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Abstract
The increasing availability and complexity of sleep and circadian data are equally exciting and challenging. The field is 
in constant technological development, generating better high-resolution physiological and molecular data than ever 
before. Yet, the promise of large-scale studies leveraging millions of patients is limited by suboptimal approaches for data 
sharing and interoperability. As a result, integration of valuable clinical and basic resources is problematic, preventing 
knowledge discovery and rapid translation of findings into clinical care. To understand the current data landscape in the 
sleep and circadian domains, the Sleep Research Society (SRS) and the Sleep Research Network (now a task force of the SRS) 
organized a workshop on informatics and data harmonization, presented at the World Sleep Congress 2019, in Vancouver, 
Canada. Experts in translational informatics gathered with sleep research experts to discuss opportunities and challenges 
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in defining strategies for data harmonization. The goal of this workshop was to fuel discussion and foster innovative 
approaches for data integration and development of informatics infrastructure supporting multi-site collaboration. Key 
recommendations included collecting and storing findable, accessible, interoperable, and reusable data; identifying existing 
international cohorts and resources supporting research in sleep and circadian biology; and defining the most relevant 
sleep data elements and associated metadata that could be supported by early integration initiatives. This report introduces 
foundational concepts with the goal of facilitating engagement between the sleep/circadian and informatics communities 
and is a call to action for the implementation and adoption of data harmonization strategies in this domain.

Key words:  sleep; circadian rhythm; informatics; harmonization; ontology

Introduction

Sleep and circadian factors influence health outcomes across 
the lifespan [1–8]. Obstructive sleep apnea (OSA), insomnia, 
and circadian rhythm disruptions are very common condi-
tions believed to arise from complex genetic and environ-
mental interactions [9–11], resulting in substantial biological 
and clinical heterogeneity. Therefore, it is important to identify 
subpopulations at highest risk if untreated, as well as to tailor 
treatments according to risk stratification. Fortunately, com-
puter algorithms capable of self-learning and self-refinement 
(machine learning) are becoming widely available for this task. 
However, they require learning from “big data”—tens of thou-
sands to millions of observations—to effectively characterize 
these heterogeneous patterns and impact clinical practice.

Such tasks present an urgent need for access to higher 
volume and higher quality data. These data are increasingly 
available due to the widespread adoption of the electronic 
health records (EHR) and the development of large research re-
positories designed for promoting data sharing from completed 
studies. Examples include field agnostic repositories such as the 
database of Genotypes and Phenotypes (dbGAP) [12], and field 
specific resources such as the National Sleep Research Resource 
(NSRR) [13,14], which focus on curating already collected re-
search data. Other initiatives are focused on the aggregation 
of data from a large number of individuals such as the Million 
Veteran Program [15] and the National Institutes of Health All of 
Us Research Program [16]. Despite the increasing availability of 
such large datasets, substantial barriers still exist, particularly 
for streamlining access and use of additional data sources, such 
as EHRs or data curated from research studies not currently 
available in research repositories. This is particularly relevant 
in the sleep medicine field, as highlighted in a recent system-
atic review [17]. Barriers to integrating heterogeneous sources of 
clinical data for research include: (1) storage in data silos with 
lack of infrastructure for data sharing within and across insti-
tutions (e.g. lack of data standards, data models and limited 
governance); (2) lack of information about the methods and con-
ditions surrounding collected data (e.g. absence of standardized 
metadata and data processing workflows); (3) lack of standard-
ized terminologies and structured vocabularies (i.e. ontologies) 
discouraging pooling data from different studies; (4) time and 
expenses involved in data curation and harmonization; and lack 
of attribution or resources for engaging in such activities.

These issues not only impact how previously collected data are 
handled but also determine how easily data acquired in the future 
could be shared. The latter is especially important because most 
current data infrastructure is designed to satisfy the goals of the 
original research study for which it was collected. Given the time 
and expense associated with the collection of high-quality data, 
which is often obtained using public funds, this approach is no 

longer sustainable. In fact, the National Institute of Health now re-
commends routine language in consent forms for research studies, 
as well as new policies about submission of data management and 
sharing plans [18]. Researchers should be prepared to comply with 
these policies when they are in effect. Ultimately, due to the diver-
sity of data types routinely used in sleep and circadian biology, such 
as high-resolution physiological signals, accelerometer-derived 
activity counts, wearable technology, multi-omics (e.g. genomics, 
metabolomics) and qualitative data about symptoms and quality 
of life, the interdisciplinary nature of the field serves as a prototype 
for other disciplines and could provide an important role model for 
multidimensional data integration in all areas of medicine.

