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Summary

Pregnancy is a unique condition where the maternal immune system is continuously adapting in 

response to the stages of fetal development and signals from the environment. The placenta is a 

key mediator of the fetal/maternal interaction by providing signals that regulate the function of the 

maternal immune system as well as provides protective mechanisms to prevent the exposure of 

the fetus to dangerous signals. Bacterial and/or viral infection during pregnancy induce a unique 

immunological response by the placenta, and type I interferon is one of the crucial signaling 

pathways in the trophoblast cells. Basal expression of type I interferon-β and downstream ISGs 

harbors physiological functions to maintain the homeostasis of pregnancy, more importantly, 

provides the placenta with the adequate awareness to respond to infections. The disruption of type 

I interferon signaling in the placenta will lead to pregnancy complications and can compromise 

fetal development. In this review, we focus the important role of placenta derived type I interferon 

and its downstream ISGs in the regulation of maternal immune homeostasis and protection 

against viral infection. These studies are helping us to better understand placental immunological 

functions and provide a new perspective for developing better approaches to protect mother and 

fetus during infections.
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1. Introduction

The challenge of managing pregnant women during pandemics and their exclusion from 

early vaccine clinical trials, has, once more, revealed the importance of understanding the 

function and the role of the immune system during pregnancy. In the last decade, our 

knowledge of the adaptational changes occurring to the maternal immune system throughout 

pregnancy, especially during early pregnancy, has advanced significantly. From being 

focused on the process of tolerance to paternal antigens 1 and the breach of this tolerance 

being considered as the main cause of pregnancy loses and other clinical complications; we 

now have a better comprehension of the immunological functions on reproductive organs 

and their cellular immune component. We have achieved a better comprehension associated 

with the specific role of the immune cells present at the implantation site and their critical 

role in supporting many of the physiological changes that take place at the uterus, which 

are necessary for implantation, placentation, and fetal growth. In addition, we know that 

pregnant women can controll viral infections in most cases, and vaccination has beneficial 

effects to both the mother and the fetus. But pregnancy is not a static process, it is an 

evolving and continuously changing process; accordingly, the maternal immune system 

changes in response to the environment and signals originated from the placenta and the 

fetus. In this review we will discuss first the normal role of the immune system during early 

pregnancy, its interaction with the fetal/placenta interface; and second, we will review the 

mechanism by which the placenta provides an immune modulatory function to protect the 

fetus and the mother against infections.

2. Immune Homeostasis of Pregnancy

Pregnancy is a unique period that requires major adaptational processes that involve 

complex interactions between fetus and mother. During the different trimesters of pregnancy, 

the maternal immune system must undergo highly dynamic and regulated transformation 

and adaptation throughout gestation, as it must avoid rejecting a semiallogeneic fetus and 

remain competent to fight against infections. In general, pregnancy can be divided into 

four critical periods that are associated with implantation, placentation, fetal growth, and 

parturition. In each of these periods the immunological milieu changes in response to the 

developmental stages of the fetus; or, as discussed below, it can also change in response to 

environmental factors, primarily infections, which can consequently impact the outcome of 

the pregnancy.

Embryo implantation is the critical first step for the establishment of pregnancy. 

Interestingly, inflammation is required for successful implantation. Starting with the 

apposition and attachment of blastocyst to the endometrial surface epithelium, the uterus 

must be receptive to embrace the implanting blastocyst during a specific period named 

the implantation window. Therefore, the uterus is primed to activate pro-inflammatory 

signals, such as prostaglandin E2 (PGE2) 2 and produce a range of cytokines, including 

interleukin-6 (IL-6), Leukemia Inhibitory Factor (LIF), IL-15, tumor necrosis factor 

(TNF), and chemokines, including CXC-chemokine ligand 8 (CXCL8), CXCL10 and 

CC-chemokine ligand 2 (CCL2), which can be secreted by endometrial stromal cells 

and immune cells that are recruited to the implantation site 3–6. For the role of these 
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pro-inflammatory cytokines, it has been demonstrated that IL-15 and IL-18 can stimulate the 

activation of uterine natural killer (uNK) cells and regulate the inflammation process during 

implantation. In addition, TNF-α, IL-1β, IL-1RA, and IL-12 are involved in the extracellular 

remodeling and trophoblast invasion, which are critical for implantation and placentation 
7–9.

Using in vitro models of implantation, we demonstrated that TNFα promotes the expression 

of inflammatory factors from endometrial stroma cells, and these inflammatory factors foster 

trophoblast differentiation, which grants them the capacity to migrate and invade into the 

uterine compartment 10. One of the cytokines induced by TNFα in human endometrial 

stroma cells (hESC) was IL-17. We found that the IL-17 pathway is enriched in trophoblasts 

during the time of implantation. IL-17 interacts with trophoblast cells and induces the 

expression of genes responsible for promoting trophoblast migration and invasion 10 (Figure 

1). The findings from this study demonstrated the presence of an inflammatory network led 

by TNFα that promotes the expression and secretion of pro-inflammatory cytokines, such as 

IL-17 in hESC.

These in vitro findings are supported by clinical observations. In cases of infertility or 

implantation failure, local injury, as result of endometrial biopsy, before in vitro fertilization 

can significantly increase implantation rates 11,12, which is suggested to be caused by the 

induction of the pro-inflammatory molecules necessary for implantation 13,14. Indeed, the 

mechanism by which the biopsy treatment increases endometrial receptivity demonstrates 

that the local injury induces an inflammatory response that is characterized by elevated 

levels of pro-inflammatory cytokines/chemokines, such as macrophage inflammatory 

protein-1β (MIP-1β), TNFα, growth regulated oncogene α (GROα), osteopontin (OPN) 

and IL-15 13. In addition, there is an increase in the number of innate immune cells, 

particularly macrophages, dendritic cells (DCs), and a unique population of natural killer 

(NK) cells with a CD56hiCD57lo phenotype. Moreover, it has been shown that the use 

of non-steroidal anti-inflammatory drugs around conception is associated with increased 

risk of miscarriage 15. Taken together, these findings emphasize the requirement for a 

pro-inflammatory environment for a successful embryo implantation. However, the localized 

inflammation during implantation must be tightly controlled, otherwise embryo implantation 

will be impaired due to the disturbance of the dynamic balance between pro- and anti-

inflammatory mediators 16,17.

