wash-in, peak enhancement, and wash-out. In the results, these are indicated by 

prefixes “WiIm,” “PkIm,” and “WoIm”, respectively. A detailed description of all texture 

features can be found in [37].

4) Summary Statistics: After spatiotemporal and texture analysis, a total of 137 

parametric maps were obtained, including spatiotemporal features (N = 8), wash-in texture 

features (N = 43), peak texture features (N = 43), and wash-out texture features (N = 43) 

[Fig. 1(d)]. To summarize the information in the selected ROIs, summary statistics of the 

parameter values over the ROI were extracted for each feature [Fig. 1(e)].

Since the features were generally not normally distributed, we calculated the median, 

interquartile range, and skewness. In the results, these are indicated by the suffixes 
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“median,” “iqr,” and “skew.” Each summary statistic was treated as a separate feature, thus 

obtaining 411 features for each lesion.

C. Machine Learning

Given the large number of features, feature filtering was performed prior to optimization 

and training of the machine learning models, in order to reduce the dimensionality of 

the problem [Fig. 1(e)]. First, correlation analysis was performed to remove features that 

are highly correlated, with the goal of reducing information redundancy. For each pair of 

features with correlation higher than 0.9, the feature with the highest correlation with the 

label (malignant/benign) was kept, while the other was discarded. Then, univariate feature 

selection was performed to pick the best N features, based on the mutual information with 

the label. This operation was performed separately for each set of features (spatiotemporal, 

wash-in texture, wash-out texture, and peak texture features), choosing N adaptively for 

each feature set by performing principal component analysis and calculating the number of 

components necessary to explain 95% of the variance. These feature-filtering steps enabled 

reducing the number of features from 411 to 41.

The 41 filtered features were then used to train different machine learning models. Given 

the small dataset, optimization, feature selection, and performance evaluation were carried 

out by a repeated nested k-fold cross validation, which has shown to produce conservative 

estimates of the model performance [38]. As shown schematically in Fig. 1(f), the dataset 

was first split into four folds, of which three were used as training + validation set and one as 

test set; the training + validation set was further divided into three folds used for tuning the 

hyperparameters (training) and one fold used to choose the best model (validation); finally, 

the performance was tested on the test set. For both the inner and outer cross-validation 

procedures, the folds were rotated four times so that each fold was once in the validation/test 

set. The whole procedure was then repeated five times for five different random splits 

of the lesions in the outer four folds, thus obtaining a total of 20 evaluations of the 

model performance. To cope with the unbalanced dataset, a synthetic minority oversampling 

technique (SMOTE) [39] was used to oversample the benign cases (minority class) to a ratio 

of 0.5 of the number of malignant cases (majority class). The malignant cases were then 

randomly undersampled to a ratio of 0.7 of the original size. This operation was only applied 

on the training set and never on the test set since the performance evaluation should not be 

calculated on artificial data to avoid overoptimistic results [40]. Backward sequential feature 

selection was then performed to further reduce the features to an optimal number, which 

was optimized separately for each classifier. The hyperparameters were tuned in each fold 

on the training set by further splitting this set in four folds and performing a cross-validated 

grid search [41]. The best hyperparameters were chosen as the most occurring ones over all 

folds. The procedure in Fig. 1(f) was then repeated by fixing the hyperparameters at their 

optimal values and calculating the model performance over the 20 total repetitions (four 

folds rotations by five random splits) of the cross-validation procedure. All the steps in the 

machine learning pipeline [Fig. 1(e) and (f)] were carried out on Python (version 3.8.8), 

using the Scikit-learn library [41].
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1) Machine Learning Models: Several machine learning models were trained and 

optimized, including logistic regression (LR), support vector machine (SVM), random forest 

(RF), and k-nearest neighbor (kNN) [42]. An overview of the hyperparameters that were 

optimized for each classifier is provided in Table III. Since the dataset is unbalanced, the 

optimization was performed to maximize the balanced accuracy (bACC), which is given by

bACC = 1
2

TP
TP+FN + TN

TN+FP (1)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, 

and false negatives, respectively. Here, a malignant lesion is regarded as positive, while a 

benign lesion is regarded as negative. The bACC can also be interpreted as the average 

between sensitivity (SENS) and specificity (SPEC) [43].

