
Rules of Physical Mathematics Govern Intrinsically Disordered 
Proteins

Kingshuk Ghosh1,2, Jonathan Huihui1, Michael Phillips1, Austin Haider2

1Department of Physics and Astronomy, University of Denver, Denver, Colorado, USA

2Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, USA

Abstract

In stark contrast to foldable proteins with a unique folded state, intrinsically disordered proteins 

and regions (IDPs) persist in perpetually disordered ensembles. Yet an IDP ensemble has 

conformational features—even when averaged—that are specific to its sequence. In fact, subtle 

changes in an IDP sequence can modulate its conformational features and its function. Recent 

advances in theoretical physics reveal a set of elegant mathematical expressions that describe the 

intricate relationships among IDP sequences, their ensemble conformations, and the regulation 

of their biological functions. These equations also describe the molecular properties of IDP 

sequences that predict similarities and dissimilarities in their functions and facilitate classification 

of sequences by function, an unmet challenge to traditional bioinformatics. These physical 

sequence-patterning metrics offer a promising new avenue for advancing synthetic biology at a 

time when multiple novel functional modes mediated by IDPs are emerging.
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1. INTRODUCTION

Intrinsically disordered proteins and regions (collectively termed IDPs in this review, except 

in Section 4.3), do not fold into unique folded structures. However, the absence of unique 

structures does not mean that IDP conformations are featureless (92) or that IDPs lack 

functions (29). In fact, they can have conformational signatures specific to their sequences, 

and these features may be responsible for their specific functions. The defining features 

can range from such broad and simple observables as radius and scaling exponent (109) 

to detailed interresidue distance profiles (19, 46, 63), structure factors (5, 63, 64, 77), and 

other measures of ensemble properties (17, 36, 53, 59). These specific features must be 

encoded in the sequence, but how do we unlock that code? The answer to the question 
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of how—at first—seems just as complicated as the sequence-structure puzzle of folded 

proteins that perplexed protein biology for decades. Yet we can turn the disorder of 

IDPs to our advantage. First, the high degree of disorder allows averaging over different 

degrees of freedom with few constraints, facilitating models that are analytically tractable. 

Second, electrostatics plays a prominent role in determining IDP conformations (19, 20, 

43, 44, 61, 62, 67, 93). Thanks to decades of advances in theoretical polymer physics (70), 

the electrostatics can now be incorporated into analytically tractable models. The same 

analytical framework also helps us gain insight into IDP functions. The formalism relating 

an IDP sequence to its conformational features—embedded in an analytical framework 

based on physicochemical models—is termed the physical mathematics (PM) of IDPs.

PM can provide fundamental insights into issues of IDP biophysics, from deciphering 

the rules of IDP regulation and formulating principles for sequence design to detecting 

evolutionary trends. First, principles derived from closed-form mathematical expressions 

can decouple the complex interplay between biological and chemical regulation (Figure 

1). Biological regulators (BRs), for the purposes of this review, include posttranslational 

modifications (PTMs), alternate splicing, and mutations that can change the composition 

and placement of amino acids in IDP sequences. The coupling of sequence changes (due to 

BRs) to environmental conditions [chemical regulators (CRs)] such as salinity, temperature, 

pH, and crowding can be complicated. However, mathematical formulas that describe 

sequences and their responses to CRs can reveal these complex relationships. Second, 

understanding the intertwined effects of BRs and CRs can help in designing novel sequences 

and tuning solution conditions to favor desired conformations. Third, PM provides metrics 

that can help classify functionally similar IDPs. Functionally similar IDPs can have low 

sequence homology (51), rendering functional classification challenging using traditional 

bioinformatic tools.

Mathematical relationships involving sequence, rather than composition alone, provide 

foundational insights that are not otherwise possible. For example, to fully appreciate 

the combination of BRs and CRs, we need to analyze numerous IDP sequences under 

diverse solution conditions. This causes a combinatorial explosion that is difficult to handle 

using computational tools. Likewise, understanding IDP functions often requires analyzing 

multiple long sequences (lengths greater than 500 amino acids; see 6) across diverse 

species, which is well beyond the capacities of current all-atom simulations. Coarse-grained 

simulations of IDPs (16, 21–25, 40, 71, 79, 89, 98) are being developed to address such 

challenges, particularly to model the emerging role of IDPs in forming biomolecular 

condensates via liquid–liquid phase separation. However, these simulations—although 

highly insightful and necessary to benchmark analytical theory—are not yet capable of 

describing functions of IDPs other than formation of condensates. Even coarse-grained 

simulations are not always feasible in the face of the combinatorial explosion involved in 

simulating IDP sequences under diverse solution conditions, nor can they simulate the large 

collections of long proteins that are typically needed to model evolutionary trends. Newly 

developed deep-learning tools (2, 49) built for predicting protein structures cannot predict 

ensembles and thus are not suitable for modeling IDPs. In fact, AlphaFold—not surprisingly