Interestingly, recent findings from our group have shown that, during early pregnancy the 

IL-10 to TNFα ratio in normal pregnancies was significantly higher than in patients with 

pregnancy loss 18. Furthermore, the early pro-inflammatory profile is followed by a clear 

shift toward an anti-inflammatory profile immediately after implantation; characterized by 

an increase in IL-10, decrease in TNFα, and increasing IL-10/ TNFα ratio. Contrary to 

successful pregnancies, pregnancy loss was associated with a failure in this shift, with no 

increase in neither IL-10 alone nor in the IL-10/ TNFα ratio. These findings demonstrate 

that an inflammatory condition is necessary for embryo implantation, however, once 

implantation is complete, the shift from inflammation to anti-inflammation is necessary 

for the maintenance of the pregnancy. Furthermore, the role of inflammation during 

implantation is evolutionary conserved between multiple species. Griffith et al. showed that 
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inflammation is observed in Marsupials as well as Eutherians 19. While in the marsupials, 

the pro-inflammatory process continues after the early implantation leading to detachment 

from the epithelium of the lumen, in eutherians, there is a shift to anti-inflammatory 

cytokines that allow the continuation of the pregnancy. The lack of the inflammatory shift 

observed in the marsupials may be associated with the inadequate trophoblast migration and 

invasion necessary for placentation 19. Consequently, although inflammation is essential for 

embryo attachment and early implantation, the shift towards an anti-inflammatory condition 

is essential for the successful maintenance of the pregnancy 20. A major unanswered 

question is what are the factor(s) regulating or promoting the shift from pro-inflammatory to 

anti-inflammatory?

The answer to this question may exist in the signals that originate from the fetus; many 

of which have immune modulatory properties. We postulate that embryo-derived factors 

need to communicate with stromal and immune cells at the maternal/fetal immune interface, 

which helps to prevent a continuous inflammatory condition. One of the earliest immune 

modulatory factors secreted by the embryo is human chorionic gonadotropin (hCG), which 

can determine the function and differentiation of T cells 21–23, B cells, and dendritic cells 
24,25. hCG has been suggested to induce the immune modulatory changes seen in the 

phenotype of B-cells and also modulate the function of immune cells either through a direct 

pathway that involves the direct binding of hCG to its receptor on T and B cells 23,26 

or indirect pathways by inducing changes in regulatory cell populations, such as dendritic 

cells 27–29. In our study, we observed that endometrial stroma cells are an earlier target of 

hCG. The stroma initially supports inflammation under the influence of TNFα 10 by the 

secretion of pro-inflammatory cytokines and chemokines, which are required for blastocyst 

attachment and early trophoblast invasion 30,31. As the placenta forms, increasing levels of 

hCG inhibit the expression of those pro-inflammatory cytokines by endometrial stroma cells 

and prevents the recruitment of immune cells, such as CD8+ T cells, that could reject the 

placenta 30.

In addition, macrophages are another important cellular component modulating the 

inflammatory milieu at the implantation site 32. During early implantation, macrophages 

present at the decidua are M1 type 33,34 and produce inflammatory cytokines such as TNFα 
35; necessary for the modulation of cytokines and chemokines produced by the stroma 36. 

Consequently, the modification of the type of macrophages present in the second phase 

of the implantation process is critical for the inflammatory shift. Again, signals derived 

from the embryo are critical for this shift. We reported that first trimester trophoblast cells 

secret Interferon Stimulated Genes (ISGs) 37, such as programmed death-ligand 1 (PDL1), 

which can induce the polarization of M1 into M2 macrophages, consequently decreasing 

inflammation 38,39 (Figure 1).

The last immunological phase of pregnancy is associated with the process of parturition. The 

maturing fetus has completed most of its development. Now, fetal signals will promote the 

switch to a pro-inflammatory in various feto-maternal tissue to ensure proper delivery. Many 

biochemical and endocrine factors are involved in the parturition event, such as platelet 

activation factor 40, endothelins 41–43, transforming growth factor 44, and platelet-derived 

growth factor, which will contribute to the pro-inflammatory environment. Apart from these 
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factors, fetal membrane senescence and the inflammation induced by this process acts as a 

paracrine signaling system during parturition, as it has been shown that fetal cell senescence 

promotes the release of inflammatory senescence-associated secretory phenotype (SASP); 

a set of inflammatory biomarkers associated with term labor 45,46. However, the premature 

activation of fetal membrane senescence is a characteristic observed in preterm birth (PTB) 

and preterm premature rupture of the fetal membranes (pPROM) 46. Therefore, parturition 

is a timed event characterized by the recrudescence of an inflammatory process, which 

promotes uterine contraction, expulsion of fetus, and rejection of the placenta 5.

In summary, pregnancy is a unique immunologic condition, which requires the precise 

switching between different immune statuses during the three developmental trimesters, any 

disturbance to the dynamic balance will be detrimental to pregnancy progression, resulting 

in poor pregnancy outcomes and complications. Thus, the success of pregnancy greatly 

depends on the capability of the maternal immune system and the local signals from the 

maternal-fetal interface to control and regulate the immune response during pregnancy.