As part of international efforts to address important data 
harmonization bottlenecks in our field, a one-day sleep and cir-
cadian data harmonization workshop organized by the Sleep 
Research Society and the Sleep Research Network Task Force 
was held on September 22, 2019 in conjunction with the World 
Sleep Meeting in Vancouver, BC. This white paper summarizes 
key concepts discussed and identifies actionable next steps for 
the sleep and circadian community.

Key Definitions and Framework for Optimal 
Data Sharing Data
Best practices for data sharing, barriers to implementing these 
practices, and potential approaches were outlined by our keynote 
speaker Dr Melissa Haendel. These included key definitions, infra-
structure, and best practices for using findable, accessible, interoper-
able, and reusable (FAIR) data standards [19] and licensing issues. 
Dr Haendel outlined existing challenges in the field, including the 
best way to capture complex, clinically useful representations so 
they are understandable by both humans and computers. This 
provided the foundation for the work of the four breakout panel 
groups in questionnaires, actigraphy, polysomnography, and in-
formatics infrastructure models that followed thereafter.

Key Definitions

Data standards

Developing consensus regarding standards is fundamental to data 
sharing. Data standards can be technical (e.g. how data should 
be represented and exchanged) and conceptual (e.g. how know-
ledge is represented from data). Standards might comprise sets 
of uniform rules for collecting and exchanging information which 
should include a descriptive name, abbreviation, common format, 
and ideally should be usable by both humans and computers [20]. 
Without strong technical data standards, information exchange be-
comes difficult or impossible, limiting data reusability. For example, 
polysomnography data collected using inappropriate sampling 



Mazzotti et al. | 3

rates and filters will not be amenable to many types of signal pro-
cessing algorithms useful for characterizing features such as air-
flow limitation, heart rate variability, and sleep microarchitecture. 
Similarly, without consensus on methodological standards, inte-
gration of data from different studies might be limited or introduce 
bias. Importantly, data standards are strongly influenced by com-
mercial entities and technology developers.

Metadata

Often described as “data about data,” metadata can be considered 
a type of data standard specifying the minimum amount and 
type of information that needs to be reported to make a piece of 
data interoperable and reusable. For example, a study reporting 
an apnea-hypopnea index (AHI) that failed to specify the per-
centage of oxygen desaturation required for hypopneas and the 
version of sleep scoring rules used in the index calculation could 
not be combined with AHI data from other studies, resulting in 
interpretation problems when reporting association with clinical 
outcomes. Careful thought should be given to the long-term dur-
ability of metadata as we increasingly need to support not just 
immediate data sharing but the potential for reuse years in the 
future. Therefore, both data standards and metadata require-
ments should be reviewed and updated regularly to ensure that 
advances in technology are accurately reflected in the standards.

Clinical terminology

This refers to the words (terms) we use in daily language to de-
scribe complex concepts in medicine. Adhering to a controlled 
and standardized terminology is relatively easy and human 
friendly. However, it may be insufficiently precise for use in 
machine-readable calculations. Establishing consensus on rules 
for building terms that are meaningful and self-contained is a 
challenge, particularly in sleep medicine where data represen-
tations have more permutations and variability than classic 
epidemiological or clinical data. For example, the term “apnea-
hypopnea index” is human-readable and interpretable, but its ac-
curate use depends on specific criteria such as how hypopneas 
were scored (3% desaturation and arousal, 4% desaturation, or 
any other combination of levels of desaturation and arousals). 
In order to improve the adoption of terms and retain their con-
sistent meaning across studies, sleep researchers must develop 
scalable and extendable rules and harmonized terms. Such rules 
and terms should incorporate specific criteria to improve their ac-
curacy. Approaches that might facilitate long-term maintenance 
of standardized clinical terminologies also include version con-
trol, where updates are tracked, and the history of changes can be 
accurately traced, when necessary. This helps avoid loss of infor-
mation as the terminology evolves. An example of a consensus-
based approach designed to develop international clinical data 
standards for common cardiovascular conditions has been re-
cently presented by the European Unified Registries for Heart 
Care Evaluation and Randomized Trials [21]. This framework 
could be used as a model to support the development of sustain-
able clinical terminologies in the sleep and circadian domains.

Ontology

Biomedical ontologies are controlled vocabularies that de-
scribe the meaning of biomedical data (i.e. semantics) in human 

and machine-readable ways. Ontologies are highly structured, 
often include mappings between different clinical terminology 
standards, and are resource intensive to develop and maintain. 
Ontologies describe relationships between terms in a logical 
way and are a fundamental component of biomedical know-
ledge representations. Preliminary efforts in the creation of a 
sleep domain ontology have been reported [22] which also has 
been used to inform the data structure within the NSRR [14].