The optimized models were then used to implement a voting classifier, which combines 

the predictions of different classifiers by majority voting (hard voting) or by calculating the 

weighted average of the output probabilities (soft voting). In this work, we implemented a 

soft voting classifier (sVC) by combining all the models in Table III, using the optimized 

hyperparameters.

2) Feature Selection and Interpretation: In each fold, the optimal feature subset 

was found by backward sequential feature selection. This procedure removes features 

sequentially by keeping at each step the subset of M-1 features that gives the highest 

classification accuracy, with M the number of features at the previous step. The procedure 

stops when the desired number of features is obtained. To select the optimal number of 

features, each classifier was trained repeatedly by changing each time the desired number of 

features as input to the feature selection procedure. A number of features ranging from 12 

to 41 (full set) were investigated. In addition, feature relevance was assessed by calculating 

the frequency of being chosen and the permutation feature importance (PFI) for each feature 

over the 20 repetitions of the cross-validation procedure. For a feature, the PFI is calculated 

as the decrease in model performance when the values of that feature are randomly shuffled, 

losing any relationship with the output class. This technique has the advantage to be model-

agnostic and thus facilitates the comparison between different models.

3) Model Evaluation: The performance of the classifiers for distinguishing between 

benign and malignant FLLs were compared by calculating the mean and standard deviation 

of the accuracy (ACC), bACC, SENS, and SPEC, and area under the receiving operator 

characteristic curve (AUCROC) averaged over the five random splits of the four-fold cross-

validation procedure, for a total of 20 performance evaluations. The statistical significance 

of the difference in the obtained performance was calculated by running a k-fold cross-

validated t-test as described in [44]. However, since our k-fold procedure was repeated five 

times for five different random splits of the data in fourfold, we additionally applied a 

correction in the variance estimate used to calculate the t-statistic, as suggested by Nadeau 

and Bengio [45]. Let p(i) = pA
(i) − pB

(i) be the difference in a given performance metric at 

repetition i between models A and B. The corrected t-statistic of p is calculated as
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t = p
σcorr

2 = p

σ2 1
n + n1

n2
(2)

where p = (1/n)∑i = 1
n p(i), n is the total number of repetitions, n1 is the number of samples in 

the training set, n2 is the number of samples in the test set, and σ2 is the estimated variance, 

calculated as the sample variance Sn divided by n as

σ2 = Sn
n =

∑i = 1
n (p(i) − p)2

n(n − 1) . (3)

Under the null hypothesis that the performance of models A and B are not different, the 

t-statistic has a t-distribution with n − 1 degrees of freedom. The null hypothesis can be 

rejected with level of confidence α = 0.05 if |t| > tn−1,0.975. Here, the chosen metric to 

compare the performance is the bACC.

III. RESULTS

A. Feature Extraction and Preprocessing

Fig. 2 shows one example of the procedure used to extract the wash-in, peak, and wash-out 

frames. Two straight lines (orange lines) are fit to the wash-in and the wash-out to find a 

guess for the peak frame. From this initial guess, the three frames at wash-in, peak, and 

wash-out with the highest correlation with the reference frame are then found and used for 

feature extraction (black dashed lines).

Fig. 3(a)–(e) and (f)–(l) shows examples of the extracted parametric maps in one benign and 

one malignant lesion, respectively, including the spatiotemporal features “coherence” [Fig. 

3(b) and (g)], = and “peak time” [Fig. 3(c) and (h)], the texture feature “Global Kurtosis” at 

wash-in [Fig. 3(d) and (i)], and the texture feature “GCLM Energy” at peak [Fig. 3(e) and 

(l)], with the lesion segmentation and analysis ROI highlighted in red and blue, respectively. 

The histograms of the features shown in Fig. 3 can be found in the Supplementary Material 

(Fig. S1).

When comparing the texture feature maps with the grayscale CEUS image of the reference 

frame [Fig. 3(a) and (f)], it can be seen that most of the structures in the images are 

preserved. Feature values for the benign and malignant lesion present differences in both the 

lesion and the surrounding parenchyma. Both cases presented with alcoholic liver disease, 

but cirrhosis was present only in the benign case. Cirrhosis might thus contribute to the 

differences observed in the parenchyma.