3. The Role of the Placenta as an Immune Modulatory Organ

Infections pose a significant threat to pregnancy and to the well-being of the fetus. Bacterial 

and viral infections are considered as the two types of microorganisms that have been 

proven to be of major risk for the normal success of the pregnancy. There are strong 

clinical links between bacterial infection and preterm birth 47–50. Indeed, infections have 

been reported to be responsible for up to 40% of preterm birth cases 51,52. Furthermore, 

80% of preterm deliveries occurring at less than 30 weeks of gestation have evidence of 

some types of infection 49,50. Various experimental in vivo models have demonstrated that 

delivery of infectious components triggers preterm delivery, fetal damage, and even maternal 

death 53–55. Clinical studies have also correlated placental infection and inflammation with 

prematurity 56,57. Maternal Immune Activation (MIA) is associated with the higher risk 

for developmental problems in the offspring, such as autism spectrum disorders (ASD), 

schizophrenia, and allergies 58, which is supported by many experimental studies 59–63.

Growing literature suggests that the way in which a microorganism can induce a pregnancy 

complication, such as preterm birth, involves the dysregulation of the innate immune 

responses towards the pathogen, leading to excessive inflammation and apoptosis at the 

maternal-fetal interface 64,65. Meaning the same cells under normal conditions that promote 

fetal acceptance may initiate a detrimental immune response, triggered by infection, that 

promote fetal rejection 66–68. However, a new paradigm is being established in terms 

of the immunological response of the mother to micro-organisms. Contrary to previous 

thoughts that would focus only on the maternal immunologic response to the pathogens, it 

is now evident that the overall response during pregnancy is determined and influenced 

by a specific and active responses from the fetal/placental unit. In other words, the 

immunological response to infections during pregnancy is the result of the combination of 

signals originated from the maternal immune system and the fetal-placental unit, leading to a 

unique immunological response (Figure 2). Although the fetal immune system can recognize 

and respond, it is mainly the signals originating from the placenta that will modulate how 

the maternal immune system will behave in the presence of different pathogens. Therefore, it 
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is crucial to understand how the placenta responds to dangerous signals and the modulatory 

role of placental signaling on maternal immune response.

Following implantation and early placentation, the placenta functions as the primary organ 

to exchange nutrients, gases, and metabolic waste products between maternal and fetal 

blood. In this stage, there is rapid growth and development of fetus, which requires an 

undisturbed environment that, otherwise, will impact fetal development. The trophoblast 

represents the first point of contact between the blastocyst and the maternal decidua 

and, as discussed above, has an active role in shaping the immunological milieu at the 

implantation site 69. Trophoblast cells of human placenta, which are derived from the outer 

cell mass of the blastocyst, not only serving as the means for nutrient exchange, but also 

protecting the fetus from foreign pathogen attack. As early as nine days after implantation, 

the embryo is surrounded by two layers of trophoblast cells: the inner mononuclear 

cytotrophoblasts (CTBs) and the outer multinucleated syncytiotrophoblasts (STBs) layer. 

As the outermost layer of human placenta, STBs are highly resistant to infections, including 

Listeria monocytogenes, Toxoplasma gondii, HCMV, HSV1, and ZIKV 70–77. However, 

when compared to the low susceptibility of STBs, CTBs are more susceptible to infections. 

For example, STBs of first-trimester chorionic villi are mostly resistant to HCMV infection, 

while CTBs and other cells of the villous core are more susceptible 73. Consistently, the 

primitive trophoblasts, which represent the early phase of trophoblast cell development 

during implantation, are sensitive to ZIKV infection but become resistant after the formation 

of syncytium 78. Therefore, CTBs, which are considered as placental stem cells, are more 

susceptible to infections when compared with STBs.

Trophoblast cells can attract and educate immune cells, and in addition, respond to 

signals from the microenvironment in a unique way that supports decidual differentiation, 

angiogenesis, spiral artery remodeling, placental, and fetal development 3,79–89. Trophoblast 

have the ability to sense and respond to their microenvironment through the expression of 

Pattern Recognition Receptors (PRRs), such as Toll-Like Receptors (TLRs) 62,68,86,90–100 

and NOD-like receptors (NLRs) 101–106, which can recognize specific molecular patterns in 

the microenvironment. These receptors are able to recognize damage-associated molecular 

patterns (DAMPs) 107,108, as well as, pathogen-associated molecular patterns (PAMPs) from 

bacteria, viruses, and other microbes 68,93,100,109–111.

The classical response to bacterial lipopolysaccharides (LPS) involves the recognition 

by TLR4, subsequent activation of nuclear factor-kappa-B (NF-κB) through the myeloid 

differentiation factor 88 (MyD88) dependent pathway, and finally the production of 

chemokines and cytokines (e.g. IL-1β and TNFα) 112–120. A second major group of 

cytokines that are induced by LPS signals through TLR4 is type I IFN-β and IFN-α, 

which is mediated by the MyD88 independent pathway via TIR domain-containing adaptor-

inducing interferon-β (TRIF) and interferon regulatory factor 3 (IRF3) 121,122. We found 

that in the trophoblast, TLR4 ligation by LPS, at low concentrations, is mainly associated 

with the expression of IFN-β through the MyD88 independent pathway 37,123. TLR4 ligation 

induces IFN-β expression by the phosphorylation of tank-binding kinase (TBK) and IRF3, 

which are the main regulators of type I IFN expression 122,124,125. Exposure of trophoblast 

cells to LPS in the presence or absence of the TBK inhibitor BX795 126,127, prevents 
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LPS/TLR4-induced IFN-β expression. Furthermore, IFN-β basal levels in the placenta from 

Tlr4−/− or Trif−/− mice are significantly reduced 37. These findings emphasize a potential 

role of commensal bacteria-derived factors maintaining IFN-β basal expression through the 

TLR4/TBK/IRF3 pathway in trophoblasts. We postulate that this basal IFN-β expression is 

essential for maintaining immune homeostasis and to prevent viral replication to reach the 

fetus (Figure 3).