Data harmonization

Data harmonization is the process of curating datasets for sec-
ondary use, including combining all or parts of a dataset with an-
other. Data harmonization increases the likelihood that research 
questions requiring a large number of subjects, often larger than 
is practical for an individual study, can be investigated. Steps 
involved in data harmonization include (1) identifying the vari-
ables for harmonization, (2) assessing the completeness of the 
study level metadata (e.g. data collection methods, study popu-
lation, etc.) and variable level metadata (e.g. label, descriptions, 
unit, version history), (3) developing the “target” harmonized 
terms and associated metadata for both concept/ontology and 
data format (e.g. unit, permissible values, etc.), (4) mapping 
the build variables needed to derive the “target” harmonized 
term in each dataset, (5) documenting all decisions made in 
establishing equivalency and deriving the harmonized vari-
ables. A priori adoption of technical and methodological stand-
ards, as well as the use of well-defined clinical terminologies 
facilitates data harmonization. Whenever possible, existing ter-
minologies and ontologies should be used to avoid the prolifer-
ation of duplicative and overlapping efforts. The process of how 
the data is being harmonized should be documented and pub-
lished, facilitating adoption by other users in their own datasets. 
One example is provided by the National Heart, Lung, and Blood 
Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) 
Program, that has reported their system for harmonization of a 
limited set of phenotype data across multiple studies that are 
part of the program, and published the whole reproduceable 
harmonization pipeline on a GitHub repository (https://github.
com/UW-GAC/topmed-dcc-harmonized-phenotypes) [23].

Best Practices for Data Reusability 
and Sharing
To improve their value, data resources need to have a unique 
identifier which is stable over time (Findable); be understand-
able by both humans and computers using accepted conven-
tions (Accessible); use predefined terms, be stored or convertible 
into an exchangeable file format (Interoperable); and contain 
enough information that an investigator can sufficiently trace 
the history of the data (provenance), be assured of the accuracy 
of the data, and be confident that they have the permission to 
use the data (Reusable). These four components make up FAIR 
data principles, the accepted gold standard for data sharing [19]. 
More recently, FAIR has been extended to highlight the import-
ance of having sufficient provenance and a way to correctly cite 
or attribute the source of the data and any tools used to improve 
the availability of the data (Traceability); address the extent to 
which data is available for reuse and redistribution (Licensure); 
and identify how well data is interrelated, often seen as a sur-
rogate for how easy data sets can be combined (Connectedness) 

https://github.com/UW-GAC/topmed-dcc-harmonized-phenotypes
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[24]. A  comprehensive introduction to generating and reusing 
persistent biomedical data identifiers has been previously re-
ported [25].

One successful example of the application of FAIR in the field 
of sleep medicine is the NSRR (https://sleepdata.org; [13,14]), a 
central data repository focused on providing facilitated access to 
research studies in the sleep domain. NSRR provides researchers 
with access to the data by completing a simple data use agree-
ment, as well as basic tools for understanding the data collected 
in each study. Data is organized using standardized terms along 
with information about how the data was collected by detailed 
protocols and data dictionaries (metadata). Additional tools 
designed to facilitate comparison of similar data elements be-
tween studies supporting cohort generation (cross-dataset 
mapping) are also provided (https://x-search.net/; [26]), as well 
as a matrix indicating data availability across cohorts (https://
matrix.sleepdata.org/). The success of the NSRR has resulted in 
over 270 publications to date (for list of publications, see (https://
sleepdata.org/pages/publications).

Another resource available from NHLBI is the BioData 
Catalyst (BDC) cloud environment (https://biodatacatalyst.nhlbi.
nih.gov/) [27]. This platform was designed to facilitate adoption 
and application of bioinformatics pipelines to the analysis of 
data funded by the NHLBI. It leverages a flexible cloud-based in-
frastructure that allows approved users to access datasets and 
deploy computationally intensive workflows. Originally oriented 
to facilitate data reuse in the genomics domain, the NHLBI 
BioData Catalyst scope is expanding to other areas of interest 
and data types, including images and physiological data. The 
implementation of standardized workflows for the analysis of 
high-resolution physiological and activity-related data in sleep 
and circadian biology in platforms such as BioData Catalyst 
will democratize data reuse and improve return on research in-
vestment. Resources such as the NSRR and the NHLBI BioData 
Catalyst make it easier for current and future investigators to 
locate, access, combine, and reuse data from previous studies 
and therefore support data sharing best practices.

Common Sleep and Circadian Data 
Domains: Benefits, Barriers, and Next Steps
During the workshop, breakout groups were set up, focused on 
the three most common data domains in the field (question-
naires, actigraphy and polysomnography) with a fourth group 
focusing on infrastructure to support data harmonization and 
sharing. Discussions focused on benefits and barriers to data 
harmonization, common data sources and data types, as well 
as next steps to strengthen data sharing were discussed. The 
following section summarizes these discussions.