B. Machine Learning Models

The performance in distinguishing between malignant and benign FLLs is shown in Table 

IV in terms of ACC, bACC, SENS, SPEC, and AUCROC. The results are reported as the 

average over the 20 repetitions of the cross-validation procedure, with standard deviation 

given in parenthesis. Although the sVC classifier gave higher performance for all metrics, 
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with lower standard deviation, the increase in performance was not significantly different, 

as tested by the corrected k-fold cross-validated t-test. To highlight the problem of the 

dataset imbalance, the performance is also compared with a “Naïve” classifier, obtained 

by predicting every lesion as malignant. This would give a comparable accuracy and 

significantly higher sensitivity, but the bACC will be very low and the specificity would 

obviously be zero.

C. Feature Selection and Interpretation

The number of selected features was optimized by running the cross-validation procedure 

for a different number of features and picking the number of features that gave the highest 

bACC. This is shown in Fig. 4 for each classifier, with the optimal number of features 

highlighted with a black circle. While LR, SVM, and sVC are relatively stable for a number 

of features larger than 18, with small improvements with a larger number of features, larger 

variability is observed for the kNN and RF. For the latter, this can be explained by the nature 

of the RF algorithm, which trains at each iteration a number of different trees with randomly 

selected features. Because of this built-in feature selection mechanism, tree-based algorithms 

often do not benefit from feature selection [46].

To understand the contribution of each feature to the output prediction, we calculated the 

PFI of the selected features at each fold. In Fig. 5, the average normalized PFI of the top 

10 features over the 20 k-fold repetitions is shown for the three best performing classifiers, 

namely, LR, SVM, and sVC. In addition, the shading and text in each bar indicate the 

percentage of times that each feature was selected. For all classifiers, the most relevant 

features include a combination of spatiotemporal and texture features extracted at wash-in 

and peak. For almost all the top features, the skewness and interquartile range were more 

relevant than the median value in the ROI.

A 3-D scatter plot of the three top features (Coherence_iqr, WiIm_Global_Kurtosis, and 

PkIm_GLCM_Energy) can be found in the Supplementary Material (Fig. S2). A cluster of 

malignant samples can already be observed, using only three features.

IV. DISCUSSION

Our results show that combining spatiotemporal features and texture features extracted 

at fiducial time points by machine learning has the potential for computer-aided 

characterization of FLLs in patients at risk for HCC, with no need for motion compensation 

and requiring minimal manual input. Our strategy aims at extracting features that are 

relatively robust to motion. As the texture features are based on the analysis of spatial 

statistical properties at specific time points, these features are generally less affected by 

motion artifacts. However, to ensure that the investigated lesion is approximately in the same 

position in all the selected frames, we further proposed an automated procedure to find 

fiducial time points in each phase, at which the correlation with the reference frame was the 

highest.

For the spatiotemporal features, a set of features were extracted by the model-free temporal 

analysis of TICs, limited in the time window up to peak intensity, thus avoiding the overlap 
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with the portal phase. Although TICs are affected by noise and motion artifacts, causing 

amplitude variations, the time-dependent TIC features, as well as features depending on 

the ratio between amplitude and time, have shown to be more robust to noise compared to 

features that are purely amplitude-based [47]. In line with these findings, our analysis of 

feature relevance shows that the peak time is more important for FLLs classification by our 

proposed method compared to other TIC features that are dependent on the ratio between 

amplitude and time (wash-in rate) or on amplitude alone (peak intensity). The rest of the 

spatiotemporal features were extracted by the similarity analysis of TICs in a ring kernel. 

By this procedure, each pixel TIC is compared with all the TICs in the kernel to calculate 

linear and nonlinear similarity measures. Since motion artifacts affect the TICs in a local 

neighborhood in a similar manner, we assume that the influence of motion on the extracted 

similarity measures is limited. Moreover, to focus on the arterial phase, the analysis window 

was limited to 20 s from the contrast appearance time, limiting the overlap with the portal 

phase. While the promise of spatiotemporal similarity analysis has been demonstrated in 

previous studies on CEUS imaging of prostate cancer [29], [30], [48]–[50], this is the first 

time that this approach is translated to another human organ. Similarity analysis permits the 

quantification of local parameters reflecting the contrast agent dispersion kinetics, which 

have been related to the tortuosity of tumor microvasculature [30], [50]. In this study, 

linear similarity quantified in the frequency domain by the spectral coherence resulted to be 

one of the most relevant features for FLLs characterization, confirming the feasibility and 

promise of this approach for cancer diagnostics by CEUS. However, further investigation 

and optimization should be performed to ensure appropriate and efficient translation of 

spatiotemporal similarity for analysis of liver CEUS.