4. Type I Interferon-Beta Protection and Immune Modulation During 

Pregnancy

Type I IFNs (IFN-α and IFN-β) are polypeptides able to induce an anti-microbial state, 

modulate innate immune responses, and induce the activation of the adaptive immune 

system 128,129. There are three IFN types: type I IFN, type II IFN, and type III IFN. Type I 

IFN, is the largest IFN class, including IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω. IFN-α and 

IFN-β are the most well-defined type I IFNs. IFN-β is encoded by a single gene, whereas 

IFN-α comprises 13 subtypes in human 130,131. Type I IFN responses can be induced by 

both viral and bacterial pathogens. These pathogens are detected by TLRs, NLRs, RIG-I-like 

receptors (RLRs), and cGAS which promote signaling through Stimulator of IFN Genes 

(STING) 132,133. Constitutive, baseline expression of type I interferon is very low in most 

tissues and can rapidly be triggered by viral or bacterial infection 134. Following secretion 

from cells, type I IFNs mediate their effects by binding to its cell surface receptor, the type 

I Interferon associated receptor (IFNAR), and activating members of the janus kinase (JAK) 

family 135,136. Activated JAK kinases phosphorylate the signal transducers and activators of 

transcription (STAT) family of transcription factors that homo-or heterodimerize and form 

complexes (GAS; ISGF3) with other transcription factors to activate transcription of ISGs 

(Figure 4A). ISGs are the primary effectors of type I IFN mediated biological responses 
128,137, which act as downstream functional proteins of IFN signaling. They exert multiple 

effects in many different aspects. Depending on cell type, IFN doses and time of treatment, 

50–1000 ISGs have been identified by microarrays 138–140. ISGs profiles induced by three 

different types of IFN are unique but partially overlapped 141. However, some ISGs can be 

directly induced by viral infection independent of IFN production 142.

While identified and named for their ability to interfere with viral replication in infected 

cells, IFNs, through specific ISGs, have immunomodulatory, cell differentiation, anti-

angiogenic, and pro-apoptotic effects 143. However, in addition to the protective effect, type 

I IFNs can have deleterious effects and promote complications, such as autoimmune diseases 

that are associated with excessive or chronic type I IFN responses. Therefore, regulation of 

their expression and function is critical for an efficient immune response and maintenance of 

tissue homeostasis.

In the placenta, Type I IFN expression is known to be a characteristic in several species, 

including humans 71,144–153; and IFN-β is the predominant class, especially during the first 

trimester 6,154–161. In the context of pregnancy, we have shown that loss of IFN-β signaling 

in the placenta leads to: 1) uncontrolled viral replication and fetal viral infection 123, 2) 

maternal mortality 123 and 3) hypersensitivity to bacterial products 162; suggesting a critical 
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role of IFN-β signaling in the protection of pregnancy. Therefore, it is very important 

to better understand the function of type I IFN during gestation and the downstream 

regulatory genes for the development of therapeutic approaches against viral infections 

during pregnancy.

5. Basal Type I Interferon Signaling

Many cell types produce IFN-β, and due to the widespread expression of IFNAR, JAK1, 

STAT1, STAT2, and IRF9, type I IFN signaling pathway is inducible in most cell types. 

Constitutive IFN-β is an essential component in healthy animals, and is necessary for 

multiple biological functions, including maintenance of the hematopoietic stem cell niche, 

bone remodeling, and numerous immune cell functions. Disturbance of IFN-β signaling 

contributes to the pathology of antiviral immunity, autoimmune disease, and cancer 135. 

A number of studies suggested that the basal expression of IFN-β under homeostatic 

conditions partly depends on the commensal microbial flora, which can systemically 

calibrate type I IFN responses 163 164 165,166, and the basal IFN-β production by commensal 

microbiota might be mediated through TLR signaling 163,167.

Basal IFN-β expression and the attendant tonic IFNAR signaling enables immune cells to 

rapidly mobilize an anti-microbial response 128. In macrophages, for example, constitutive 

IFN-β is important for maintaining their phagocytic potential 168,169, and elimination of 

endogenous IFN-β impairs bacterial clearance by macrophage 170. Furthermore, constitutive 

IFN-β expression shows great importance for NK cell homeostasis and antitumoral function 

as well. It has been demonstrated that IL-15 expression, which is a type I IFN-regulated 

gene, is maintained by basal IFN-β expression and is necessary for NK cell proliferation 
171–174 as the number of NK cells is significantly lower in IFNAR1−/− or IFNAR2−/− mice 

compared with wild type mice. In addition, the lack of basal IFN-β secretion and decreased 

NK activity is associated with increased susceptibility to tumor formation 175. Thus, these 

findings highlight the critical role of basal IFN-β signaling as a physiological pathway to 

maintain cell homeostasis and prime cells to exert a rapid and potent innate and adaptive 

immune response to pathogenic challenges. Conversely, loss of basal IFN-β signaling results 

in aberrant immune cell homeostasis and function, bone remodeling, and impaired antiviral 

and antitumor immunity.

During pregnancy, the normal IFN-β signaling is necessary for the maintenance of a 

healthy pregnancy, therefore, women with dysregulated type I IFN signaling exhibit adverse 

pregnancy outcomes, including preeclampsia, preterm birth, and neurodevelopmental defects 

in the fetus 176–180. Noteworthy, high levels of type I IFN during pregnancy can be 

pathogenic, as it has been shown that pregnant lupus patients who have preeclampsia 

and other fetal complications express high level of ISG expression in their peripheral 

blood mononuclear cells (PBMCs). Moreover, it has been demonstrated that PAMP-driven 

activation of type I IFN is sufficient to prime for systemic and uterine proinflammatory 

cytokine and chemokine production which leads to preterm birth. In response to TLR3 

ligation by Poly(I:C) or viral infection in in vitro and in vivo models, IFN signaling can lead 

to trophoblast apoptosis and fetal demise 62,68,181,182. Therefore, these findings suggest the 
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importance of a balanced state of Type I IFN expression during pregnancy. Noteworthy, this 

type I IFN priming effects are conserved from mice to nonhuman primates and humans 177.

