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A B S T R A C T   

The SARS CoV-2 (COVID-19) pandemic and the enforced lockdown have reduced the use of surface and air 
transportation. This study investigates the impact of the lockdown restrictions in India on atmospheric 
composition, using Sentinel–5Ps retrievals of tropospheric NO2 concentration and ground-station measurements 
of NO2 and PM2.5 between March–May in 2019 and 2020. Detailed analysis of the changes to atmospheric 
composition are carried out over six major urban areas (i.e. Delhi, Mumbai, Kolkata, Chennai, Bangalore, and 
Hyderabad) by comparing Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth 
(AOD) and land surface temperature (LST) measurements in the lockdown year 2020 and pre-lockdown 
(2015–2019). Satellite-based data showed that NO2 concentration reduced by 18% (Kolkata), 29% (Hyder
abad), 32–34% (Chennai, Mumbai, and Bangalore), and 43% (Delhi). Surface-based concentrations of NO2, 
PM2.5, and AOD also substantially dropped by 32–74%, 10–42%, and 8–34%, respectively over these major cities 
during the lockdown period and co-located with the intensity of anthropogenic activity. Only a smaller fraction 
of the reduction of pollutants was associated with meteorological variability. A substantial negative anomaly was 
found for LST both in the day (− 0.16 ◦C to − 1 ◦C) and night (− 0.63 ◦C to − 2.1 ◦C) across select all cities, which 
was also consistent with air temperature measurements. The decreases in LST could be associated with a 
reduction in pollutants, greenhouse gases and water vapor content. Improvement in air quality with lower urban 
temperatures due to lockdown may be a temporary effect, but it provides a crucial connection among human 
activities, air pollution, aerosols, radiative flux, and temperature. The lockdown for a shorter-period showed a 
significant improvement in environmental quality and provides a strong evidence base for larger scale policy 
implementation to improve air quality.   

1. Introduction 

The COVID-19 outbreak is believed to have initially emerged during 
December 2019 in Wuhan, China (WHO, 2020). Since this time, the 
pandemic has affected over 196 countries (Wang et al., 2020) with more 
than 107.9 million COVID-19 cases and 2.3 million deaths (~2.1% 
mortality rate) worldwide as of February 12, 2021 (JHU, 2021). The 
WHO declared COVID-19 to be a global public health emergency on 
January 30, 2020, which follows a number of other health emergencies, 
including Zika (2016), H1N1 (2009), Polio (2014), and Ebola (2014, 
2019). One of the major causes for the rapid spread of the Coronavirus is 

the ease and widespread use of local, regional and global travel (Munster 
et al., 2020). As a result, countries around the world implemented travel 
bans and enforced ‘lockdowns’ to restrict the population movement in 
order to reduce the spread of the virus. The enforced lockdowns resulted 
in a rapid decrease in economic activity due to workplace restrictions, 
which affected industrial production, non-essential business, transport 
systems, education establishments, offices, and citizen mobility. 
Consequently, the use of surface and air transportation reduced globally 
by 50% and 75%, respectively against the 2019 average (IEA, 2020). 
The dates at which lockdowns were implemented differed between 
countries, but most occurred in March (2020) except Hubei, China 
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(January 2020), with the containment measures being eased from the 
11th May 2020 in Europe and June 2020 in India, Brazil and USA. 

Nitrogen dioxide (NO2) is a major air pollutant emitted from fossil 
fuel combustion, power plants, vehicular emissions, biomass burning, 
and lighting (Beirle et al., 2003; Dentener et al., 2006). Over the years, 
proliferation in urbanization, industrial activity, and transport emis
sions has caused increasing emissions of NO2 leading to a reduction in 
ambient air quality (Sun et al., 2018; Zheng and Wu, 2019). Globally, it 
is estimated that NOx pollution has resulted in nearly 0.1 million deaths 
(Anenberg et al., 2017), about 4 million asthma cases annually (Acha
kulwisut et al., 2019) and increased cardiovascular mortality rates and 
respiratory infections (Chauhan et al., 2003; Chen et al., 2012). Partic
ulate matter (PM) less than 2.5 μg (termed PM2.5) is also a major con
stituent of air pollution and is produced from volcanic activity, dust 
emissions, and the combustion of fossil fuels and organic matter. The 
global population-weighted PM2.5 has increased by 11.2% from 39.7 
(1990) to 44.2 μg/m3 in 2015 with India and China having the poorest 
air quality with population-weighted mean PM2.5 concentrations of 74.3 
and 58.4 μg/m3, respectively in 2015 (Cohen et al., 2017); far exceeding 
the WHO (2005) recommended daily (25 μg/m3) and annual (10 μg/m3) 
average exposure guidelines (Pant et al., 2019; WHO, 2005). Anthro
pogenic emissions from residential, industrial, and transport sectors are 
the prevailing source of PM2.5 in South Asia and daily concentrations are 
increasing over time (Crippa et al., 2018). Fine particulate matter causes 
respiratory and cardiovascular disease, and outdoor air pollution is 
estimated to have resulted in nearly 4.2 million deaths globally on an 
annual basis (WHO, 2016; Xing et al., 2016). In India alone, about 16, 
000 premature deaths occur annually due to exposure to poor air quality 
due to PM2.5 emissions (Balakrishnan et al., 2019). 