—tends to yield very low-confidence structures when applied to IDPs (80).
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Simple physics-based polymer models have revealed general principles in protein science 

(12–15, 34, 35, 50, 66, 81, 84, 88, 94, 95, 108). The analytical tractability of these models 

relies on two major simplifying assumptions. First, sequence complexity is reduced either 

by a homopolymer assumption (all amino acids are identical) or by adopting models with 

at most two different types of amino acids, for example, hydrophobic and polar. The second 

assumption—even in models with both hydrophobic and polar amino acids, or models 

with different flavors of monomers—often ignores the exact sequence positioning of the 

amino acids. Neglecting exact positioning is equivalent to averaging over multiple different 

sequences, assuming that the disorder is annealed (28, 38, 41, 83). Building physical models 

amenable to analytical treatments while respecting the exact placement of amino acids 

(sequence patterning) is challenging, despite its importance. The new era of PM of IDPs 

addresses this challenge (57) and is the focus of this review.

2. SEQUENCE-BASED METRICS CAN DESCRIBE THE CONFORMATIONS 

OF AN INTRINSICALLY DISORDERED PROTEIN AND REGION SEQUENCE

2.1. Brief Background on Homopolymer Theory and Applications to Intrinsically 
Disordered Proteins and Regions

We first define a few terms. The ensemble average radius of gyration, Rg, defined as 

Rg = rg2  (where ⟨..⟩ denotes the ensemble average and rg refers to the radius of gyration 

for a given conformation), is typically used to describe the overall size of a polymer. 

Similarly, another useful metric for size is ensemble average end-to-end distance, Ree, 

defined as Ree = ree2 , where ree is the stochastic value of the end-to-end distance for a 

given conformation. In polymer theory, for a homopolymer without any interactions (also 

termed a Gaussian chain), Rg and Ree are related: rg2 = ree2 /6 = Nbl/6, where N is the 

number of monomers, b is the bond length, and l is the Kuhn length. The Kuhn length is a 

measure of the correlation in the direction of connecting bonds between different monomers 

(or amino acids, in the case of IDPs). For a protein, typical values are b = 3.8 Å and l 
= 8 Å (43, 111). Kuhn length can also vary between different amino acids. However, a 

uniform value of Kuhn length is a reasonable approximation for typical protein sequences. 

The scaling of Rg is the hallmark of Gaussian chain behavior and is generalized as Rg ∝ Nν, 

where ν = 1/2 recovers the Gaussian chain reference (27).

Any polymer with a dimension such as Rg less than the corresponding dimension of the 

Gaussian chain is considered to be collapsed. In common parlance, ν ≈ 1/3 is also termed 

a globule. A polymer is considered to be expanded when the dimension is greater than that 

of the Gaussian chain. IDP sequences tend to be enriched in charged amino acids (compared 

with the sequences of foldable proteins). Consistent with this statistical observation, early 

works found that charge composition can provide rules of thumb for distinguishing the 

globule and expanded states (61) and can influence several measures of IDP sizes, including 

Rg, Ree, and ν (43, 62).
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2.2. Intrinsically Disordered Protein and Region Conformations Depend on Charge 
Patterning

Charge composition gives the number of charges, but it gives no information about 

the placement of the charges in the sequence. Consider the two sequences shown 

in Figure 2. They have the same composition, or number of positive and negative 

charges, but the charges are distributed in different sequence orders, called patternings or 

decorations. Srivastava & Muthukumar (97) demonstrated that polymers with the same 

charge composition but different charge patternings can differ significantly in their sizes. 

More recently, Das & Pappu (19) revisited the role of charge decoration by simulating 30 

sequences, each having 25 glutamic acids (with −1 charge each) and 25 lysines (with +1 

charge each) distributed in different orders. They found that sequences with well-mixed 

or alternating positive and negative charges (similar to the top sequence in Figure 2) 

tend to have greater dimensions compared with sequences where positive and negative 

charges are segregated in blocks (similar to the bottom sequence in Figure 2). They 

defined an empirical charge-segregation metric to quantify this intuitive expectation (19). 