During pregnancy the placenta is continuously exposed to bacterial products either through 

the maternal blood or originating from the lower reproductive track. Similar as the data 

shown for NK or macrophages, we observed that activation of TLR4 in trophoblast cells 

is associated with the expression of IFN-β in a cyclic manner. Exposure of pregnant 

mice or trophoblast cells to LPS is characterized by phosphorylation of TBK and IRF3, 

leading to increased expression of IFN-β and downstream ISGs by the trophoblast (Figure 

4A) 155. Interestingly, shortly after IFN-β exposure, cells enter a state known as “IFN 

desensitization” that allows cells to recover from IFN signaling.

In the placenta, IFN-β expression is regulated by the expression of Axl receptor tyrosine 

kinase (Axl) and suppressor of cytokine signaling 1 (SOCS1) protein; two ISGs that can 

negatively regulate IFN signaling 183,184. TYRO3, AXL, and MER (TAM) receptors are 

membrane tyrosine kinase receptors found in high abundance in immune cells and have 

been reported to regulate innate immune responses by dampening TLR signaling 185. Loss 

of TAM receptor signaling has been associated with stages of hypersensitive inflammatory 

responses implicated in sepsis, chronic inflammatory disease, and autoimmune diseases 
183,184,186–189. SOCS1 has been characterized as a negative feedback loop for type I IFN 

signaling 188; however, the induction of SOCS1 proteins by IFNAR activation has been 

shown to progress through and be contingent on TAM receptor activation 187. Trophoblast 

cells express Axl and Mer mRNA, as well as the Axl ligand growth arrest specific 6 (Gas6). 

Their activation is associated with increased expression of SOCS1 and downregulation of 

IFN-β expression. Knockdown of Axl receptor in trophoblast cells results in dysregulation 

of IFN-β expression leading to apoptosis and fetal death 37 (Figure 4B). These findings 

demonstrate a central role for TAM receptors during pregnancy as negative feedback loop 

regulators of type I IFN signaling, and their absence is associated with an augmentation 

of IFN-β/IFNAR signaling. Infections that either suppress IFN-β response or blocks the 

negative regulatory mechanism leading to exacerbated expression of type I IFN-β will be 

detrimental for fetal development, the overall outcome of the pregnancy, or even maternal 

survival.

In conclusion, we ascertain the signals derived from the normal microbiota as positive 

inducers of basal IFNβ expression that provides an adequate platform to respond to bacterial 

and/or viral infections, and the TAM receptors as negative inhibitory regulators that prevent 

a chronic condition characterized by exacerbated expression of type I IFN-β which leads to 

cell apoptosis (Figure 4).

6. Role of Trophoblasts as an Immunological Barrier during Viral 

Infections

The immune homeostasis of pregnancy can be disrupted by infections from different 

pathogens (bacteria, parasites and viruses), leading to the impairment of fetal growth and 

development 190. In addition, pregnancy complications, such as miscarriage, preeclampsia, 

and preterm birth are associated with the disruption of the immunological milieu by either 
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prolonging the inflammatory state (miscarriage) or shifting to inflammation at an early 

stage (preterm birth) 36,111,191. In the long term, maternal infection has been shown to 

increase the risk for neuropsychiatric disorders including autism spectrum disorders 192 

and schizophrenia in the offspring 193,194. Among those threatening pathogens during 

pregnancy, the traditional ‘TORCH’ pathogens, Toxoplasma gondii, other, rubella virus, 

cytomegalovirus (CMV), and herpes simplex virus (HSV), have been considered as major 

causes of fetal morbidity and mortality. Unexpectedly, the new emerging ZIKA virus 

(ZIKV) is found to fulfill all the requirements of a ‘TORCH’ pathogen. It causes mild 

or absent symptoms in infected mothers but can be transmitted through placenta to fetus, 

which causes microcephaly and other fetal malformations 195–197. Therefore, ZIKA virus is 

recognized as the newest ‘TORCH’ pathogen 197,198.

As indicated above, the placenta is able to recognize and respond to dangerous signals 

originating from microorganisms and damaged tissue. One of the outcomes from trophoblast 

cells responding to TLRs ligands is the recruitment and differentiation of immune cells. 

Ligation of the TLR3 agonist poly(I:C) and TLR4 ligand LPS induces the expression 

of chemokines, which in turn promotes monocyte, NK cells, and neutrophil chemotaxis 
109. Moreover, viral single stranded RNA (ssRNA), a TLR8 agonist, triggers restricted 

pro-inflammatory cytokine response by upregulating the secretion of IL-6, IL-8, and IFN-β 
199,200. Therefore, trophoblasts response against various pathogens is TLR specific, eliciting 

specific production and secretion of cytokines and chemokines according to the pathogen, 

which will also exert specific influences on the immune environment during pregnancy 

(Details on TLR responses have been recently reviewed by Koga et al.) 201

A critical role of the placenta is to prevent viral vertical transmission, which can be 

lethal to fetus or can induce major developmental problems. During the first trimester 

of pregnancy, IFN-β functions as a central modulator for this protection. During early 

pregnancy, first trimester trophoblast cells can mount a strong type I IFN-β response, which 

is characterized by the expression of multiple ISGs 37. This response is characteristic of 

first trimester trophoblast cells, which differs from third trimester placentas, during which 

type III interferons are highly expressed 71. Compared to the constitutive release of type 

III interferons from full-term human trophoblast cells 71,202, we did not detect IFN-β 
in the culture media from human first-trimester trophoblast cell line and human primary 

culture cells 203, however, both the human first-trimester trophoblast cell line and primary 

culture cells can robustly induce IFN-β signaling when infected with Zika Virus infection. 