Questionnaires
Questionnaires are important components of sleep assess-
ments. Discussion in this section covered self- and observer-
reported data. The primary benefits of questionnaires include 
ease of use, relatively low cost to obtain information, availability 
of validated scales, and ability to identify issues important to 
patients; collecting patient-centered outcomes can be used to 
formulate patient-centered policy changes to interventions 
and policies. Both unstructured (e.g. single free text question, 

patient-reported information recorded in clinical notes) and 
structured questionnaires (e.g. Epworth Sleepiness Scale, 
Insomnia Severity Index, Pittsburgh Sleep Quality Index, Munich 
Chronotype Questionnaire) are amenable to the development of 
terminologies and ontologies, and can be widely incorporated 
into studies focused on sleep and circadian rhythms, aging and 
development, and a variety of health conditions.

The working group also identified barriers to har-
monizing questionnaire information. There are multiple 
context-dependent ways to ask about an individual’s “sleep 
quality” or “sleep duration.” For example, “good sleep quality” 
may be perceived differently for young, working adults com-
pared to older, retired adults. More specifically, the lack of con-
text about whether the measure applies to either work or free 
days (or both) is limited. In addition, even when these questions 
are standardized, they are strongly influenced by social, ethnic, 
racial, and national differences. Current normative data, when 
available, often fail to adequately capture the influence of these 
factors. Furthermore, use of standardized and validated meas-
ures may be limited by access, licensing, fees, and copyright. 
Lastly, even when high quality data are available, substantial 
barriers to sharing still exist, and include some technological 
barriers outlined in this report, as well as lack of incentives 
for doing the often-time-consuming work associated with 
data sharing, even when infrastructure and desire to do so are 
present.

As part of the discussion, common data sources and data 
types were identified and are listed in Table 1. The working 
group focused on commonly used and available information 
sources, as well as the most typical data types collected from 
these sources, rather than a comprehensive list of all sleep and 
circadian self-reported instruments. Notably, the comparability 
of findings across studies has been complicated by widespread 
variability in the phenotypic assessment of sleep variables. For 
instance, assessments range from single items to comprehen-
sive diagnostic interviews such as the Diagnostic Interview for 
Sleep Patterns and Disorders, a computerized interview for both 
sleep patterns and screening for a wide range of sleep disorders 
in the NIH Toolkit, as well as the more recent Structured Clinical 
Interview for DSM-5 Sleep Disorders Module [28].

Actigraphy
Actigraphy is an established and non-invasive method to record 
objective rest activity patterns over several days. Several al-
gorithms have been established to detect sleep and wakeful-
ness using actigraphy data, which has then been compared to 
polysomnography and self-report measurements under dif-
ferent conditions and patient populations. Actigraphy measures 
changes in acceleration, which are then converted into activity 
counts used to distinguish rest (presumed sleep) from active 
(presumed wake) states. The low subject burden and ability to 
use over multiple nights have contributed to its widespread use 
for estimating sleep duration, timing, fragmentation, and sev-
eral circadian traits of interest.

The major factors driving interest in harmonizing actigraphy 
data in sleep and circadian research is the increasing availability 
of easily sharable open-source devices and software, as well as 
the popularity of consumer-oriented wearable devices used to 
estimate sleep and physical activity. The landscape of wear-
able technologies to characterize sleep biomarkers have been 

https://sleepdata.org
https://x-search.net/;
https://matrix.sleepdata.org/
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extensively discussed in a previous publication [29]. In distinc-
tion to conventional actigraphy, where proprietary algorithms 
are the standard, open-source frameworks generate activity 
data from raw accelerometer recordings and support the devel-
opment of device-agnostic tools. Consequently, data generation 
is more transparent, prompting the need for harmonization 
frameworks that allow data from different studies to be inte-
grated in a meaningful way.

Examples of current open-source frameworks include the use 
of the Axivity device in the UK Biobank that allowed the gener-
ation of detailed sleep and circadian information for ~100,000 par-
ticipants [30], and large cohort studies in Brazil [31] and Spain [32] 
using Actigraph devices, which were analyzed using the software 
package GGIR [33]. An exemplary effort for data harmonization 
of actigraphy data on mood disorders is being developed by the 
Motor Activity Research Consortium for Health, a collaborative 
research network from the NIMH and Johns Hopkins Bloomberg 
School of Public Health that has established common proced-
ures, analyses, and data sharing among multiple international 
research groups collecting actigraphy and ancillary data on mood 
disorders (ZIA MH002954-04 Motor Activity Research Consortium 
for Health—mMARCH). The consortium has identified a common 
set of measures of clinical state and context for the collection of 
actigraphy, dissemination of methods to address analytic chal-
lenges procedures for defining valid observations, handling 
of missing data, and analytic tools that address limitations of 
parametric methods using a family of functional data analytic 
methods [34]. Through the mMARCH network, Guo et  al have 
established an open-source post GGIR pipeline for processing 
actigraphy data (https://github.com/dora201888/postGGIR) that 
facilitates visualization of summary output from GGIR, stream-
lines the data processing pipeline, and extracts features from 
sleep, physical activity, and circadian rhythmicity, the three key 
domains of behavior measurable by wearable accelerometers.

