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Introduction
Cell-based therapy for the treatment of multiple sclero-
sis (MS) has undergone rapid translation from in vitro 
and in vivo studies to clinical trials. In neurological dis-
ease, including MS, the potential of autologous cells 
isolated from a systemic source and expanded ex vivo 
is particularly attractive given the limited capacity of 
the central nervous system (CNS) for repair.1 The pro-
tective properties of multipotent mesenchymal stromal 
cells (MSC) and their secretome, in both in vitro and in 
vivo models of neurodegenerative disease, mean they 
are widely regarded as one of the most promising cell 
types for use in cell-based therapies.2–5

If autologous cells are to be employed in cell-based 
therapies, it is important to demonstrate that their ther-
apeutic properties have not been compromised by 
exposure to disease.6 In MS, there is increasing con-
cern that MSC isolated from people with MS have 
altered functional properties. We have previously 
demonstrated that MSC isolated from people with pro-
gressive with MS (MS-MSC) can be expanded in vitro 
and have the expected cell surface phenotype and mes-
enchymal differentiation potential.7 However, in sub-
sequent, larger studies which take the effect of age into 
consideration, we demonstrated that MS-MSC have 
reduced ex vivo expansion potential,8 and failure or in 
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adequate ex vivo expansion of autologous MSC was 
also reported in approximately 5% participants in the 
MEsenchymal StEm cells for MS (MESEMS) study 
(NCT01854957; A. Uccelli, ECTRIMS 2018).9 Our 
previous investigations have also demonstrated that 
MS-MSC have an in vitro phenotype consistent with 
premature ageing, with increased expression of mark-
ers of senescence and accelerated telomere shorten-
ing.8 Furthermore, we have also shown that the 
MS-MSC secretome offers reduced neuroprotection in 
vitro,10 and MS-MSC have increased susceptibility to 
nitrosative stress and display dysregulated anti-oxi-
dant responses including reduced secretion of a range 
of trophic factors and anti-oxidants.11 Others have 
reported reduced immunosuppressive function and 
altered cytokine expression in MS-MSC12,13 as well as 
reduced therapeutic efficacy of MS-MSC in a murine 
model of MS (experimental autoimmune encephalo-
myelitis, EAE).14

Here, we compared the composition of the MSC 
secretome when MSC were isolated from people with 
MS or control subjects with the aim of identifying dif-
ferences which may contribute to the reduced neuro-
protective potential of the MSC secretome and 
dysregulated anti-oxidant responses previously 
reported.

Material and methods

MSC isolation and culture
Bone marrow aspirates were obtained from people 
with progressive MS (MS-MSC) participating in the 
clinical trials ‘Repeat Infusion of Autologous bone 
Marrow Cells in MS (SIAMMS-II)’ (NCT01932593; 
United Kingdom (UK) Research Ethics Committee 
(REC) 13/SW/0255)15 and ‘Assessment of Bone 
Marrow-Derived Cellular Therapy in Progressive 
Multiple Sclerosis (ACTiMuS)’ (NCT01815632; 
REC 12/SW/0358).16 Control MSC (C-MSC) were 
obtained from the discarded femoral head during total 
hip replacement (REC 10/H102/69); donors were 
known to have osteoarthritis, but were otherwise 
healthy and were not receiving drugs associated with 
myelosuppression. None of the ACTiMuS partici-
pants had received disease modifying therapy in the 
year prior to bone marrow collection although some 
participants with secondary progressive MS had been 
exposed to disease modifying therapy previously (see 
Supplementary Material). Not all samples were avail-
able for all experiments; the number of biological rep-
licates is specified in each experiment and details 
regarding the cohort and which samples were used for 

each analysis are presented as Supplementary 
Material.