The increase of IFN-β secretion leads to the induction of several anti-viral ISGs 203. We 

have found IFN-β protein expression in both human 37 and mouse placenta (unpublished 

data), suggestive of an evolutionarily conserved trend. Interestingly, although we detect 

constitutive protein expression at the placenta, we are unable to detect secreted levels in 

the blood or supernatant of cultured trophoblast cells. Secreted levels are detectable only 

following viral infection or TLR ligation, such as ZIKV, ligation of the TLR3 agonist 

poly(I:C) or TLR4 ligand LPS. These findings suggest that IFN-β is stored within first-

trimester trophoblast cells, which allows for a rapid and potent response to viral infection. 

This is critical to prevent the toxicity of high levels of IFN-β to the placenta and fetus 
37,182, and this expression pattern is very different from the constitutive release of type III 

interferons from full-term human trophoblast cells 153.
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This differential expression of type I and type III interferon may be associated with the 

different stages of placenta/trophoblast differentiation and function. Although early studies 

had suggested that type III interferons were functionally redundant with type I interferons 
204, several reports indicate that IFN-λ has specific functions, which differ from type I 

interferons 205. Another difference between the type I IFNs and type III IFN pathways is the 

use of distinct receptors. IFN-λ specifically interact with a heterodimeric receptor composed 

of two chains: a specific ligand-binding chain IFN-λR1 (or IL-28Rα) and the IL-10R2 

(or IL-10Rβ) chain 206. In contrast, type I interferons are ligands of the IFNAR receptor 
207. The evolutionary adaptation that confers type I IFN-β signaling in the developing 

placenta may reflect the need for immune regulation and tolerance, which is required for the 

establishment of the pregnancy 69.

In the animal models, when WT or Ifnar−/− pregnant mice are challenged with DNA viruses 

(MHV68 or HSV-2) or RNA virus (ZIKA virus), there is a significant increase in viral 

titers in the Ifnar−/− placenta and fetus, suggesting that in the absence of overall IFN 

signaling, there is a lack of adequate defense against viral infection. Compared to the 

global Ifnar−/− mouse model, the importance of placental type I IFN is exemplified by 

experiments consisting of embryo transfers that distinguish between placental and maternal 

type I IFN signaling. Breeding Ifnar−/− males with Ifnar+/− females results in litters with 

half of the embryos/placentas lacking a functional IFNAR (homozygous Ifnar−/−), in a 

mother with functional IFNAR (Ifnar+/−), and half embryos/placenta with a functional 

IFNAR (heterozygous Ifnar+/−), in a heterozygous (Ifnar+/−) mother. Pregnant females 

infected with a DNA virus (MHV68) on E8.5 showed that although the mothers had a 

functional IFNAR, viral titers were significantly higher in placenta and fetus lacking IFNAR 

signaling (homozygous Ifnar−/−) compared to those with a functional IFNAR (heterozygous 

Ifnar+/−). Therefore, despite sharing the same maternal phenotype (functional IFNAR), the 

susceptibility to infection was increased in fetal/placenta units lacking a functional IFNAR 
123. Furthermore, when WT embryos (i.e., WT placenta, can produce and respond to type I 

IFN) were transferred into pseudopregnant Ifnar−/− dams (dam can produce type I IFN but 

can not activate the IFN signaling pathway due to lack of receptor), there were less viral 

titers in the placenta and absent fetal viral infection compared to mice with Ifnar−/− embryo 

and Ifnar−/− dam. Interestingly, the presence of a WT placenta prevented maternal mortality 
123.

These results highlight the importance of IFN signaling in the placenta during viral 

infection, which suggest that: 1) placental type I IFN is critical in the control of 

viral replication; and 2) in the absence of placental type I IFN signaling, the resulting 

uncontrolled viral replication can transform the placenta into a viral reservoir with 

detrimental effects not only to the fetus but to the mother as well. Thus, in the setting 

of viral infection, placental type I IFN signaling has protective effects to both the mother and 

fetus.
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7. Placenta Derived ISGs-Immune Modulators and Protection Against 

Virus

The viral life cycle involves multiple steps, including attachment, uncoating, genome 

replication, transcription, translation, particle assembly, and egress. The final step is to 

generate more virions that will be released to infect neighboring cells. Every stage of 

the viral life cycle is a potential target for ISGs. Thus, murine myxovirus resistance 

1 (Mx1) targets viral entry by trapping viral components, such as nucleocapsids, and 

preventing the virus from entering cells 208. Cholesterol-25-hydroxylase (CH25H), an 

enzyme that oxidizes cholesterol into 25-hydroxycholesterol (25HC) and can block ZIKV 

entry providing protection against ZIKV infection in mice and rhesus macaques 209. The 

IFN-inducible transmembrane (IFITM) family has been shown to block viral entry as well. 

In humans, there are four members in the IFITM family: IFITM1, IFITM2, IFITM3 and 

IFITM5 210. They display specific anti-viral effects to different viruses 211. ISGs that inhibit 

viral translation, include zinc-finger antiviral protein (ZAP), the IFN-induced protein with 

tetratricopeptide repeats (IFIT) family, the OAS-RNaseL pathway, protein kinase R (PKR) 
212–215, and the exonuclease Interferon stimulated gene 20 (ISG20). ISG20 inhibits HBV 

replication by directly binding to the epsilon stem-loop structure of viral RNA and degrades 

the viral RNA. This effect is dependent on its Exo III domain 216. There are few ISGs shown 

to inhibit viral assembly and egress. Viperin inhibits HIV-1 and influenza A virus budding at 

the cell membrane by restraining farnesyl diphosphate synthase (FPPS), an enzyme required 

for isoprenoid biosynthesis 217,218. However, Viperin also shows anti-viral effect in early 

stage of viral life cycle, as it is suggested that Viperin inhibits HCV viral RNA replication 
219. Moreover, Viperin expression decreases ZIKV infection in vitro and this anti-ZIKV 

activity depends on the C-terminal region 220. Therefore, these ISGs target at different stages 

of viral cycle to exhibit their anti-viral effects.