The pandemic has resulted in most governments implementing 
rigorous containment measures, which reduced transport and 
manufacturing activity. This resulted in a significant reduction in at
mospheric pollutants such as CO2, CO, NO2, SO2, PM, and aerosols levels 
in many industrial countries (Kanniah et al., 2020; Lal et al., 2020; Le 
et al., 2020; Ranjan et al., 2020; Sharma et al., 2020). For example, CO2 
emissions and energy consumption patterns demonstrated a 17% 
decrease between January and April (2020) as compared to the same 
period in 2019, wherein about half of CO2 emissions were related to 
surface transport (Le et al., 2020). It has also been reported that global 
CO2 emissions decreased by 5.8% in the first quarter (Q1) of 2020 
compared to 2019 levels with the largest decreases in emissions due to 
those from industry (Liu et al., 2020; Safarian et al., 2020). A 1.8% 
reduction in atmospheric CO2 concentration was found using in-situ 
surface monitoring station data in the Peninsular Malaysia during the 
lockdown in Q1 of 2020 compared to that of the mean of the same Q1 in 
2017–18 (Yang et al., 2016). These changes are mainly attributed to the 
shutdown of industry, surface transport, and aviation due to the 
pandemic restrictions. CO2 flux data from several urban sites has 
revealed that CO2 flux has decreased by 8% in an area of Berlin domi
nated by vegetated cover (Germany) and 75% in the centre of Heraklion, 
Greece (Papale, 2020). The atmospheric CO2 concentration across 
several sites in Kolkata and nearby Islands Sundarbans, India, also 
decreased substantially (18–39%) during the lockdown (Parida et al., 
2020). However, changes in CO2 concentration were not detected at the 
global monitoring station in Mauna Loa Observatory (MLO) (Parida 
et al., 2020). 

A decline in NO2 concentrations of up to 30% has been detected in 
cities in China, India, Malaysia, Europe, and the USA (Abdullah et al., 
2020; Dutheil et al., 2020; Muhammad et al., 2020; Shrestha et al., 2020; 
Tobías et al., 2020; Wang, 2020; Zhang et al., 2020). In central China, 
NO2 concentrations decreased by 61% (Xu et al., 2020) whilst in eastern 
China, reductions of 30% occurred due to the lower usage of coal and oil 
(Filonchyk et al., 2020). The average of 336 cities across China showed a 
reduction of 14% and 16% of PM2.5 and NO2, respectively (Chen et al., 
2020). Similarly large reductions in NO2 and PM2.5 concentrations (53% 
and 35–39% respectively) have been identified in urban areas in India 

(Chauhan and Singh, 2020; Mahato et al., 2020; Navinya et al., 2020). In 
Brazil and Spain, large reductions in NO2 and PM10 concentrations have 
also been found and are attributed to the reduction in vehicular emis
sions (Dantas et al., 2020; Siciliano et al., 2020; Tobías et al., 2020). 

Aerosol concentrations have also reduced by 40–60% during lock
downs over several cities in India and South Asia (Gautam, 2020; Kan
niah et al., 2020; Ranjan et al., 2020) and aerosols impact the net 
radiation at the top and bottom of the atmosphere through their direct 
and indirect effects on solar radiation (Lin et al., 2015). The direct im
pacts (i.e. scattering and absorbing solar radiation) generally reduces 
surface temperature over urban/industrial regions by reducing surface 
insolation (Jin et al, 2005, 2010, 2005; Kaufman and Koren, 2006). 
However, the indirect effect (i.e. aerosol-cloud-interaction) is more 
complex, uncertain, and highly variable which has implications on the 
surface energy balance (Rosenfeld, 2000; Tibbetts, 2015). The aero
sol–temperature relationship is predominantly negative in India and 
China across except during summer where higher Aerosol Optical Depth 
(AOD) concentrations result in lower temperatures (Li et al., 2009; Roy, 
2008). 

Numerous studies have found correspondence between PM concen
tration and land surface temperature (LST, Kim, 2019) and the urban 
heat island (UHI) (Jin et al., 2010; Pandey et al., 2014). Changes in PM 
concentration during the lockdown provide the opportunity to investi
gate its impact on the LST over key urban areas of India. This study aims 
to investigate the influence of anthropogenic activity on LST during the 
pandemic when anthropogenic activities and their associated emissions 
were curtailed. The overarching objectives of this study are to: (1) 
quantify the changes in pollutant and aerosol (NO2, PM2.5 and AOD) 
levels across six major urban areas in India as a result of the enforced 
pandemic lockdown and to perceive implications of reduced emissions 
on surface temperature, and (2) investigate whether changes in atmo
spheric pollutants, water vapor, and net radiative flux during the 
pandemic have impacted the LST and UHI. To do so, measurements of 
the tropospheric NO2 and surface measured PM2.5 concentration made 
between March and May 2020 will be compared with those obtained 
over the same months in 2019 over the six most populated cities of India. 

2. Data and methods 

Satellite-derived measurements of NO2, AOD, Absorption Aerosol 
Optical Depth (AAOD), net radiative flux, and LST and ground mea
surements of NO2, PM2.5, and air temperature (AT) are used to provide a 
comprehensive estimate of the impact of lockdown on air pollution and 
urban temperature over six major populous cities of India. The data are 
described in detail in the following sections. 

2.1. Sentinel–5Ps TROPOMI data 

The Copernicus satellite Sentinel–5P, launched in October 2017, 
carries onboard the Tropospheric Monitoring Instrument (TROPOMI) 
instrument, which acquires daily observations at a spatial resolution of 
3.5 × 7 km. The TROPOMI instrument has four separate spectrometers, 
which cover spectral ranges in the ultraviolet and near-infrared 
(0.27–0.5 μm and 0.675–0.775 μm) and the shortwave infra-red 
(2.305–2.385 μm) (Griffin et al., 2019). These instruments make re
trievals of a number of gases, such as ozone (O3), NO2, and sulphur di
oxide (SO2) (Veefkind et al., 2012). 

The NO2 retrieval algorithm was initially developed by using the 
ultraviolet and near-infrared bands (0.27–0.5 μm), which was adopted 
from Ozone Monitoring Instrument (OMI)-based NO2 retrieval (Boersma 
et al., 2004; Zara et al., 2018). The retrieval is based on the DOAS 
(differential optical absorption spectroscopy) spectral-fitting technique 
(Cede et al., 2006). The NO2 column density retrievals characterize the 
vertically integrated number of NO2 molecules per unit area between the 
surface and the tropopause with typical column density concentrations 
ranging between 10 and 200 μmol/m2 worldwide (Griffin et al., 2019). 
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The TROPOMI NO2 product has been widely tested and validated using 
in-situ measurements and demonstrated a high correlation with a low 
negative bias (Griffin et al., 2019; Ialongo et al., 2020; McLinden et al., 
2012). In this study, tropospheric NO2 column density product for 
January–May 2019 and 2020 were obtained from the Google Earth 
Engine (GEE) Data Repository using API code developed in GEE (Gor
elick et al., 2017). 