Besides achieving similar performance with different classifiers, model-agnostic feature 

importance analysis by the quantification of the PFI further shows that the most important 

features are stable across the best performing classifiers. Notably, for all classifiers, a mix 

of spatiotemporal features and texture features at wash-in, peak, and wash-out are always 

among the most important, reinforcing the evidence that the analysis of different phases of 

the CEUS cine contributes to improved FLLs diagnosis. However, only one wash-out texture 

feature was among the top 10 for the sVC, and none for the rest of the best performing 

classifiers. This might be influenced by the frame selection procedure for the texture 

analysis. In fact, after peak enhancement, the correlation with the reference frame is often 

lost due to the overlap with the portal phase, and the occurrence of large motion artifacts 

due to patients taking deep breaths after a period of shallow breathing or breath hold. As 

a result, in order to ensure high correlation with the reference frame, the frame selection 

procedure often results in selecting a frame that is very close to the peak frame, which might 

lead to high correlation between peak and wash-out texture features, possibly making the 

wash-out features redundant [see Fig. 2(b)]. This could be improved by further optimization 

of the frame selection procedure, including, e.g., adaptive tuning of the correlation threshold. 

Moreover, in this preliminary study, we focused on short cines of about 1 min, visualizing 

only part of the arterial wash-out, which often overlaps with the beginning of the portal 

phase. As the contrast agent wash-out in the portal and late phase has shown to aid diagnosis 

[12], [51], [52], investigation of additional features extracted at later phases should be 

performed in the future. Repeated, short acquisitions (~10 s) of the wash-out at different 
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time points, up to about 6 min, are in fact available for this dataset and could be exploited in 

the future. For instance, texture feature could be extracted at the different sampled phases of 

the wash-out; moreover, the degree of wash-out could be assessed by averaging the intensity 

in the lesion in each acquisition and fitting an exponential decay.

Among the most important texture features were the wash-in Global kurtosis and the peak 

GLCM energy. Global features are calculated from the histogram of gray levels and thus 

look only at the distributions of gray levels, without reflecting spatial structures in the 

image. The kurtosis is the fourth statistical moment of a probability distribution and can be 

interpreted as a measure of the relative weight of the tails, taking the normal distribution as 

a reference. Large kurtosis indicates that tail values are more extreme compared to a normal 

distribution. In our context, large wash-in global kurtosis may indicate that a small number 

of very large (high enhancement) and/or very small (low enhancement) gray values are 

present in the investigated ROI during the arterial phase. This can result from the presence 

of both localized strongly-enhancing and nonenhancing regions, as well as inhomogeneous 

enhancing regions in the arterial phase, which are known hallmarks of malignant FLLs [11]. 

The GLCM texture is a square matrix of dimensions equal to the number of gray levels 

in the ROI in which it is calculated. Each element (i, j) of the GLCM texture matrix is 

obtained by calculating the number of times that gray level i was neighbor with gray level 

j [53]. The GLCM energy is an intensity-invariant feature calculated by summing all the 

squared elements of the GLCM texture matrix. Intuitively, a region of interest with very 

homogeneous gray levels, or with gray levels that change very gradually in space, will result 

in a larger number of gray level co-occurrences in the GLCM matrix and thus in higher 

GLCM energy compared to a very heterogeneous image with rapidly changing gray levels, 

for which the number of gray levels co-occurrences will be smaller. As a practical example, 

the GLCM energy of an image consisting of random noise is zero. In our context, lower 

GLCM energy may occur in regions with inhomogeneous enhancement, such as rim-like 

and spoke-wheel enhancement patterns, or for regions including both hyperenhancing and 

nonenhancing areas. These enhancement features are observed in both malignant and benign 

lesions [11].