Isolation of MSC and preparation of MSC-
conditioned medium
MSC were isolated using a density gradient and were 
expanded in vitro as previously described.17 Cell sur-
face phenotype and mesenchymal differentiation 
potential were confirmed to be consistent with those 
expected of MSC.7 MSC in the logarithmic phase of 
growth at second (p2) or third passage (p3) were used 
to produce conditioned medium.17 The culture flasks 
were washed twice with Dulbecco’s modified Eagle’s 
medium (DMEM; Sigma, USA), to remove any resid-
ual trophic effect from serum. Minimal medium 
(MIN) was added to the flasks. This consisted  
of 48.25 mL DMEM, 500 µL Pen-Strep (Gibco 
Penicillin–Streptomycin, Ref 15140-122), 500 µL 
Sato concentrate (containing 100 µg/mL of bovine 
serum albumin, 0.06 µg/mL progesterone, 16 µg/mL 
putrescine, 0.04 µg/mL selenite, 0.04 µg/mL thyrox-
ine and 0.04 µg/mL triiodothyronine),18 500 µL holo-
transferrin (Sigma-Aldrich, Ref. T0665) and 250 µL 
L-glutamine (Sigma Aldrich, Ref. I5500). After 
24 hours, conditioned medium was collected from 
cultures of control MSC (C-MSCcm) or MSC  
isolated from patients with progressive MS 
(MS-MSCcm), centrifuged, filtered and stored at 
–20°C.17

Isolation of mitochondria
MSC mitochondria were isolated with a commercial 
kit used according to manufacturer’s instructions 
(Sigma MITOISO2). Briefly, cells at p3 were 
detached, washed in ice-cold phosphate-buffered 
saline (PBS) and lysed on ice for 5 minutes. Extraction 
buffer was added, and cells centrifuged at 600 × g for 
10 minutes. Supernatant was collected and centri-
fuged at 11,000 × g for 10 minutes to obtain mito-
chondrial pellet. The pellet was resuspended in either 
storage buffer for mitochondrial activity assay or 
CelLytic M cell lysis reagent with protease inhibitors 
for immunoblotting.

Proteomics
At the University of Bristol Proteomics Facility, liq-
uid chromatography–tandem mass spectrometry 
(LC-MSMS) of C-MSCcm and MS-MSCcm was per-
formed according to a previously described protocol 
for tandem mass tagging (Thermo Fisher Scientific, 
USA).19
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Enzyme-linked immunosorbent assay
Ready to use sandwich enzyme-linked immunosorb-
ent assay (ELISA) for mFH (human mFH: Cusabio 
Catalogue No. CSB-EL008659HU) was performed 
on conditioned medium from C-MSC and MS-MSC 
according to the manufacturer’s instructions. A stand-
ard curve was prepared and absorbance read on a 
spectrophotometer at 450 nm (BMG Labtech Fluostar 
Optima). Values were interpolated into the curve and 
multiplied by the dilution factor to obtain the final 
concentration.

Fumarase activity assay
Fumarase activity was quantified using a commer-
cially available assay according to the manufacturer’s 
instructions (Sigma-Aldrich, Ref. MAK206). In addi-
tion to MSC or mitochondrial lysate, wells contained 
50 µL reaction mix which consisted of 36 µL of fuma-
rase assay buffer, 2 µL of fumarase enzyme mix, 10 µL 
of fumarase developer and 2 µL of fumarase substrate. 
After adding the reaction mix, the plate was protected 
from light and mixed using a horizontal shaker. The 
results were measured using a BMG Labtech Fluostar 
Optima microplate reader at 450 nm, and MARS data 
analysis software (kinetic mode for 60 minutes at 
37°C with absorbance readings taken every minute). 
Nicotinamide adenine dinucleotide and hydrogen 
(NADH) standards were read at the end of the incuba-
tion time. To calculate fumarase activity, the absorb-
ance for each well was plotted versus time. Two time 
points were chosen (T1 and T2) in the linear range of 
the plot, and the absorbance was determined. 
Background was corrected by subtracting the meas-
urement obtained for the blank standards. The change 
in absorbance from T1 to T2 was calculated, and the 
amount of NADH generated (nmole/well) was 
obtained. Fumarase activity was ascertained by divid-
ing amount of NADH (nmole) between T1 and T2 by 
the reaction time multiplied by sample volume added 
to the well, and the activity was reported as nmole/
min/µL or milliunits/µL where one unit of fumarase is 
the amount of enzyme that generates 1.0 µmole of 
NADH per minute at pH 9.5 and 37°C.