2.2. Land surface temperature (LST) (MOD11A1) 

The MODIS LST product (MOD11A1) (Wan, 2008) collection 6 pro
vides day and night LST estimates at 1-km spatial resolution covering an 
area 1200 by 1200 km. LST estimates are derived using the split-window 
algorithm (Wan and Dozier, 1996) applied to atmospherically corrected 
longwave infrared channels (bands 31 and 32). Validation of the MODIS 
LST product indicates the mean LST error is within ±0.6 K when 
assessed using in-situ observations at ten validation sites and within ±1 
K in 39 of 47 sites (Wan, 2014). In this study, day and night MODIS Terra 
LST data were acquired from the GEE Repository between March and 
May over the past six years (2015–2020). 

2.3. Aerosol Optical Depth (AOD) (MCD19A2) and AAOD (OMI- 
derived) 

The MODIS Aerosol Optical Depth product (MCD19A2) collection 6 
provides AOD estimates at 1-km spatial resolution covering an area 
1200 by 1200 km. This is a combined Level–2 gridded daily product of 
Terra & Aqua with Multi-angle Implementation of Atmospheric 
Correction (MAIAC, Lyapustin et al., 2012). The MAIAC 
algorithm-based AOD has been found to have higher accuracy than the 
MODIS dark target and deep blue algorithms over dark surfaces and 
smoke plumes (Mhawish et al., 2019). The MAIAC was obtained from 
the GEE repository between March and May over the past six years 
(2015–2020). The daily AAOD (OMAERUVd v003 Level-3) at 550 nm is 
available at a grid resolution of 1 ◦ × 1 ◦ which was retrieved from OMI 
using the OMAERUV algorithm (Torres et al., 2018). This dataset is 
acquired over the past six years (2015–2020) to analyze its association 
with temperature. 

2.4. Net radiative flux at TOA (around 20-km altitude) and surface 

The net radiative flux both at TOA and Surface (Level–3b) data were 
obtained for the period 2015–19 (March–May) from the Clouds and the 
Earth’s Radiant Energy System (CERES) Energy Balanced and Filled 
(EBAF) data product (https://ceres.larc.nasa.gov/data). This dataset is 
available at a spatial resolution of 1 ◦ × 1 ◦ and a monthly temporal 
resolution. The net flux at TOA and Surface for all-sky and clear-sky 
conditions were used in this analysis. The TOA net flux is calculated 
as the difference between the total downwelling incoming solar radia
tion, and the upwelling reflected shortwave and emitted longwave ra
diation at the TOA (Loeb et al., 2018). The EBAF net flux data for 2020 is 
not available, and instead, the Fast Longwave and Shortwave Radiative 
Flux product (FLASHFlux; Kratz et al., 2014) is used, which merges 
CERES and MODIS short and longwave flux measurements. In this study, 
the net radiative flux at TOA and surface over the period April–May 
2020 were employed to analyze its association with temperature. 

2.5. Atmospheric column water vapor content and aerosol sources 

The Modern-Era Retrospective analysis for Research and Applica
tions (MERRA-2) provides a global dataset on atmospheric water vapor 
content. The total precipitable water vapor data has been retrieved from 
the Giovanni platform (https://giovanni.gsfc.nasa.gov/giovanni). The 
aerosol type sources such as black carbon (BC), organic carbon (OC), 
mineral dust, sea salt, and SO2 were acquired from MERRA-2. These data 
are available at a daily temporal resolution and 0.5 ◦ × 0.625 ◦ spatial 

resolution. The water vapor content is also retrieved from the NCEP/ 
NCAR Reanalysis (spatial resolution 2.5 ◦ × 2.5 ◦) and is available in the 
GEE Repository. 

2.6. Meteorological parameters from ERA-5 

Meteorological variables, namely relative humidity, precipitation, 
wind speed and direction, and boundary-layer height (BLH), are from 
the European Centre for Medium-Range Weather Forecasts (ECMWF) 
global atmospheric reanalysis (ERA5) dataset. All meteorological vari
ables are at daily temporal resolution, except the BLH, which is at 
monthly temporal resolution and 0.5 ◦ × 0.5 ◦ spatial resolution (pre
cipitation at 0.25 ◦ × 0.25 ◦ resolution). These data are available in 
Copernicus platform (https://climate.copernicus.eu/climate-r 
eanalysis). The wind and relative humidity datasets are 1000 hPa 
above the surface. 

2.7. In-situ air temperature, NO2 and PM2.5 data from ground-based 
stations 

The station-based air temperature (AT) measurements were collected 
at six locations in India for the months March to May between 2015 and 
2020. The sites are Safdarjung Airport (New Delhi 28.59 ◦N, 77.21 ◦E), 
Chhatrapati Shivaji International Airport (Mumbai 19.09 ◦N, 72.86 ◦E), 
Kolkata (Behala Airport 22.54 ◦N, 88.34 ◦E), Chennai (KK Nagar AWS 
Station 13.04 ◦N, 80.19 ◦E), Bangalore (Kasturi Nagar Station 12.97 ◦N, 
77.6 ◦E), and Hyderabad (Rajiv Gandhi Int. Airport Station 17.25 ◦N, 
78.43 ◦E). The AT data, accessed via the Weather Underground site, 
comprise of the average daily maximum and mean day-time air tem
perature (Tmax, Tmean) and minimum night-time air temperature 
(Tmin) (Weather Underground, 2020). Daily average NO2 and PM2.5 
data were acquired from surface stations located in six cities in India as 
part of the Citizen Weather Observer Program (CWOP, 2020). Daily 
data, which were averaged to weekly temporal resolution, were ob
tained between March–May in 2019 and 2020 for comparison to coin
cident satellite-derived measures. 