Previous research has shown that comparing the CEUS characteristics in the lesion with 

those in the parenchyma, either qualitatively or quantitatively, generally improves the 

diagnostic performance [15], [20], [22], [24], [25]. By our method, the selected ROI is 

centered around the lesion but generally includes also surrounding structures, such as liver 

parenchyma and large vessels. Interestingly, our results show that almost all most relevant 

features (Fig. 5) were given by the interquartile range or the skewness of the selected 

features, suggesting that the heterogeneity of the feature values in the selected ROI is more 

relevant than the median values. This suggests that the choice of a large ROI together with 

the extraction of high-order summary statistics may provide an indirect way of relating the 

lesion characteristics with those of the parenchyma. Moreover, it further supports the choice 

of the proposed moving-window strategy to extract local texture characteristics, enabling 

highlighting different structures in the ROI.

Comparing the obtained performance with similar methods for computer-aided diagnosis 

of FLLs, accuracies ranging from 85.8% to 91.8% have been reported [21]–[26], [28]. 
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However, a fair comparison is difficult, as other methods might have different objectives 

[24], [26], [28], and they have been tested on a different population, sometimes using larger 

training datasets [22], [24]. In addition, they generally require extra dedicated procedures for 

compensation of in-plane motion, manual selection of out-of-plane frames, and selection of 

a parenchyma ROI [21]–[26], [28].

Current clinical assessment of CEUS by LI-RADS assigns each lesion to the following risk 

groups: benign (LR-1), probably benign (LR-2), intermediate risk for HCC (LR-3), probably 

HCC (LR-4), definite HCC (LR-5), and probably of definite malignant, not HCC-specific 

(LR-M). While LR-4 and LR-5 have shown to be highly predictive for HCC, the diagnosis 

of LR-3 and LR-4 lesions remains challenging. In fact, in our dataset, about 40% of LR-3 

and 21% of LR-4 lesions were actually benign (see Table S2, Supplementary Material). 

Similar findings have been reported in a large multicenter study [54]. Given the different 

classification (binary versus multiclass), a direct comparison with the performance of our 

method is not possible. However, with a larger dataset, in the future, we could focus on LR-3 

and L3–4 lesions and investigate whether the proposed method could aid the diagnosis of 

these challenging groups, possibly upgrading them to LR-5 or downgrading them to LR-1 or 

LR-2.

One of the main limitations of this study resides in the datasets, which was relatively small, 

including only 72 patients for a total of 87 FLLs, and more importantly very imbalanced, 

consisting of only 13 benign lesions compared to 74 malignant lesions. Of these, 71 resulted 

to be HCC and 3 only ICC; thus, any influence on the performance of the different CEUS 

enhancement patterns observed for different lesion types cannot be evaluated in this study. 

In addition, the ratio of malignant to benign cases does not reflect the actual prevalence 

of malignant cancers in the American population, which is estimated at 50%–57% [55], 

[56]. However, obtaining a larger number of full examinations of benign lesions, including 

CEUS, MRI/CT, and/or histopathological analysis, is inherently difficult, as benign lesions 

are typically kept at the surveillance stage and analyzed by conventional US only.

To cope with the small dataset, here, we performed nested k-fold cross validation, as this 

method has been shown to be robust toward overfitting while providing a good estimation 

of the diagnostic performance [38]. A number of folds equal to four were chosen so that 

three to four benign cases were included in the test set at each rotation of the k-fold 

validation procedure. For each classifier, the hyperparameters were optimized by further 

splitting the training + validation fold into three folds for training and one for validation, 

thereby avoiding overfitting on the test data on which the performance was evaluated [see 

Fig. 1(f)]. Moreover, we repeated the procedure for five different random splits of the lesions 

in the four folds so as to reduce the dependence of the estimated performance on the 

individual random split. To mitigate the influence of the imbalance in the number of benign 

and malignant cases, we further applied the SMOTE algorithm to up-sample the minority 

class, followed by random down-sampling of the majority class. In addition, the bACC was 

chosen as the metric to optimize all the classifiers. Besides coping with the imbalanced 

dataset, this choice is also motivated by the clinical objective of optimizing both sensitivity 

and specificity. In fact, while false positives may lead to unnecessary invasive treatment for 
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patients with benign lesions, false negatives result in undetected cancer, hampering timely 

treatment.