Evaluation of the placental response to SARS-CoV-2 reveled a significant increase in 

the expression of interferon signaling pathways and ISGs in individuals with COVID-19 

compared to healthy individuals 221,222. Single-cell RNA sequencing of placenta cells 

revealed significant upregulation of ISG15, a central player in host antiviral responses 
222. Moreover, it was found that ISGs, including IFITM1 and IFITM3, were upregulated 

in the placenta of pregnant patients with severe disease when compared to asymptomatic/

mild COVID-19-positive pregnant women 223. Interestingly, a recent study reported that 

maternal SARS-CoV-2 infection was associated with sex-specific alteration in placental 

ISGs response 224. In male SARS-CoV-2-exposed placentas, there was a significantly 

increased expression of the classical ISGs, such as IFI6, CXCL10, CCL2, MX1, and OAS1. 

This induction was not observed in female SARS-CoV-2-exposed placentas 224. This data 

suggests robust interferon signaling and ISGs induction specifically in the male placental 

infected with SARS-CoV-2. These new findings further strengthen the critical role of IFN 

signaling and ISGs in placental antiviral response 182,225,226.

During pregnancy, ISGs are important not only for their anti-viral function, but also are 

essential immune modulators that can influence multiple aspects of endometrial function. 

ISGs, such as ISG15 227, MX2, and OAS1, play a crucial role in endometrial cell 
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differentiation, implantation, and conceptus development during early pregnancy 228. In the 

mice uterus, ISG15 mRNA was detected between embryonic-day 3.5 (E3.5) and E9.5 of 

pregnancy. ISG15 mRNA levels were very low on E3.5 and 4.5 (the start of implantation) 

but significantly increased (11-fold) on E9.5 229. In humans, ISG15 expression was detected 

in cytotrophoblast progenitor cells in the placental villi and the cell column with a maximum 

expression levels observed in the first trimester, less in the second trimester, and no 

expression in the third trimester 230. ISG20 has also been studied for its role during 

the implantation window in mice 231. ISG20 mRNA was present in the uterine luminal 

and glandular epithelium on E3 and E4, which then decreased rapidly and disappeared 

completely on E5–6 231. This tightly regulated expression pattern of ISG20 during early 

pregnancy in mice and humans suggest a very specific role of ISG20 during the early stages 

of implantation and placentation; however, its specific role is still not clearly understood. 

We described the characterization of ISG20 in first-trimester trophoblast cells in response 

to ZIKV infection and demonstrated that ISG20 is essential for trophoblast protection again 

ZIKV replication 203.

In terms of immune regulation, trophoblast cells can modulate macrophage polarization 

through the secretion of ISGs, such as PDL1. Decidual macrophages have a high degree 

of plasticity that allows them to change their phenotypes based on the signals present 

at the implantation site. During the pre-implantation period, macrophages are mainly the 

M1 phenotype, they then change to M2 phenotype following trophoblast attachment and 

invasion and then revert to M1 phenotype at the time of delivery 232. The polarization of 

M2 macrophages from M1 is mediated in part by the secretion of PD-L1 by trophoblast 

cells and is regulated by IFNβ 38. Overall, we know now that trophoblast cells, in response 

to IFNβ, secrete multiple ISGs that are associated with the regulation of specific immune 

cells and their local immune functions (Figure 5). Immune cells present at the maternal-

fetal interface display unique characteristics necessary for the support of the pregnancy, 

such as NK cells and macrophages 36. We postulate that the unique phenotype of these 

immune cells is determined by trophoblast derived ISGs. Trophoblast derived IL-15 in 

response to IFNβ modulates NK cell activation and homeostasis 233,234. Nicotinamide 

phosphoribosyltransferase (NAMPT), another trophoblast derived ISG, is known to be a 

key modulator of macrophages differentiation, polarization, and migration 235. Despite all 

these observations, the role of ISGs in modulating immune cell functions during pregnancy 

remains poorly understood and needs further investigation.

8. Conclusion

Type I IFN signaling is critical for the modulation of the immune system and provides 

protection against viral infection, especially during pregnancy. To achieve a successful 

pregnancy, the maternal immune system must be tightly controlled and be equipped with 

the capability to rapidly respond to pathogens. Type I IFN signaling and the derived 

ISGs are necessary for numerous physiological processes during pregnancy. As the potent 

effectors of Type I IFN signaling, ISGs have shown various functions, including anti-viral, 

immunomodulatory, and pro-apoptotic. Unfortunately, the regulation of IFNβ expression 

and function, as well as the immunomodulatory function of its derived ISGs during 

pregnancy are still poorly understood. Furthermore, the impact of these ISGs on fetal 
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development is also unknown. Thus, a better understanding of individual ISG function will 

facilitate the development of ISG-based therapeutics and identification of ISGs as potential 

clinical biomarkers.
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Figure 1. Immune network responsible for embryo implantation and placentation.
During the peri-implantation period, activated macrophages (M1 phenotype) secret TNFα, 

which induces the expression and secretion of pro-inflammatory cytokines such as IL-17 

in human endometrial stroma cells. IL-17 by acting on trophoblast cells promotes the 

expression of factors necessary for trophoblast migration and invasion. As the trophoblasts 

invade deeply into the endometrial stroma and form the placenta, increasing levels of 