2.8. Gridded global human modification (gHM) and population density 

Global human modification (gHM, Kennedy et al., 2019) and popu
lation density (SEDAC, 2020) ~ 1 km data were used to investigate the 
relationship between atmospheric pollution and the intensity of 
anthropogenic activity. The gHM is a cumulative measure of human land 
modification related to human settlement, agriculture, population den
sity, built-up, transport and utilities (i.e. road, railways, and power 
lines), night-time lights, and mining activities. The HM ranges from 
0 (no modification) to 1 (fully modified). These datasets have been 
validated against high-resolution aerial and satellite imagery with good 
agreement (r = 0.78) found between HM and the validation dataset at 
national to global scales (Chu et al., 2020; Theobald et al., 2020). 

2.9. Methods 

The mean NO2 concentration (μmol/m2) within a 20-km radius of 
each urban area (e.g. New Delhi, Mumbai, Kolkata, Chennai, Bangalore, 
and Hyderabad) was calculated using the available daily NO2 retrievals 
over the period March to May (i.e. the lockdown duration) for 2019 and 
2020. From these data, the standardized simple anomaly was calculated 
to characterize the percentage difference in tropospheric NO2 concen
tration between 2019 and 2020. The standardized anomaly was also 
calculated for the MODIS LST and AOD, AAOD, CERES net radiative 
flux, and surface air temperature estimates using the demi-decadal mean 
over the period March–May between 2015 and 2019. The percentage 
difference in meteorological parameters (RH, Wind speed, BLH, pre
cipitation) and atmospheric water vapor content was calculated be
tween 2020 and the mean of 2015–2019 to assess the relationship 
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between metrological conditions and air pollutants. 

3. Results 

3.1. Variation in NO2 and PM2.5 across six urban areas 

In India, the lockdown was implemented on 24th March 2020 and 
during this period, all industry, institutions, and transportation ceased. 
The satellite-derived mean tropospheric NO2 reveals much lower NO2 
concentrations in 2020 compared to the same period in 2019 across all 
six cities. Over Delhi and Mumbai, the mean NO2 concentration ranged 
between 200 and 300 μmol/m2 in 2019 as opposed to between 100 and 
200 μmol/m2 in 2020. In the remaining cities, the mean NO2 concen
tration was on average 18–34 μmol/m2 lower in 2020 compared to 
2019. Fig. 1 presents the standardized anomaly showing the percentage 
difference in NO2 between March and May in 2019 and 2020 for each 
urban area. It is clear that all cities of India have seen a large reduction in 
NO2 concentration with average city-wide reductions of between 18 and 
43% (Table 1) and an overall average decrease in NO2 of 31.5%. Kolkata 
deviates from the other cities with a much lower reduction in NO2 
(18.1%). The areas with the greatest reduction in NO2 concentration are 
those with the highest gHM and population density (Fig. S1). The spatial 
distribution of the average tropospheric NO2 concentration showed the 
greatest reduction in the urban centres of Delhi, Mumbai and Chennai 
which typically have higher population densities and higher intensity of 
human activity (i.e. human settlement, build-up area, agriculture, 
transport, and industrial, among others) as indicated by gHM (Fig. S1). 
The gHM dataset indicates that the mean gHM exceeded 0.75 in all six 
cities and higher mean population density witnessed in Mumbai (34,998 
person/sq.km), Kolkata (28,670 person/sq.km), and Delhi (21,484 
person/sq.km) followed by Chennai (19,822 person/sq.km), Hyderabad 
(14,264 person/sq.km), and Bangalore (9509 person/sq.km) (Fig. S2). 

The ground-station based weekly average NO2 and PM2.5 concen
tration for 2019 and 2020 is presented in Figs. S3–S4 across each cities. 
The temporal trends of the weekly NO2 and PM2.5 data highlight the 
decline in concentration across these major urban areas and is particu
larly evident in Delhi. The concentrations in March 2019 and 2020 are 
typically in closer agreement as the lockdown measures were not 
implemented until the end of March. After this time, greater differences 

are apparent in concentrations between 2019 and 2020, although 
Hyderabad departs from this trend from mid of May as the lockdown was 
de-escalated whilst the PM2.5 concentration was higher in 2019. Fig. 2 
summarises the percentage anomaly in NO2 and PM2.5 and reveals the 
NO2 concentration reduced by between 32% (Hyderabad) and 74% 
(Delhi) (Table 1) whilst PM2.5 concentrations displayed lower re
ductions of between 9% (Mumbai) and 42% (Bangalore). The daily 
surface measured NO2 and satellite retrievals of NO2 (Table 1) indicate 
Delhi records the greatest average reduction but that the anomaly per
centage is higher from the surface stations than the satellite retrievals 
where the average reduction is 55.6% and 31.5% respectively. This is 
due to the surface stations being located at airports where the reduction 
in transportation is likely to be more profound impact on NO2 concen
tration than that found in city centres where some transportation was 
still operational. The PM2.5 displays lower reductions than the NO2, 
particularly in Mumbai and Kolkata, as emissions due to sea salt, dust, 
and cooking fuel are likely to remain to various degrees. 

Fig. 1. Present anomlay of mean tropospheric NO2 concentration during effective lockdown period (i.e. 24th March–18th May) in 2020 across India and in six 
large cities. 

Table 1 
Average anomaly and standard errors (±se) in NO2 and PM2.5 concentration 
between 2020 and 2019 using observations during the lockdown period (24th 
March to 18th May).  