Although the aim of this work was to provide a method for computer-aided diagnosis 

of FLLs, requiring minimal manual input with no need for motion compensation, more 

dedicated strategies to reduce the effects of noise and motion could be further investigated. 

Robotic arms with optical tracking are being proposed for US image guidance during 

radiotherapy and 4-D CEUS in the liver; such systems could be used to alleviate the 

effects of out-of-plane motion [57], [58]. In addition, advanced filtering strategies, such 

as singular value decomposition and robust principal component analysis, could be used 

to improve the accuracy of the estimated perfusion parameters from CEUS [59]. Motion 

compensation could in fact improve the quality of the extracted features, especially the 

ones derived from spatiotemporal analysis. Motion-compensated TIC could be fit to suitable 

indicator-dilution models, which may provide more accurate and reproducible quantitative 

parameters, less dependent on the operator and acquisition settings [16]. Since motion is 

similar among neighboring pixels, similarity analysis is more robust to motion; however, 

the presence of similar motion artifacts in neighboring pixels will also contribute to pushing 

all the similarity features to higher values and, therefore, it may reduce to some extent 

the sensitivity of the method. Motion compensation prior to feature extraction may further 

improve the discriminative power of similarity features.

V. CONCLUSION

An interpretable radiomics approach was proposed for characterization of FLLs by CEUS 

by combining features extracted by spatiotemporal analysis and features extracted by texture 

analysis at different fiducial time points. The proposed method requires minimal manual 

input, with no need for motion compensation or the use of dedicated equipment (e.g., robotic 

arm). Promising results were obtained on a multicenter clinical validation, including 72 

patients and 84 FLLs, achieving bACC of 84%. The analysis of feature importance shows 

that aspects related to perfusion (peak time and wash-in time), the microvascular architecture 

(spatiotemporal coherence), and the spatial characteristics of contrast enhancement at 

wash-in (global kurtosis) and peak (GLCM Energy) are particularly relevant to aid FLLs 

diagnosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flowchart describing the processing and machine learning pipelines. (a) Side-by-side view 

of B-mode and CEUS. (b) Manual segmentation of the lesion on the B-mode image. (c) 

Automatic definition of the ROI based on the location of the manually drawn lesion. (d) 

Extraction of spatiotemporal features (using all frames) and texture features at wash-in, 

peak, and wash-out frames. (e) Extraction of summary statistics from ROI and feature 

filtering for dimensionality reduction; N represents the number of selected features at each 

step, while M represents the number of samples. (f) Repeated nested k-fold cross-validation 

procedure for hyperparameter tuning (inner loop, yellow) and performance evaluation (outer 

loop, orange).
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Fig. 2. 
Two examples of average TIC (TICmean) obtained from the lesion ROI (blue stars), together 

with the straight-line fit in the wash-in and wash-out (orange solid lines). The times at which 

the wash-in, peak, and wash-out frames were selected are indicated by dashed vertical lines.
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Fig. 3. 
(a)–(e) Examples of parametric maps obtained for one benign and (f)–(l) one malignant 

lesion: (a) and (f) side-by-side view of B-mode and CEUS at the reference frame, with 

manually delineated lesion and the analysis ROI highlighted in blue and red, respectively; 

(b) and (g) spatiotemporal feature “Coherence,” (c) and (h) spatiotemporal feature “peak 

time”; (d) and (i) texture feature “Global Kurtosis” at wash-in; (e) and (l) texture feature 

“GCLM Energy” at peak (visualized in logarithm scale).
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Fig. 4. 
Analysis of the number of features required to optimize the bACC for each model. The 

optimal number for each classifier is highlighted with a black circle.
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Fig. 5. 
Normalized PFI of the top 10 features for the LR, SVM, and sVC classifiers. The percentage 

of times that a feature was chosen is given by the text on top of each bar and additionally 

indicated by the shading of the bars. For the texture features, the prefixes “WiIm,” 

“PkIm,” and “WoIm” indicate features extracted at wash-in, peak intensity, and wash-out, 

respectively. For all features, the suffixes “median,” “iqr,” and “skew” indicate the median, 

interquartile range, and skewness, respectively, extracted over the ROI.
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TABLE I

