Skip to main content
. 2022 Apr 27;1(3):333–343. doi: 10.1039/d2dd00008c

The performance of models in terms of mean absolute error (MAE) for the prediction of energies (kcal mol−1) and forces (kcal mol−1 Å−1) of molecules at CCSD or CCSD(T) accuracy. We randomly select 50 snapshots of the training data as the validation set and average the performance of NewtonNet over four random splits to find standard deviations. Best results in the standard deviation range are marked in bold.

sGDML NequIP (l = 1) NewtonNet
Aspirin Energy 0.158 0.100 ± 0.007
Forces 0.761 0.339 0.356 ± 0.019
Benzene Energy 0.003 0.004 ± 0.001
Forces 0.039 0.018 0.011 ± 0.001
Ethanol Energy 0.050 0.049 ± 0.007
Forces 0.350 0.217 0.282 ± 0.032
Malonaldehyde Energy 0.248 0.045 ± 0.004
Forces 0.369 0.369 0.285 ± 0.038
Toluene Energy 0.030 0.014 ± 0.001
Forces 0.210 0.101 0.080 ± 0.005