Ground 
stations 

Anomaly (%) (satellite- 
derived) 

Anomaly (%) (surface station 
measurement) 

NO2 NO2 PM2.5 

Delhi − 43.06 (±0.22) − 74.05 
(±1.90) 

− 26.96 
(±3.06) 

Mumbai − 33.39 (±0.29) − 45.60 
(±3.56) 

− 9.08 (±3.11) 

Kolkata − 18.19 (±0.52) − 57.77 
(±2.64) 

− 23.86 
(±4.23) 

Chennai − 31.77 (±0.13) − 61.19 
(±3.30) 

− 37.08 
(±3.38) 

Bangalore − 33.88 (±0.14) − 63.01 
(±1.59) 

− 41.71 
(±2.51) 

Hyderabad − 29.10 (±0.11) − 32.00 
(±4.39) 

− 19.00 
(±2.89)  
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3.2. Variation in NO2 and PM2.5 in relation to meteorological conditions 

Fig. 3 shows meteorological variability in 2020 than that of the 
average condition over 2015–19 as it might be an additional contrib
uting factor in reducing atmospheric pollutants. A widespread increase 
in relative humidity by 15–25% was found across India during the pre- 
monsoon season (March–May), enabling aerosol formation (Fig. 3A). 
The wind speed declined by 10–25% and winds mostly originated from 

the Arabian Sea (Fig. 3B), which helps to transport mineral dust from the 
Thar desert towards the interior landmass. This might contribute to haze 
formation over parts of Central India as evidenced by the positive AOD 
anomalies (Fig. 4), but decreased wind speed does not facilitate the 
dispersion of pollutants (Goldberg et al., 2020). The PBL height is 
20–40% lower (Fig. 3C), indicating the formation of a stable boundary 
layer and stationary air, and these conditions are suitable for increasing 
pollutants (Le et al., 2020). However, some regions also display a 

Fig. 2. Box plots showing the percentage anomalies in NO2 and PM2.5 concentration measured from surface stations in six cities. The bars show the mean and the 
cross the median values derived from the average daily concentrations. 

Fig. 3. Percentage change in ERA-5 meteorological variables in 2020 relative to the average over the period 2015–19 (i.e. March–May). (A) relative humidity, (B) 
wind speed at 1000 hPa pressure level, (C) boundary-layer height, and (D) precipitation. In B) the overlaid wind direction is that from 2020. 
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moderate increase in PBL height. Precipitation shows a mostly positive 
increases in northern and west-central regions and a decreasing pattern 
over southern India (Fig. 3D). Combined the anomalies in meteorolog
ical conditions that can influence the vertical distribution of pollutants 
are not believed to play a significant role in the observed reduction of 
pollutant concentration across India. 

3.3. AOD and temperature variation (March–May) 

It is evident that the changes in working and travel patterns has 
resulted in a large reduction of NO2 and PM2.5 concentrations, particu
larly over densely populated areas. Fig. 4 shows the standardized AOD 
anomaly across India as well as for each urban area, which indicates 
most areas saw a reduction in optical depth. An exception is Hyderabad 
located in central India, where increases and decreases in AOD are 
evident which may result from local supply of mineral dust aerosols 
from the north western arid region and emissions from industrial sour
ces. Meteorological conditions may also play a role although it is less 
clear as regions of positive AOD (e.g. Maharashtra state) can coincide 
with positive precipitation anomaly (Fig. 3d). The AOD anomaly dis
plays lower spatial coherence than that found with NO2 (Fig. 1) partly 
due to the wider range of PM emissions sources, which sees some areas 
in each city showing an increase in AOD. The mean AOD anomaly for 
Delhi, Mumbai, Kolkata, Chennai, Bangalore, and Hyderabad was 
− 1.78, − 0.93, − 2.69, − 3.39, and − 1.75, and − 0.2 respectively 
(Table 2). 

It was evident that there has been a reduction in atmospheric NO2, 
PM2.5, and AOD as measured by both satellite retrievals and surface 
station measurements during the pandemic. We investigate whether 
these changes in atmospheric composition impact the land surface and 
air temperature in each city using satellite and ground-station data. 

The MODIS LST anomaly in 2020 (both day and night-time) against 
long-term averages (2015–2019) for India and each city is presented in 
Figs. 5–7. Widespread negative LST anomalies are found across India 
with 81.6% and 79.6% of the land surface having seeing reductions in 
night and day LST respectively. Positive LST anomalies, which have 
been associated with a reduction in aerosol concentration and atmo
spheric scattering during the lockdown (Westervelt et al., 2020; Yang 

et al., 2016), were found in Southern peninsular and Northeast India 
(Fig. 5). This region is largely composed of negative AOD anomalies 
(Fig. 4) although many areas of India have both negative AOD and LST 
anomalies. Negative night-time LST anomalies are found across four 
cities (Delhi, Chennai, Hyderabad, and Bangalore) whilst Kolkata and 
Mumbai display positive anomalies (Table 2). The positive anomalies in 
Mumbai and Kolkata are believed to be associated with the sea breeze 
effect contributing to an increase in night-time temperature (Fig. 6, (Pal 
et al., 2020). The relationship between the daytime LST (Fig. 7) and 
AOD (Fig. 3) anomalies is somewhat mixed with only Delhi showing a 
consistent decrease in both which may be linked to changes in residual 
burning practices in Punjab as well as reduced frequency of forest fire 
during the pre-monsoon season (Gupta et al., 2020). Fig. S5a shows the 
anomalies in Organic (OC) and Black Carbon (BC), emitted through 
fossil fuel combustion and biomass burning, which shows a large 
negative anomaly over the Punjab where crop residue burning is 
widespread with the smoke being transported over Delhi (Liu et al., 
2018). The strong radiative absorption characteristics of BC can to lead 
to reductions in daytime LST (Qian et al., 2006). The variable 

Fig. 4. Present standardized AOD anomaly during 24th March–18th May across India and over six cities against the demi-decadal mean over the same time period 
for the years 2015–19. 

Table 2 
Mean AOD and temperature anomalies (24th March–18th May) in 2020 against 
demi-decadal observation (2015–2019) over six cities in India.  