Immunoblotting
Immunoblotting was performed as previously 
described.11,20 Briefly, MSC were plated at 5 × 104 
cells per well in a six-well plate prior to lysis with 
universal lysis buffer (Millipore). Protein quantifica-
tion was performed with Qubit Fluorometer and 
Quant-iT™ protein assay kit (Invitrogen) to ensure 
equal loading of samples. Protein lysates were diluted 
1:1 with 2 × Laemmli buffer and denatured at 95°C, 

before loading on Tris HCl 4–20% ready gels (Bio-
Rad). Gels were transferred to nitrocellulose mem-
brane and subsequently blocked with 5% bovine 
serum albumin (Sigma) or 5% milk in tris-buffered 
saline–Tween for 1 hour. Incubation with primary 
antibody anti-FH (Abcam, ab95950), anti-nuclear-
related (erythroid-derived 2) factor 2 (anti-NRF-2) 
antibody (R&D, AF3925), anti-hypoxia inducible 
factor1α (anti-hypoxia inducible factor1α (anti-HIF-
1α; Abcam, ab51608)), anti-COX5 (Santa Cruz, 
SC-376907) and anti-glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH; Abcam, ab9484) was per-
formed overnight at 4°C. Amersham ECL Plus™ 
Western Blotting Detection System (GE Healthcare) 
was used to visualise specific protein expression pat-
terns by chemiluminescence. The integrated density 
of bands was measured using ImageJ (National 
Institute of Health, NIH), and values are expressed 
relative to GAPDH loading control protein.

Neurotoxicity assays
Rodent cortical neuronal cultures, trophic factor with-
drawal (exposure to MIN for 24 hours) and nitric 
oxide (NO) toxicity assays employing 0.4 mM 
DETANONOate (Enzo Life Sciences) were estab-
lished as previously described.10,20 Survival was 
assessed using the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay.21 
Recombinant human FH was added as described in 
the relevant experiments (Sigma-Aldrich, Ref. 
SRP6120).

Statistical analysis
GraphPad PRISM 5 (GraphPad Software) was used 
for graphical illustrations and statistical analyses not 
employing multiple regression (*). Where stated, 
multivariant analyses (#) were performed with STATA 
v12 (StataCorp).8,10,11 Bar graphs show mean ± stand-
ard error of the mean and regression lines were fitted 
with 95% confidence intervals (CI). Values of p < 0.05 
were considered statistically significant.

Results

Reduced mFH secretion in progressive MS is 
negatively associated with duration of progressive 
phase of disease
Relative reduction in the concentration of mFH in  
the secretome of MS-MSC was demonstrated by 
LC-MSMS (C-MSC: n = 4, MS-MSC: n = 4; *p = 0.048) 
and reduced concentration was confirmed by ELISA 
(C-MSC: n = 6, MS-MSC: n = 15; *p = 0.042; Figure 1). 
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Following analysis of the quantitative ELISA data 
using the regression model to account for effects of 
age, a statistically significant independent effect of pro-
gressive MS was seen (#p = 0.041, CI = –4.614 to 
–0.097) and there was a negative association with dura-
tion of progressive phase of MS (Figure 1; Pearson’s r 
–0.568, CI = –0.837 to –0.079, *p = 0.027).

FH activity in MS-MSC is preserved when 
adjusted for age

Under basal cell culture conditions, total fumarate 
hydratase (FH) activity was reduced in MS-MSC 
(n = 9) compared with C-MSC (n = 9; *p = 0.026; 

Figure 2). However, a statistically significant effect 
was not observed when confounding effects of age 
were taken into account; there was a strong trend 
towards an increase in FH activity with age (p = 0.059) 
although the trend was less marked in MS-MSC 
(Figure 2(b)). There was no association between FH 
activity in MS-MSC with duration of disease 
progression.