One of the most important lessons from cross study inte-
gration efforts is the importance of collecting ancillary diary in-
formation, as recommended in guidelines from the American 
Academy of Sleep Medicine, to provide more valid estimates of 

actigraphy-derived sleep parameters [35]. Studies that combine 
actigraphy with real time direct measures of other clinical and 
contextual states have yielded important insights into the direc-
tional links between the core domains extracted from actigraphy 
including sleep, physical activity and circadian parameters [36]. 
These efforts will be increasingly relevant to allow integration 
of large data collections from epidemiological studies, requiring 
common processing derived from different devices and algo-
rithms. This integration becomes a challenge when proprietary 
algorithms are combined with open-source algorithms without 
an established and validated harmonization framework. For ex-
ample, technological improvement of accelerometer sensors, 
algorithms and methods over time might limit the integration 
of data between older and newer devices. In addition, consumer-
based wearable technologies are becoming one of the primary 
sources of sleep data in the general population, but access to 
raw accelerometer data and implementation of harmonized 
data processing workflows are not available, due to propri-
etary algorithms to generate activity counts. Nevertheless, ef-
forts to integrate wearable data into EHR are underway, and if 
performed under FAIR principles, they could revolutionize how 
sleep and rest-activity pattern traits are assessed as part of the 
regular clinical care.

Several common data sources and types were highlighted 
during the discussion about actigraphy as presented in Table 2.

Polysomnography
Polysomnography (PSG) is the gold-standard method for char-
acterizing electrophysiological aspects of sleep. This method re-
lies on high-resolution recording of several physiological signals 
such as electroencephalogram (EEG), electromyogram (EMG) 
and electrooculogram (EOG), combined with other sensors to 
measure respiration, oxygen saturation, thoracic and abdom-
inal effort, heart rate and limb movements. Rich physiological 
information during sleep is available from the PSG recording, 
provides the most comprehensive data relevant for the differen-
tial diagnosis of several sleep disorders. After digital recording 

Table 1. Common data sources and terms associated with questionnaire-based sleep and circadian assessments

 Types Examples 

Common data sources Validated questionnaires PSQI, ESS, MCTQ
Specific questions Do you snore?
Sleep diaries Diaries for sleep–wake pattern assessments or 

for informing actigraphy studies
Interviews Structured and unstructured
Observer reports Parent reports
Clinical notes Notes in electronic health records
Ecological momentary assessments Social network data
Passive data sensing Smart Speakers

Common data terms Sleep quality and restfulness Good sleep quality, feel rested
Daytime symptoms and consequences Excessively sleepy
Sleep timing and chronotype Morning or evening types
Self-reported quantitative data Sleep latency, sleep duration, time spent awake
Sleep disorder related symptoms Snoring, witnessed apneas, restless legs, sleep-

walking
Medication or substance use Sleep aids, melatonin
Contextual variables Sleep environment, social and physical factors, 

use of electronics, consumption of caffeine
Attitudes and beliefs about sleep Cultural factors (e.g. “siesta”)

PSQI, Pittsburgh Sleep Quality Index; ESS, Epworth sleepiness scale; MCTQ, Munich ChronoType Questionnaire.

https://github.com/dora201888/postGGIR
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became available, specific data representation, technical stand-
ards and recording protocols were established, placing PSG 
ahead of the curve in terms of data harmonization.

Several benefits regarding harmonization of 
polysomnographic data have been identified during panel 
breakout sessions. A  common data exchange format (i.e. a 
technical standard) for biological signals generated during 
polysomnography, the European Data Format (EDF), already 
exists. It consists of a standard representation of biological sig-
nals and a header containing technical specifications of the 
study (including sampling rates and filters), subject identifier, 
and the number and time duration of the data records that 
follow the header. This format tends to be vendor- and platform-
agnostic, which facilitates access to raw data and can support 
the development of new algorithms. Moreover, while the level 
of physiological information available in a sleep study is enor-
mous, analytical pipelines leveraging the full potential of these 
biological time series have been only partially explored, making 
it an area of future opportunities. Advances in signal processing 
methods and widespread availability of machine learning al-
gorithms are expected to contribute to the development of 
this field.