City  LST anomalies ◦C (±SE) AT anomalies ◦C 

AOD 
anomalies 

Mean Night 
LST anomaly 

Mean Day 
LST 
anomaly 

Tmin 
(Night) 

Tmax 
(Day) 

Delhi − 1.78 
(±0.011) 

− 2.10 
(±0.016) 

− 1.04 
(±0.005) 

− 0.82 − 1.04 

Mumbai − 0.93 
(±0.015) 

1.43 
(±0.023) 

0.84 
(±0.02) 

0.36 0.08 

Kolkata − 2.69 
(±0.056) 

1.25 (±0.02) 2.5 (±0.03) − 0.77 − 0.75 

Bangalore − 3.39 
(±0.016) 

− 0.63 
(±0.004) 

− 0.16 
(±0.004) 

− 0.58 − 0.80 

Chennai − 1.75 
(±0.02) 

− 1.75 
(±0.019) 

− 0.93 
(±0.016) 

− 0.83 − 0.84 

Hyderabad − 0.2 
(±0.03) 

− 0.5 
(±0.01) 

− 0.21 
(±0.01) 

0.48 − 1.48  
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relationship between daytime LST and AOD anomalies may result from 
variations in the planetary boundary layer (Fig. 3a) and precipitation 
(Fig. 3d) which increase the variation in aerosol concentration and 
remove aerosols from the atmosphere respectively. 

The ground station-based air temperature (AT) anomalies (Fig. 8) for 
2020 (24th March–18th May) was computed both for day-time (Tmax) 
and night-time temperature (Tmin), against data from the same months 
but between 2015 and 2019. As found with the MODIS LST anomalies, 
the AT anomalies are low and largely negative with the exception of 
Mumbai and Hyderabad. Among the cities, Delhi has the largest com
bined negative LST and AT anomalies (Table 2) whilst Mumbai has 
positive day and night AT anomalies which are in line with the MODIS 
LST anomalies. However, the MODIS LST and in-situ AT anomalies differ 

in Kolkata where the in-situ mean AT anomaly is negative (− 0.75 ◦C and 
− 0.77 ◦C for Tmax and Tmin respectively) and the day-time MODIS LST 
anomaly is positive. Notably in Delhi, there were about 13 wet days out 
of 56 days, and thus, the wet days have helped accelerate this wide 
reduction of temperature, which can be seen from the outliers. It can be 
noted that there were no wet days in Chennai, Bangalore, Hyderabad, 
and Mumbai in 2020 during 24th March–18th May, mostly due to the 
dry season in India. 

The reduction in suspended particulate matter and other air pollut
ants in the lower atmosphere may contribute to the reduction in surface 
and air temperature (Bera et al., 2020) and this is investigated further in 
the subsequent section through an analysis of the net radiative flux at 
the surface and TOA. 

Fig. 5. Standardized (a) night-time MODIS LST and (b) day-time MODIS LST anomalies (◦C) during 2020 (24th March–18th May) against the demi-decadal mean for 
the years 2015–19. The histogram showing distribution of positive and negative pixels. 

Fig. 6. Standardized night-time LST anomalies (◦C) during 2020 (24th March–18th May) over (a) Delhi, (b) Mumbai, (c) Kolkata, (d) Bangalore, (e) Chennai, and (f) 
Hyderabad city. A 20-km buffer has been applied from the city boundary. 
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3.4. Top of the atmosphere (TOA) and surface net of net radiation flux 
anomalies 

Anomalies in the average net raditaive flux (i.e. all-sky and clear-sky 
conditions) at the top of the atmosphere (TOA) and at the surface in 
2020 (March–May) is shown in Fig. S6, which are negative over many 
regions in India. The net raditaive flux at the surface (all-sky) exhibits a 
negative anomaly between − 10.6 W m− 2 (Kolkata) and − 2.8 W m− 2 

(Hyderabad) across all cities except Chennai (0.45 Wm-2) and Bangalore 
(1.8 Wm-2) (Fig. 9). The net TOA flux (all-sky and clear sky) displayed 
negative anomalies in all cities but with a lower magnitude than that 
found at the surface. A decrease in the net radiative flux in Madrid 
during the lockdown was attributed to reductions in aerosol emissions 
(Barragan et al., 2020). The average decrease over East Asia was 3.8 W 
m− 2 (or 7%) in March 2020 and one-third of the clear-sky anomalies was 
attributed to emission reductions during the lockdown, and the rest due 
to natural variability (Ming et al., 2021). Here, a positive anomaly in the 

net radiative flux is detected at Chennai (0.45 W m− 2) and Bangalore 
(1.8 W m− 2), both of which are largely characterised by a reduction in 
AOD (Fig. 4). It is clear that, whilst there is some indication that 
reduction in anthropogenic emissions has influenced surface tempera
ture and net radiative flux in these urban areas (Gogoi et al., 2019), 
other factors such as local climatology, surface heterogeneity and vari
ations in lockdown efficacy also play a role. 

3.5. Percent changes in atmospheric total column water vapor 

The change in total column water vapor in 2020 relatively to the 
long-term averages (2015–2019) over India is shown in Fig. S7 which 
largely shows an increase in water vapor across India for both MERRA-2 
and NCEP datasets with the exception of the north-east. Total column 
water vapor content increases across all five cities by between 0.5 and 
19% (MERRA-2) and 4 and 11% (NCEP) with the exception of Chennai 
(Table S1) which coincides with an increase in relative humidity 

Fig. 7. Standardized day-time LST anomalies (◦C) during 2020 (24th March–18th May) over (a) Delhi, (b) Mumbai, (c) Kolkata, (d) Bangalore, (e) Chennai, and (f) 
Hyderabad city. A 20-km buffer has been applied from the city boundary. 