Thirumalai and colleagues (5) have also performed coarse-grained simulations to highlight 

the observation that charge composition alone is not sufficient to describe the subtle features 

of IDP conformations. The effects of varying charge patterning while keeping the same 

composition have also been observed in IDP functions (6, 72, 90). Intriguingly, the fact that 

sequence patterning alters conformation of the denatured state (of foldable proteins) has also 

been shown to be critical for function (10).

2.2.1. The sequence charge decoration metric can describe the global 
dimensions of intrinsically disordered proteins and regions.—Recent advance 

in heteropolymer theory provide an analytical framework for determining the ensemble 

average end-to-end distance Ree of a heteropolymer as a function of its sequence of charged 

monomers (amino acids, glutamic acid, aspartic acid, lysine, and arginine for proteins). The 

theory builds on a coarse-grained energy function with four essential ingredients (I1, I2, I3, 

and I4): I1 is the connectivity of monomers in the polymer; I2 is the two-body short-range 

interaction, which can be attractive or repulsive; I3 is the three-body short-range repulsive 

interaction; and I4 is the long-range electrostatic interaction among charged monomers 

(Figure 3). The three-body repulsive interaction is needed to avoid polymer collapse when 

the two-body interaction and electrostatics are highly attractive. The detailed form of the 

Hamiltonian (H) can be found in References 31 and 46.

In this derivation, the effective ree2  is ree2 = Nblr, where lr is the renormalized Kuhn 

length, which is different from the bare Kuhn length l. The details of sequence specificity 

are effectively captured by lr. This technique, originally developed by Edwards & Singh 

(30), provides analytical tractability. It has been used in work on homopolymers, including 

polyelectrolytes (PEs) (32, 39, 68). The ratio of the two Kuhn lengths is defined as a 

dimensionless variable: x = lr/l. For the Gaussian chain reference state, x is equal to unity. x 
will deviate from unity due to the composition and patterning of amino acids. The ranges of 

x provide different regimes of IDP conformation, such as coil-like (x ≈ 1), globule (x ≪ 1), 

and expanded (x ≫ 1). An analytical expression for F(x), the free energy as a function of x, 
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can be written by explicitly incorporating the sequence patterning as described by Equations 

1 and 2:

βF(x) = 3
2(x − ln x) + 3

2π
3/2 Ω

x3/2 + ω3
3

2π
3 B

2x3 + lb
l

Q
x1/2

6
π , 1.

where Ω, Q, and B contain details of the sequence and are given by

Ω = 1
N ∑

m = 2

N
∑

n = 1

m − 1
ωm, n(m − n)−1/2,

Q = 1
N ∑

m = 2

N
∑

n = 1

m − 1
qmqn(m − n)1/2,

B = 1
N ∑

p = 3

N
∑

m = 2

p − 1
∑

n = 1

m − 1 (p − n)
[(p − m)(m − n)]3/2 ,

2.

where lb is the Bjerrum length, assumed to be lb = 7.2 Å (298/T), and T is the absolute 

temperature. The first term defining the free energy F is the entropy respecting chain 

connectivity (I1 in Figure 2). The terms for Ω, B, and Q represent the contributions of 

interactions I2, I3, and I4, respectively (Figure 2). For a two-body residue pair (m, n, 

representing residue numbers), the specific short-range (or excluded volume) interaction 

parameter is given by ωm, n, while ω3 is the three-body repulsive interaction parameter, 

which is assumed to be independent of amino acid type.

For a given sequence, Q is calculated from the sum in Equation 2 by assigning a negative 

charge (q = −1) to glutamic and aspartic acids and a positive charge (q = 1) to lysines 

and arginines. Histidines can also be assigned a charge of 0.5 if desired. Thus, Q explicitly 

accounts for sequence charge decoration (SCD). Two sequences with the same charge 

composition but different charge patterning will have different values of SCD. Reference 85 

provides a detailed derivation of the SCD metric. Sequences with highly segregated positive 

and negative charges tend to have lower SCD values, and thus smaller sizes, compared with 

sequences with well-dispersed positive and negative charges. For example, the alternating 

and blocky sequences in Figure 2 have SCD values of −0.45 and −2.02, respectively. SCD 