However, EDF files exported by different systems may vari-
ably display data, and data recorded with slightly different 
specifications (e.g. sampling rate, analogic band-pass filters) pre-
sent challenges in combining data as well as consistently using 
signal processing algorithms. Channel name conventions are 
not standard, and data processing is often complicated, particu-
larly for large cohort studies and clinical samples. This technical 
heterogeneity is further complicated by variability in annota-
tion formats and terminology to represent events (e.g. arousals, 
apneas, arrhythmias). Further difficulties relate to reaching 
community consensus on defining certain respiratory events 
such as hypopneas (e.g. 4% vs. 3% associated with arousal) and 
their relationship with medical reimbursement patterns, par-
ticularly in the United States. As a result, integration of data 
recorded under different settings becomes burdensome and 
requires extended processing time. Furthermore, standardized 
processing pipelines do not yet exist for generating well-known 
biological markers of sleep (e.g. delta power) or for automated 
sleep scoring. Finally, there are challenges related to storing and 
transferring high resolution physiological signal data, particu-
larly for datasets containing more than a few thousand subjects 
(representing terabytes of data). In sum, all these issues limit in-
novation in the field and substantially lengthening the time be-
tween novel algorithm validation and clinical implementation.

Fortunately, there is a growing interest in the community on 
filling the gap between physiological biomarker identification 

and clinical utilization. As noted for actigraphy data, the de-
velopment of open-source tools and availability of repositories 
hosting polysomnographic data such as the NSRR haves become 
more common. Two relevant use cases were recently demon-
strated by Purcell et al. [37] and Djonlagic et al. [38]. Robust data 
processing pipelines were applied to polysomnographic data 
from several different cohort studies hosted at NSRR to char-
acterize sleep spindles [37], which were then related to cogni-
tion in older adults [38]. Open-source tools, such as the luna 
software package (http://zzz.bwh.harvard.edu/luna/), have been 
fundamental to allow large scale processing and integration of 
signal data across heterogeneous studies. For example, luna in-
cludes a specific function that harmonizes EDF channel names 
and creates a canonical set of signals facilitating downstream 
signal processing. Future development of end-to-end analytical 
workflows and standardized terminologies to represent sleep-
related events are ongoing. Finally, continuing development of 
wearable sensors that capture the same source of signals as 
polysomnography but in more ecologically valid settings (e.g. 
at home) could present opportunities to allow longer recording 
periods, instead of only being limited to one single night.

Common terms reported in studies using polysomnography 
are reported in Table 3. A comprehensive review of conventional 
and novel metrics relevant to obstructive sleep apnea have been 
published elsewhere [10].

Informatics Infrastructure Models
Sleep and circadian biology have substantial data harmonization 
needs, in part due to the diversity of data types and the volume 
of data generated. Fortunately, numerous efforts are underway 
to meet this challenge (for review, see [17]). Many efforts to 
date have focused on harmonizing research data already col-
lected as described above (e.g. NSRR). However, this represents 
only one component of the entire data life ecosystem. An im-
portant yet underexplored source of sleep and circadian data is 
the EHR. Cohorts of patients with insomnia have been identified 
by extracting physician-reported insomnia from clinical notes 
available in the EHR [39]. In addition, validation of EHR-based 
algorithms to identify patients with obstructive sleep apnea 
have been conducted [40]. Efforts like these can support large 
outcome-based research or genetic association studies using 
large clinical cohorts with available EHR data. An example was 
reported in a recent phenome-wide association study (PheWAS), 
where candidate genetic variants previously associated with ob-
structive sleep apnea were assessed regarding their associations 
with other comorbidities identified using the EHR [41].

Table 2. Common data sources and terms associated with actigraphy-based sleep and circadian assessments

 Types Examples 

Common data sources Actigraphy and tri-axial accelerometer  
devices

Activity counts, timestamps, event logger, light exposure, skin  
temperature

Wearable devices Steps, estimates of sleep duration, pulse rate
Smartphones Activity counts, GPS coordinates

Common data terms Sleep-related Sleep duration, onset and offset times, diurnal sleep, stages
Circadian rhythm-related Sleep and activity timing, sleep midpoint, amplitude, intradaily  

variability, interdaily stability
Physical activity levels Sedentary, moderate and vigorous physical activity
Integrated measures Social jet-leg

http://zzz.bwh.harvard.edu/luna/
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While these initial efforts explored the capabilities of 
leveraging EHR data to support sleep research, they do not 
address the accuracy of sleep data in the EHR. It is unlikely that 
adequately structured fields representing data from validated 
questionnaires, actigraphy and polysomnography are avail-
able in EHR systems across the United States and the world. 
Some early adopters are incorporating electronic data capture 
as part of clinical workflows with the deployment of structured 
clinical documentation support toolkits in sleep medicine de-
partments [42]. Other relevant sources of data include wearable 
devices and continuous positive airway pressure compliance 
systems. Technical and legal challenges exist when attempting 
to incorporate such data into EHRs, likely due to lack of con-
sistent standardization. Finally, a more recent challenge iden-
tified in the discussion groups relates to integrating data from 
several independent health systems, including the adoption of 
common data models such as those governed by the National 
Patient-Centered Clinical Research Network (PCORnet) [43] 
and the Observational Health Data Sciences and Informatics 
(OHDSI) [44]. The lack of standard terminologies in sleep and 
circadian domains requires additional efforts to adequately 
represent EHR data for these domains. Early work attempting 
to map polysomnography results into controlled terminologies 
such as the Systematized Nomenclature of Medicine—Clinical 
Terms (SNOMED-CT), which would allow data to be presented 
in the OHDSI Observational Medical Outcomes Partnership data 
model, has been recently reported [45].