Fig. 8. Ground-station standardized air temperature anomalies (Tmax and Tmin in ◦C) from daily average measurements in 2020 (24th March–18th May) over 
each city. 
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(Fig. 3a). The decline in net radiative flux might be attributed to an 
increase in water vapor by increasing the absolute magnitude of the 
shortwave cloud radiative forcing (CRF) through the lower-tropospheric 
large-scale air circulation that makes a higher water content in clouds. It 
is possible that the shortwave CRF effect might be larger than the small 
changes in the outgoing longwave radiation (OLR) (Barragan et al., 
2020). Consequently, it contributed to a decrease in net radiative flux at 
TOA (Larson and Hartmann, 2003). The shortwave CRF effect seems to 
be the dominant one, and thus the clouds have induced a decrease in the 
net downward radiation flux at the TOA. 

4. Discussion 

The COVID-19 pandemic and nation-wide lockdowns have had a 
considerable impact on the economy and environment due to the 
cessation of industrial activities, transportation networks, agricultural 
practices, non-essential business, and citizen mobility. These activities 
are sources of atmospheric pollutants and aerosols emissions, largely 
through fuel combustion. This study assessed the changes in atmo
spheric pollutants (NO2 and PM2.5) and aerosols (AOD) during the 
lockdown (2020) relative to the same period in 2019 over six populous 
cities in India. 

The satellite-based analysis demonstrated that tropospheric NO2 
concentrations had reduced by 18% (Kolkata), 29% (Hyderabad), 
32–34% (Chennai, Mumbai, Bangalore), and 43% (Delhi). Among these 
six cities, surface-based NO2 levels reduced by between 74% (Delhi) and 
32% (Hyderabad) whilst PM2.5 decreased by 41% (Bangalore) and 9% 
(Mumbai). In India, several studies have also demonstrated significant 
reduction in NO2 emissions across several Indian cities during lockdown 
(Acharya et al., 2021; Bera et al., 2020; Biswal et al., 2020; Singh et al., 
2020). Vadrevu et al. (2020), analysed the air pollution in 41 cities 
across India and similarly found decreases in tropospheric NO2 in Delhi 
(60%), Bangalore (48%), Ahmedabad (46%), Nagpur (46%), Gan
dhinagar (45%), and Mumbai (43.08%). The effects in coastal cities 
were lower (~22% NO2 reduction) which is attributed the influence of 
the wind and sea breeze (Vadrevu et al., 2020). Numerous studies have 
also detected decreases in PM2.5 concentration of between 19 and 54% 
in major cities across India during the first lockdown of the pandemic 
(Chauhan and Singh, 2020; Jain and Sharma, 2020; Kumar et al., 2020; 
Kumar, 2020; Mahato et al., 2020; Sharma et al., 2020). 

Analysis of the MODIS AOD product found that negative anomalies 
occurred over large parts of India although parts of central India and 
locations of mining activities exhibited positive AOD anomalies. All 
cities exhibited negative anomalies (Table 2) with the highest negative 

standardized anomaly of AOD occurred in Bangalore (− 3.4) whilst the 
lowest was in Mumbai (− 0.93), and all cities exhibited negative 
anomalies (Table 2). The reduction of AOD in 2020 was found to be 
20–60%, 10–50%, 25–80%, 30–75%, and 40–80%, in Delhi, Mumbai, 
Kolkata, Chennai, and Bangalore, respectively. However, in Hyderabad, 
both increases and decreases of AOD were found of 10–30%. The 
reduction in the concentrations of atmospheric pollutants and aerosols 
observed over these cities are comparable with the results from similar 
studies (e.g. Chauhan and Singh, 2020; Kanniah et al., 2020; Ranjan 
et al., 2020; Siddiqui et al., 2020). For instance, the AOD level reduced 
by 6–37% over urban areas in India (Acharya et al., 2021; Ranjan et al., 
2020). The anomalies in AOD are more variable than those found with 
NO2 partly as a result of the greater range of emissions sources of at
mospheric aerosols which is illustrated by the positive AOD anomalies in 
mining regions in central India (Fig. 3a; Bera et al., 2020). Contributing 
to the variability in atmospheric composition is meteorological condi
tions which can reduce atmospheric aerosols through precipitation and 
transport. Here, only a small fraction of the pollutant reduction is 
believed to be associated with meteorological conditions which is 
consistent with the findings of Navinya et al. (2020) who found the 
shutting down commercial/industrial and transport activities to have a 
greater impact over several urban areas of India. Analysis of the total 
column NO2 over cities in North America found differences of ~15% due 
to changes in meteorological conditions (Goldberg et al., 2020) whilst 
changes in NO2 as a result of the pandemic have varied between 22 and 
60% (India, this study) and by between 18 and 40% in cities in China, 
Western Europe, and North America (Bauwens et al., 2020). 

Variation in land surface temperature and ground-based air tem
perature anomalies revealed a widespread negative anomaly across 
much of India and over major cities which ranged from–2.1 (Delhi) to 
− 0.63 ◦C (Bangalore) and –1.04 (Delhi) to − 0.16 ◦C (Bangalore) during 
the night and day respectively (Table 2). Similar results were found in 
ground-based air temperature measurements which were also largely 
negative with the exception Mumbai. Similar reductions in LST during 
the pandemic have been found in Kolkata (Bera et al., 2020; Sahani 
et al., 2020) and the Dwarka river basin (West Bengal province, Mandal 
and Pal et al., 2020) where average Landsat-derived LST decreases of 
between 0.2 and 5 ◦C have been reported and which attributed to 
reduction in atmospheric pollutants and aerosols. In their analysis of 
Landsat LST over a number of large cities in India during the pandemic, 
Nanda et al. (2021) also found most exhibited a decreases in LST except 
Kolkata which saw in increase in surface temperature. Natural processes 
and anthropogenic activities influence the LST including the local 
metrological conditions and variations in surface heterogeneity and 