hCG inhibit the expression of pro-inflammatory cytokines by endometrial stroma cells 

and prevents the recruitment of CD8+ T cells, which is necessary for preventing fetal 

rejection. Moreover, PD-L1 secreted by trophoblast cells promotes the shift of decidual 

macrophages into M2 phenotype that decreases inflammation and supports tolerance. IL-17, 

interleukin-17; hCG, human chorionic gonadotropin; TNFα, tumor necrosis factor α; NK, 

natural killer; PDL1, programmed cell death ligand 1. Figure created with BioRender.com
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Figure 2. Unique immunological response to infection during pregnancy.
Maternal immunological responses to infection during pregnancy is complex and is strongly 

influenced by signals originated from the fetus and the placenta. Fetal and placenta signals 

have a selective effect on the type of immune cells recruited to the site of the infection. In 

a two-way direction, the maternal immune response will also impact the development of 

placenta and fetus. Therefore, the immunological response to infections during pregnancy is 

the result of the combination of signals originated from the maternal immune system and the 

fetal-placental unit. Figure created with BioRender.com
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Figure 3. Regulation of IFN-β basal expression through TLR4/TBK/IRF3 pathway
(A-B) Signals derived from commensal bacteria maintains IFN-β basal expression through 

TLR4/TBK/IRF3 pathway. Basal IFN-β promotes the expression of immune modulatory 

ISGs, as well as provide awareness and protection against microbial (bacteria & viruses) 

infections.

(C-D) Disruption of the TLR4/TBK/IRF3 pathway, e.g., viral infections, blocks IFN-β 
basal expression in trophoblast cells, leading to decreased protection against pathogenic 

bacteria and a shift towards the NF-κB pathway and induction of a cytokine storm of 

pro-inflammatory factors such as IL-1β and TNFα.

LPS, lipopolysaccharides; TLR4, toll like receptor 4; TBK1, TANK binding kinase 1; IKKi, 

inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF, interferon regulatory factor; 

IFN-β, interferon-β; ISGs, interferon stimulated genes; NF-κB, nuclear factor-kappa-B; 

PIGs, pro-inflammatory genes. P, phosphorylation. Figure created with BioRender.com
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Figure 4. Regulation of IFN-β expression and function in trophoblast cells.
(A) Normal regulation of IFN-β expression and function in trophoblast cells. In normal 

condition, LPS binds to TLR4 induces IFN-β expression by the phosphorylation of TRIF/

TBK1/IRF3, and secreted IFN-β binds to IFNAR and stimulates numerous ISGs expression. 

These ISGs function as the immune regulators and anti-viral effectors to maintain cellular 

homeostasis and to inhibit viral replication. Axl and Axl ligand Gas6, inhibits chronic IFN-β 
expression and its potential toxic effects.

(B) Effect of deletion of Axl on trophoblast function. Lack of Axl expression in trophoblast 

cells leads to the loss of negative regulation on IFNβ expression, followed by enhanced 

IFN-β expression and the selective induction of apoptosis related ISGs, such as TRAIL, FAS 

and CASP1.

LPS, lipopolysaccharides; TLR4, toll like receptor 4; TRIF, TIR-domain-containing 

adapter-inducing interferon-β; TBK1, TANK binding kinase 1; IRF, interferon regulatory 
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factor; IFN-β, interferon-β; Gas6, growth arrest specific 6; Axl, AXL receptor tyrosine 

kinase; IFNAR, interferon alpha and beta receptor subunit; JAK, janus kinase; STAT, 

signal transducer and activator of transcription; ISRE, interferon-stimulated response 

element; GAS, gamma-activated sequence; SOCS1, suppressor of cytokine signaling 

1; IFIH1, interferon induced with helicase c domain 1; CCL, C-C motif chemokine 

ligand; TMEM173, transmembrane protein 173; IFI, interferon inducible protein; ADAR, 

adenosine deaminase RNA specific; DDX58, DExD/H-box helicase 58; Mx, MX dynamin 

like GTPase; OAS, 2’−5’-oligoadenylate synthetase; CH25H, cholesterol 25-hydroxylase; 

IFITM, interferon induced transmembrane protein; IFIT, interferon induced protein with 

tetratricopeptide repeats; ISG20, interferon stimulated exonuclease gene 20; ISG15, ISG15 

ubiquitin like modifier; Viperin/RSAD2, radical S-adenosyl methionine domain containing 

2; Tetherin/BST2, bone marrow stromal cell antigen 2; TRAIL/TNFSF10, TNF superfamily 

member 10; FAS, Fas cell surface death receptor; CASP1, caspase 1; P, phosphorylation. 

Figure created with BioRender.com
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Figure 5. The role of ISGs at the maternal/fetal interface.
Immune cells present at the maternal-fetal interface display unique characteristics necessary 

for the support of pregnancy, and the trophoblasts plays a critical role in the regulation 

of their function and differentiation. Trophoblast secreted ISGs modulate immune cells 

functions and maintains tissue homeostasis at the maternal-fetal interface by preserving 

tolerance to paternal antigens as well as protection against infections.

Infections that affect ISGs expression in trophoblast cells will disrupt the immunological 

balance, leading to pregnancy complications. </p/> NK, natural killer; DC, dendritic cells; 

ISGs, interferon stimulated genes; IL, interleukin; CCL2, C-C motif chemokine ligand 

2; GATA3, GATA binding protein 3; SOCS1, suppressor of cytokine signaling 1; DLL1, 

delta like canonical notch ligand 1; NLRP3, NLR family pyrin domain containing 3; 

GSDMD, gasdermin D; NAMPT, nicotinamide phosphoribosyltransferase; TMEM106A, 

transmembrane protein 106A; CTSS, cathepsin S; LGALS9, galectin 9. Figure created with 

BioRender.com
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