A specific assay for mFH was not available, so that 
the FH activity assay was used to determine FH activ-
ity in mitochondrial cell preparations isolated from 
C-MSC and MS-MSC. To confirm successful frac-
tionation of the cell preparations, immunoblotting for 
COX5 was undertaken with equal loading (20 µg) of 

Figure 1.  MS-MSC secrete reduced mFH and secretion is negatively associated with duration of progression in MS. 
(a) Secretion of mFH in C-MSC and MS-MSC as determined by LC-MSMS. (b) Quantitative determination of mFH 
secretion in MSCs as measured by ELISA. (c) Negative association of mFH secretion with duration of progressive phase 
of MS.
mFH: mitochondrial fumarate hydratase; C-MSC: control mesenchymal stromal cells; MS-MSC: multiple sclerosis mesenchymal 
stromal cells.
*p < 0.05, #p < 0.05 multivariant analysis.

Figure 2.  MS-MSC have reduced endogenous FH activity, but effect is confounded by differences in age between 
cohorts. (a) MS-MSC FH activity was reduced in MS-MSC compared with C-MSC although the observed effect does not 
persist following adjustment for age. (b) There was a strong trend towards an increase in FH activity with increasing age, 
although this effect was not seen in MS-MSC.
FH: fumarate hydratase; C-MSC: control mesenchymal stromal cells; MS-MSC: multiple sclerosis mesenchymal stromal cells.
*p < 0.05.
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mitochondrial protein, the cytosolic fraction (negative 
control) and unfractionated MSC protein. As 
expected, COX5 expression was greater in the mito-
chondrial fraction than in the unfractionated MSC 
lysate and was not detected in the cytosolic fraction 
(Figure 3(a)). There was no significant difference in 
FH activity in mitochondria isolated from MS-MSC 
(n = 6) compared to those from C-MSC (n = 9; p = 0.73; 
Figure 3(b)).

Reduced expression of FH in MS-MSC
Comparison of total FH expression by C-MSC and 
MS-MSC was examined by immunoblotting. Western 
blot analysis of MSC isolated from patients with MS 
(n = 6) and control subjects (n = 12) demonstrated 
reduced expression of FH protein by MS-MSC 
(**p = 0.004). This effect remained following adjust-
ment with multiple regression for age (##p = 0.002, 
CI = –0.4824343 to –0.1456443; Figure 4(a) and (b)). 
There was a negative association between FH expres-
sion and increasing duration of progression of MS 
(Pearson’s r = –0.897, p = 0.02, CI = –0.9888 to 
–0.3138; Figure 4(c)), but this effect did not persist 
following adjustment for age. In the combined cohorts, 
there was no significant association between FH pro-
tein expression and age although a negative effect of 
increasing age was seen in MS-MSC (Pearson’s 
r = –0.872, p = 0.024, CI = –0.9859 to –0.2057). A trend 
towards a differential effect of age on FH was seen 
depending on the presence of progressive MS 

(p = 0.069) with a decrease in FH expression with age 
being seen only in MS-MSC (Figure 4(d)).

Addition of FH to MS-MSCcm prevents neuronal 
loss under conditions of trophic factor withdrawal 
and nitrosative stress
We have previously demonstrated reduced neuronal 
survival in the presence of MS-MSCcm following 
trophic factor withdrawal and under conditions of 
nitrosative stress.9 Given the observed reduction in 
FH concentration in MS-MSCcm, we examined 
whether neuronal loss could be ameliorated by sup-
plementation of MS-MSCcm with FH. Optimum con-
centration of exogenous FH was determined by a dose 
response curve which indicated that maximum neuro-
protection was observed at concentrations of FH 
between 500 and 700 pg/mL, and replicates were per-
formed with 500 pg/mL FH.

Following supplementation of MS-MSCcm with FH, 
neuronal loss was not observed under conditions of 
trophic factor withdrawal (Figure 5(a)) or nitrosative 
stress induced by addition of DETANONOate (Figure 
5(b)).