Fig. 9. Present standardized net radiative flux anomalies at top of the atmosphere (TOA) and surface (All-sky and clear-sky condition) during 2020 against the demi- 
decadal mean 2015–19 (i.e. April–May) for each city. 
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condition. However, the decreasing concentration of atmospheric pol
lutants could modify the surface temperature by attenuating surface 
solar radiation through scattering and absorption (Yang et al., 2016). 
Higher particulate matter concentrations have been related to increases 
in LST (Jin et al., 2010) but can lead to increases and decreases in LST 
due to increased scattering of shortwave radiation and trapping of 
longwave radiation respectively (Li et al., 2018; Song et al., 2018). The 
complex interaction between AOD and LST is illustrated by the largely 
negative AOD anomalies found over the urban areas studied here and 
the corresponding mixture of positive and negative daytime LST 
anomalies. Further work is needed to understand this relationship for 
example through the application of atmospheric chemical transport 
models. Moreover, analysis of AAOD data demonstrated that all the 
selected cities (–0.1 to –2.65) and major parts of India (average –2.06) 
experienced a significant reduction of AAOD during the lockdown 
(Fig. S8). This reduction was mostly attributed to anthropogenic emis
sions associated with lockdown which can cause a decrease in atmo
spheric warming (Srivastava et al., 2021) as well as lower atmospheric 
temperature. It can be deduced that the observed variations in the net 
radiative flux are directly related to the lower emissions of aerosols due 
to human activities during the lockdown. 

Air pollution is a major public health issue that caused premature 
deaths of 1.67 million in India in 2019 (Pandey et al., 2021), including 
981,000 pre-term births in 2018 (Farrow et al., 2020). In urban and 
industrial regions of India, higher PM concentration has been associated 
with a reduction of life expectancy by 3.2 years for 660 million people in 
India (Cohen et al., 2017). Over the last five decades (1970–2020), clear 
air policies have been implemented by the Indian government to 
improve the standard of air quality. Pioneer emission control policies 
have been implemented by the Central Pollution Control Board (CPCB, 
1974), National Ambient Air Quality Standards (NAAQS, 1994), 
MoEFCC action plan (1997), National Ambient Monitoring Programme 
(NAMP, 2016), and Graded Response Action Plan (GRAP, 2016) 
(Ganguly et al., 2020). The latest stringent emission control policies 
introduced are National Clean Air Program (NCAP, 2018), which aimed 
to reduce PM2.5 pollution by 20–30% by 2024 in 122 non-attainment 
cities compared to 2017 levels. Under the NCAP, major action plans 
involve emission control from transport and road dust followed by in
terventions for the industrial and open waste burning. Emissions 
reduction policies are also supported by initiatives to promote green 
energy such as the National Action Plan on Climate Change (NAPCC, 
2008) which aimed to promote the solar energy, electric vehicles, and 
the smart cities mission (Pandve, 2009) as abatement strategies towards 
mitigating air pollution. According to the “Vehicle Scrappage Policy 
2021” guidelines, cars and commercial vehicles older than 20 and 15 
years, respectively will be phased out for decreasing vehicular pollution 
by 25%. 

During the initial lockdown period (i.e. 2 weeks in March) in India, it 
was estimated that about 5300 (1000–11700) premature deaths were 
averted due to reduced PM2.5 concentrations (Venter et al., 2020). 
Whereas globally it was projected 0.78 (0.09–1.5) million premature 
deaths could be averted in 2020, assuming the lockdown scenarios 
throughout the year (Venter et al., 2020). In Europe and China, it is 
estimated that premature deaths were reduced by tens of thousands 
during the lockdown duration due to lower PM2.5 concentrations and are 
projected to reduce by between 76,400 and 287,000 in China and by 13, 
600–29,500 in Europe if the lockdown scenario persisted through 2020 
(Giani et al., 2020). Nevertheless, it is from the lockdown that an 
improvement in air quality was directly associated with a reduction in 
anthropogenic activity and illustrates the potential benefits that gov
ernment clean air policies and green energy production could achieve in 
India. During the lockdown, the energy generation pattern shifted from 
non-renewal fuel to renewal by 6.5% (Parida et al., 2020). With the 
increasing use of renewable fuels and the shift towards green energy, 
India is contributing to climate change adaptation and mitigation policy. 
Reductions in PM2.5 and NO2 concentrations also suggest that future 

policies could target transport and industrial emissions. Whilst the focus 
of this study has been on the reduction in emissions and improvements 
to air quality due to the lockdown, the pandemic has also highlighted the 
need to update urban planning policies to make them more resilient and 
sustainable (e.g. Sustainable Development Goals, SDG-11) as high
lighted by (Sharifi and Khavarian-Garmsir, 2020). 

5. Conclusions 

Satellite and surface atmospheric measurements across India during 
the first lockdown period (March–May 2020) revealed a widespread 
decrease in NO2 (average of 12% in tropospheric) which was particu
larly apparent over the six cities that were the focus of this study 
(average decrease of 31.5% in tropospheric). Decreases in PM2.5 con
centration were also evident although more variable than that of NO2 
due to the wider range of potential emissions sources although, with the 
exception of Hyderabad, all cities recorded average decrease of AOD 
between 10 and 80%. The reduction in a significant proportion of these 
pollutants is most likely due to the confinement measures imposed to 
restrict the spread of the COVID-19, which subsequently resulted in the 
abrupt reduction in transport (i.e. surface and air traffic) and industrial 
activities. Over the same time period, MODIS day and night LST data 
indicate a decrease in temperature relative to the same period over the 
preceding 5 years over the northern and eastern parts of India. The 
MODIS LST and in-situ air temperature measurements indicate de
creases and increases in temperature over the urban areas which don’t 
all vary in relation to the anomalies in AOD (as a proxy for PM2.5) 
highlighting the complex interaction between these variables. Whilst 
further research is needed to understand the linkages between air 
pollution and surface temperature, the reduction in population mobility 
during the lockdown has illustrated the potential gains that can be made 
with respect to air quality by reducing anthropogenic emissions, 
particularly those from transportation. Given that it is estimated that 
68% of the world’s population will reside in urban areas by 2050 
(United Nations Department of Economic and Social Affairs, 2019), 
policies to improve to air quality and the design of urban environments 
are needed to help meet SDG-11 and to make urban areas more resilient. 
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