Overview of Feature Extracted by Spatiotemporal Analysis

Analysis method Parameter Description

TIC temporal analysis Peak intensity Intensity of the peak in the TIC

TIC temporal analysis Peak time Time at which the peak intensity is reached

TIC temporal analysis Appearance time Time at which 10% of the peak intensity is reached

TIC temporal analysis Wash-in time Time between appearance time and peak time

TIC temporal analysis Wash-in rate Ratio between peak intensity and time-to-peak

Spatiotemporal similarity Coherence Spectral coherence between each pixel TIC and the neighboring TICs in a ring kernel

Spatiotemporal similarity Correlation Linear correlation between each pixel TIC and the neighboring TICs in a ring kernel

Spatiotemporal similarity Mutual information Mutual information between each pixel TIC and the neighboring TICs in a ring kernel
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TABLE II

Overview of Feature Extracted by Texture Analysis

Texture type Features Number of 
features

Global Variance, Skewness, Kurtosis 3

Gray-level co-occurrence 
matrix (GLCM)

Energy, Contrast, Correlation, Homogeneity, Variance, Sum Average, Entropy, Dissimilarity, 
Auto Correlation

9

Gray-level run-length 
matrix (GLRLM)

Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-Level Non-uniformity (GLN), 
Run-Length Non-uniformity (RLN), Run Percentage (RP), Low Gray-Level Run Emphasis 
(LGRE), High Gray-Level Run Emphasis (HGRE), Short Run Low Gray-Level Emphasis 
(SRLGE), Short Run High Gray-Level Emphasis (SRHGE), Long Run Low Gray-Level 
Emphasis (LRLGE), Long Run High Gray-Level Emphasis (LRHGE), Gray-Level Variance, 
(GLV) Run-Length Variance (RLV)

13

Gray-level size zone matrix 
(GLSZM)

Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-Level Non-uniformity 
(GLN), Zone-Size Non-uniformity (ZSN), Zone Percentage (ZP), Low Gray-Level Zone 
Emphasis (LGZE), High Gray-Level Zone Emphasis (HGZE), Small Zone Low Gray-Level 
Emphasis (SZLGE), Small Zone High Gray-Level Emphasis (SZHGE), Large Zone Low Gray-
Level Emphasis (LZLGE), Large Zone High Gray-Level Emphasis (LZHGE), Gray-Level 
Variance (GLV), Zone-Size Variance (ZSV)

13

Neighborhood gray-tone 
difference matrix 
(NGTDM)

Coarseness, Contrast, Busyness, Complexity, Strength 5
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TABLE III

Optimized Hyperparameters for Each Classifier

Classifier Hyperparameter description Optimized hyperparameters

LR C: inverse of regularization strength C=0.5

SVM
Kernel: type of decision function
C: penalty of the error term
γ: parameter of radial basis kernel function

Kernel: radial basis function
C=50
γ= 0.001

RF
Nleaf_min: minimum number of samples required to he at a lead node
Nfeat_max: max number of features allowed to form each tree

Nleaf_min = 1
Nfeat_max 0.2·N

kNN Nn: number of neighbors Nn= 5

LR = Logistic Regression; SVM = Support vector machine; RF = Random Forest; kNN = k Nearest Neighbour; N=total number of features; N= 
total number of features
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TABLE IV

Classification Performance for All Classifiers, Given as Average Over the 20 Repetitions of the Train-Test 

Procedure. For Each Metric, the Standard Deviation Is Given in Parenthesis

ACC bACC SENS SPEC AUCROC

LR 0.75
(0.07)

0.82
(0.08)

0.73
(0.07)

0.90
(0.15)

0.82
(0.08)

SVM 0.75
(0.08)

0.81
(0.09)

0.73
(0.08)

0.90
(0.15)

0.81
(0.09)

RF 0.73
(0.09)

0.79
(0.09)

0.72
(0.10)

0.86
(0.17)

0.79
(0.09)

kNN 0.75
(0.07)

0.78
(0.13)

0.74
(0.08)

0.82
(0.27)

0.78
(0.13)

sVC 0.78
(0.07)

0.84
(0.08)

0.76
(0.08)

0.92
(0.15)

0.84
(0.08)

Naive classifier 0.74 0.42 0.85 0 -
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