Nrf-2 expression is negatively associated with 
duration of progression in MS
High levels of intracellular fumarate have been 
associated with a range of downstream effects with 

Figure 3.  mFH activity is preserved in MS-MSC. (a) Immunoblot for COX5 confirms the specificity of MSC 
mitochondrial fractionation. (b) No difference in mFH activity was seen in mitochondria isolated from C-MSC and MS-
MSC.
MSC: mesenchymal stromal cells; COX5: cytochrome c oxidase subunit 5; mFH: mitochondrial fumarate hydratase; C-MSC-Mito: 
mitochondria isolated from control mesenchymal stromal cells; MS-MSC-Mito: mitochondria isolated from multiple sclerosis 
mesenchymal stromal cells.
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potential implication for intracellular metabolic sig-
nalling. To begin to explore these, we examined 
expression of HIF-1α and Nrf-2; upregulation of 
both has been associated with loss of FH func-
tion22,23 and each has been identified as being of 
potential importance in the pathophysiology of 
MS.24,25

We have previously demonstrated that, although there 
is no difference in Nrf-2 expression between C-MSC 
and MS-MSC, MS-MSC have reduced expression of 
Nrf-2 protein under standard culture conditions and in 
response to nitrosative stress.11 Here, we demon-
strated a negative association between Nrf-2 protein 
expression and duration of disease progression in MS 
(n = 6, Pearson’s r = –0.9819, p = 0.01, CI = –0.991 to 
–0.42; Figure 6). An independent effect of age was 
not observed.

Figure 4.  Reduced expression of FH protein by MS-MSC. (a) Reduced expression of FH protein was seen in MS-MSC 
and this effect persisted after adjustment for age difference between the cohorts. (b) Representative immunoblotting 
bands. (c) A reduction in relative FH expression was seen with increasing duration of disease progression in MS, but 
this effect was not statistically significant following adjustment for age (Pearson’s r = –0.897, p = 0.02, CI = –0.9888 to 
–0.3138; p > 0.05 following adjustment for age). (d) A differential effect of age on FH protein expression with age was 
seen between the cohorts; there was a significant negative association in MS-MSC and a strong trend towards a positive 
association in C-MSC.
FH: fumarate hydratase; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; C-MSC: control mesenchymal stromal cells; MS-MSC: 
multiple sclerosis mesenchymal stromal cells.
**p < 0.01, ##p < 0.01 multivariant analysis.

Reduced HIF-1α expression in MS-MSC
A strong trend towards reduced expression of HIF-1α 
protein in MS-MSC was noted on immunoblotting 
(C-MSC: n = 3, MS-MSC: n = 6; p = 0.056), reaching 
statistical significance when the effect of age was 
taken into account (##p = 0.001, CI = –0.4105565 to 
–0.1046486; Figure 7(a)). An independent effect of 
duration of progression was not observed.

Discussion
To investigate the reduced neuroprotective potential of 
MS-MSC in vitro, we examined the MS-MSC 
secretome using LC-MSMS and noted reduced mFH 
secretion by MS-MSC. This was of particular interest 
given that dimethyl fumarate (DMF), a fumaric acid 
ester, is a licenced disease modifying therapy for 
relapsing–remitting MS and a putative neuroprotective 
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effect has been reported.26 We confirmed reduced 
secretion of mFH by MS-MSC by ELISA, and there 
was a negative association with duration of progressive 
disease. Although reduced FH activity was observed in 
MS-MSC, this effect did not reach statistical signifi-
cance after adjustment for differences in age between 
the cohorts and furthermore, no difference was seen 
when FH activity was assessed in mitochondrial 

Figure 5.  FH supplementation of MS-MSCcm restores neuroprotective potential of MS-MSCcm. (a) Under conditions 
of trophic factor withdrawal, reduced neuronal survival is observed in the presence of MS-MSCcm (n = 8) compared 
to minimal media (Kruskal–Wallis with Dunn’s multiple comparison test). However, with administration of exogenous 
FH to MS-MSCcm, neuronal loss is not observed. (b) Nitrosative stress was induced by application of DETANONOate 
(NO) and a protective effect of MS-MSCcm (n = 8) was seen only in the presence of exogenous FH (Kruskal–Wallis with 
Dunn’s multiple comparison test).
FH: fumarate hydratase; C-MSCcm: conditioned medium from control mesenchymal stromal cells; MS-MSCcm: conditioned medium 
from multiple sclerosis mesenchymal stromal cells; MIN: minimal medium; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide; NO: nitric oxide; NS: not significant.
**p < 0.01.