Looking forward, extending infrastructure to support future 
data collection within both the EHR (e.g. point of care) and within 
research studies should be a priority. Examples of work in these 
areas include ongoing efforts to extra system-wide data with the 
Veterans Health Administration EHR [46,47]. Ultimately, it will be 
critical for the sleep and circadian biology communities to work 
together with health informatics-oriented researchers to ensure 
that structured language that is both human and machine read-
able can be applied as part of a learning health system.

Currently Available Resources
One major goal of the workshop was to outline the current land-
scape of resources available to the sleep and circadian com-
munities, setting the ground for future research. We present a 
non-exhaustive list of current knowledge and data resources re-
lated to human sleep and circadian biology on Table 4 and Table 5,  
respectively.

Challenges, Opportunities, and Future 
Directions
The sleep and circadian biology community can take several 
key steps to facilitate harmonization and adoption of standard-
ized practices for both research and clinical data. We need to 
establish a process to facilitate the acquisition of standardized 
data and agree, as a community, on a core set of data for clin-
ical use, including technical and methodological specifications 
and detailed metadata. In addition, we should encourage re-
searchers to use well documented and open data dictionaries, 
ideally mapped to controlled clinical terminologies. Moreover, 
such clinical terminologies should be improved and main-
tained, so that high-quality sleep and circadian data can be 
well represented both in clinical and research contexts. These 
might improve representation of data in unstructured formats 
such as clinical notes or consult transcripts. Long intervals be-
tween the collection of the diagnostic/clinical and actigraphy/ 
polysomnography data have also limited the interpretation 
of large-scale registry data—for instance, interpreting associ-
ations between sleep and circadian measures with clinical phe-
nomena. For example, actigraphy data from the UK Biobank 
were collected several years after the main clinical assessment 
of the sample [48]. Clear definitions of the timing, missing data, 
and selection of subsamples for sleep or actigraphy assessments 
should also be provided. We encourage vendors of sleep tech-
nologies to establish transparent protocols for data represen-
tation, processing and sharing, including access to raw signal 
data to allow effective validation against other methods. We 
also encourage tool developers to provide open source “research 
use only” versions of their algorithms, which could then be as-
sessed and validated in larger datasets. The sleep research and 
clinical communities need to create frameworks to facilitate in-
corporation of new types of sleep data into clinical practice and 
EHR, such as continuous positive airway pressure adherence 
and wearables data. We encourage national and international 
societies to provide guidance and education to the community 
regarding data sharing and associated protocols, aligning with 
expectations from Federal agencies. We also encourage funding 
agencies to support technological development of standardized 
process to data sharing and harmonization, including incentives 
and objective evaluation of data sharing quality. By developing, 
validating, and adopting standards that are easy to imple-
ment (i.e. with reduced technical barriers), we expect that more 
high-quality shared data could be used, therefore expanding the 
scientific applicability beyond an individual study and making 

Table 3. Common data sources and terms associated with polysomnography sleep assessments

 Types Examples 

Common data sources Electroencephalogram In-lab/ home sleep studies
Electromyogram In-lab/ home sleep studies
Electrocardiogram/heart rate In-lab/ home sleep studies, wearables
Pulse oximetry/pulse rate In-lab/ home sleep studies, wearables
Abdominal and thoracic plethysmography In-lab/ home sleep studies
Respiratory signals In-lab/ home sleep studies

Common data terms Sleep macro-architecture Total sleep time, sleep stages, arousals
Sleep micro-architecture Power spectral analysis, Spindle characteristics
Respiratory parameters Sleep-disordered breathing, oxygen desaturations
Cardiac parameters Heart rate variability, cardiopulmonary coupling
Limb movements Periodic limb movements
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data more equitable and accessible across the board. A roadmap 
summarizing key next steps is outlined in Figure 1. Finally, a 
more specific set of suggested recommendations identified by 
the Sleep Research Society and Sleep Research Network is also 
outlined below.