Figure 6.  Nrf-2 protein expression. Reduced expression 
of Nrf-2 protein expression in association with increasing 
duration of disease progression in MS (Pearson’s r = –
0.9819, p = 0.01, CI = –0.991 to –0.42).
Nrf-2: nuclear-related (erythroid-derived 2) factor 2.

Figure 7.  Reduced MS-MSC expression of HIF-1α. (a) 
HIF-1α protein expression is reduced in MS-MSC when 
the difference in age between the cohorts is accounted for. 
(b) Representative immunoblot.
GAPDH: glyceraldehyde 3-phosphate dehydrogenase; HIF-1α: 
anti-hypoxia inducible factor1α; C-MSC: control mesenchymal 
stromal cells; MS-MSC: multiple sclerosis mesenchymal stromal 
cells.
##p < 0.01 multivariant analyses.
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preparations from MSC isolated from control subjects 
and people with progressive MS. However, reduced 
expression of FH was seen in MS-MSC and a negative 
correlation with duration of MS progression was 
observed. Exogenous application of FH was neuropro-
tective in vitro; neuronal survival with exposure to 
MS-MSCcm under conditions of trophic factor with-
drawal and exposure to nitrosative stress increased. 
Although expression of both Nrf-2 and HIF-1α, down-
stream targets of FH, are both reduced in MS-MSC, 
only Nrf-2 expression negatively correlated with dura-
tion of progressive MS.

Fumarase deficiency (also known as fumaric aci-
duria) is a rare, life-limiting, autosomal recessive dis-
order associated with encephalopathy, hypotonia and 
seizures. Heterozygous germline mutations of FH are 
associated with hereditary leiomyomatosis and renal 
cell cancer (HLRCC). In addition to its role as a 
tumour suppressor, reduced expression of FH has 
been implicated in hypertension,27 type 2 diabetes28 
and diabetic kidney disease.29 In mice, FH has been 
identified as a key regulator of metabolism in haema-
topoietic stem cells and deficiency is associated with 
aberrant lymphoid differentiation.30

In the Krebs cycle, fumarate is catalysed to malate by 
FH. Intracellular accumulation of fumarate in FH defi-
ciency has a multitude of downstream metabolic con-
sequences and the effects are known to vary according 
to cell type, but include increased oxidative stress and 
increased cellular senescence,31 mitochondrial dys-
function and activation of both the pro-oncogenic HIF 
and anti-oxidant Nrf-2 pathways.32 The latter are 
known to be of relevance to pathophysiology in 
MS33,34 and Nrf-2 has been proposed to underlie puta-
tive neuroprotective effects associated with DMF32,35 
which is known to be of clinical benefit in relapsing–
remitting MS.36 In our studies however, reduced mFH 
expression was associated with reduced Nrf-2 expres-
sion which may reflect a cell-specific or disease effect.

In many cell types, reduced expression of Nrf-2 is 
associated with increased HIF-1α and causes a shift 
to glycolysis. Although blocking aerobic glycolysis 
might be predicted to be anti-inflammatory,37 in MSC 
HIF-1α expression has been reported to promote 
MSC survival as well as maintenance of differentia-
tion potential and MSC-mediated immunosuppres-
sion.35 Our finding of reduced HIF-1α expression in 
MS-MSC is therefore notable.

The current study suggests that FH deficiency in 
MS-MSC contributes to a dysfunctional bone marrow 
microenvironment in MS with potential significance 

for metabolic status and immunoregulation that war-
rants additional investigation to determine whether 
this is a disease-specific effect with potential for ther-
apeutic intervention.
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