 • Identify basic and machine-readable data elements, prede-
fined terms and standards, that can be used by researchers;

 • Systematic implementation of standardized devices that 
measure minimum set of essential sleep and circadian 
rhythm data in interchangeable electronic format in re-
search studies or in Electronic Health Records;

 • NIH and other stakeholders such as the Sleep Research 
Society (SRS), the Society for Biological Rhythms (SRBR) and 
other professional medical societies such as the American 
Academy of Sleep Medicine (AASM), and American Thoracic 

Table 4. Non-exhaustive list of knowledge integration resources with potential or direct application do sleep medicine and circadian biology

Name Access 

BioLINCC https://biolincc.nhlbi.nih.gov/home/
Biomedical Data – Translator https://ncats.nih.gov/translator
Center for Data 2 Health https://cd2h.org/
NIH CDE Catalogue https://www.nlm.nih.gov/cde/index.html
NIH Data Commons https://commonfund.nih.gov/commons
BioData Catalyst https://biodatacatalyst.nhlbi.nih.gov/
PhenX https://www.phenx.org/
PROMIS https://www.healthmeasures.net/explore-measurement-systems/promis/intro-to-promis
TOPMed https://www.nhlbi.nih.gov/science/trans-omics-precision-medicine-topmed-program
Sleep Disorder Knowledge Portal https://sleep.hugeamp.org/

Table 5. Non-exhaustive list of data resources and projects that could support comprehensive collection or integration of sleep related data

Name More Information 

National Sleep Research Resource https://sleepdata.org/
dbGaP https://www.ncbi.nlm.nih.gov/gap/
Physionet https://physionet.org/
National COVID Cohort Collaborative https://ncats.nih.gov/n3c
All of Us https://allofus.nih.gov/
Million Veteran Program https://www.research.va.gov/mvp/
Canadian Sleep & Circadian Network https://www.cscnweb.ca/
Sleep Apnea Global Interdisciplinary Consortium https://www.med.upenn.edu/sleepctr/sagic.html
HypnoLaus https://www.colaus-psycolaus.ch/professionals/hypnolaus/
RAINES https://rainestudy.org.au/
UK Biobank https://www.ukbiobank.ac.uk/
ESADA https://esrs.eu/research-networks/sleep-apnea-network-european-sleep-apnea-

database-esada/
NHANES https://www.cdc.gov/nchs/nhanes/index.htm

Figure 1. The sleep-circadian data ecosystem. Physician scientists, researchers, and health informaticists must join their knowledge skills to achieve our goals of 

facilitating harmonization and adoption of standardized practices for improvement of large-scale clinical research in sleep medicine and circadian biology. This is rep-

resented by the need to understand the current status of the field (landscape analysis) and develop tools, standards and terminologies to address key questions in the 

field by leveraging specific use cases. Finally, the sleep research community requires additional training on the importance of clinical research informatics methods, 

with the ultimate goal of adopting them to support large-scale clinical research.

https://biolincc.nhlbi.nih.gov/home/
https://ncats.nih.gov/translator
https://cd2h.org/
https://www.nlm.nih.gov/cde/index.html
https://commonfund.nih.gov/commons
https://biodatacatalyst.nhlbi.nih.gov/
https://www.phenx.org/
https://www.healthmeasures.net/explore-measurement-systems/promis/intro-to-promis
https://www.nhlbi.nih.gov/science/trans-omics-precision-medicine-topmed-program
https://sleep.hugeamp.org/
https://sleepdata.org/
https://www.ncbi.nlm.nih.gov/gap/
https://physionet.org/
https://ncats.nih.gov/n3c
https://allofus.nih.gov/
https://www.research.va.gov/mvp/
https://www.cscnweb.ca/
https://www.med.upenn.edu/sleepctr/sagic.html
https://www.colaus-psycolaus.ch/professionals/hypnolaus/
https://rainestudy.org.au/
https://www.ukbiobank.ac.uk/
https://esrs.eu/research-networks/sleep-apnea-network-european-sleep-apnea-database-esada/
https://esrs.eu/research-networks/sleep-apnea-network-european-sleep-apnea-database-esada/
https://www.cdc.gov/nchs/nhanes/index.htm
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Society (ATS), should work together to develop a set of stand-
ards for research and clinical data (terminology, data format, 
and quality metrics);

 • Recommend the development and use of standardized 
common data elements (CDEs) of high quality for inclusion 
in research and medical data repositories;

 • Improve metadata by including sufficient information about 
each collected CDE in a data library, including a level of detail 
that will enable the traceability and verifiability of the data. 
Templates can be developed for researchers to identify the 
most appropriate set of metadata standards for their data 
collection and sharing plan;

 • Enhance infrastructure for confident data governance and 
stewardship for use by investigators;

 • Collaborate with large public and private healthcare systems 
and industry to develop best practices within these systems 
for prospective data collection and incentivize data sharing;

 • Require time stamping of behavioral, environmental and bi-
ological data;

 • Leveraging existing large health systems and their infra-
structures and collaborations with industry to share their 
clinical trials data can help sustain discovery in sleep and 
circadian medicine and science.
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