captures the overall size variation of the sequences reported by Das & Pappu (19) when 

compared with the dimensions (Rg) generated by all-atom Monte Carlo (55) (Figure 4a) and 

coarse-grained molecular dynamics simulations (65). Equations 1 and 2 provide a formalism 

to directly estimate the size of a chain if the two-body interaction parameters ωm, n 

and three-body repulsive parameter ω3 values are known. Given a sequence with a high 

proportion of charged residues, as in the Das & Pappu sequences, it is reasonable to replace 

the two-body short-range interaction with a constant term (i.e., ωm, n ≈ ω2). Figure 4b shows 

end-to-end distance as a function of mean-field ω2 for a fixed value of ω3 = 0.1 (for this 

typical choice of ω3, see Reference 31). The difference in charge patterning (captured by 

SCD) is manifest in the chain dimensions between two sequences having the same charge 

composition (25 glutamic acids and 25 lysines) but different patterning (Figure 2). The 

variation in ω2 can be attributed to changes in temperature or local solution condition inside 
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the cell that can happen due to weak nonspecific interactions (103). Figure 4 also shows that 

changing ω2 can cause a chain to undergo a sharp transition in conformation.

2.2.2. Heuristic derivation of the sequence charge decoration metric.
—The functional form of the SCD metric can be appreciated with a 

scaling argument. The variational calculation stipulates a quantity I, defined as 

I = ree2 (Hr − Ht) − ree2 (Hr − Ht) = 0(30, 85), where Hr is the Hamiltonian renormalized 

with the Gaussian form having effective bond length lr, and Ht is the total form. 

The electrostatic contribution of the total Hamiltonian, defined as Ht
el, can be 

written as Ht
el = ∑m, n qmqn/ Rm, n  (ignoring constants). We also note the decomposition 

ree2 = rn, m2 + rm, n2 + rn, 1
2 . With these two relationships, the relevant term in I from the 

electrostatics becomes

∑
m, n

qmqn rm, n2 1
rm, n

∝ ∑
m, n

qmqn rm, n ∝ ∑
m, n

qmqn(m − n)1/2, 3.

where the last equality uses Gaussian chain (random walk) statistics, [〈|rm, n2 |〉]1/2 = (m 

– n)1/2, neglecting all of the prefactors. For rigorous derivations, readers should consult 

Reference 85. SCD captures long-range correlations in the sequence, unlike the charge 

patterning metric κ (not to be confused with the inverse Debye length introduced below) 

introduced by Das & Pappu (19). For this reason, the two charge patterning metrics—

although broadly correlated (85)—can differ in their ability to capture trends such as Rg 

variance in sequences having the same charge composition but different patterning (55).

2.3. Noncharge Patterning Can Also Influence the Sizes of Intrinsically Disordered 
Proteins and Regions

Equations 1 and 2 also provide a framework for modeling the sequence specificity of 

noncharged amino acids by choosing interaction parameters ωm, n (between any residue 

pair m and n) without assuming the constant ω2 described above. Zheng, Mittal, and 

colleagues (110) recently adopted a normalized hydrophobicity score λi for each amino acid 

i to estimate ωm, n = λm + λn. The new metric, which they called sequence hydropathy 

decoration (SHD), has been combined with SCD to predict scaling exponents ν and Rg for 

multiple sequences and benchmarked against coarse-grained simulations. The correlations 

between theoretically predicted and simulated values of ν were optimized to modify Ω and 

define SHD as

SHD = 1
N ∑

m = 2

N
∑

n = 1

m − 1
ωm, n(m − n)β, 4.

with β = −1, in contrast to β = −1/2 originally derived in Equation 2 (85). Zheng, Mittal, 

and colleagues’ definition of SHD (with β = −1 instead of β = −1/2), along with their 

parameterization scheme of ωm, n = λm + λn, yielded a sequence-dependent equation to 

predict ν and Rg as
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ν = − 0.0423SHD + 0.0074SCD + 0.701; Rg = γ(γ + 1)
2(γ + 2ν)(γ + 2ν + 1)

1/2

(bl)1/2Nν,
5.

where γ ≈ 1.1615 (37), b = 3.8 Å, and l = 8 Å. Reference 110 provides more details 

and comparisons with simulation data. Other noncharge patterning metrics—such as local 

hydrophobic clustering (HpC) (10) and local asymmetry in aromatic residues (Ωaro) (64)—

have also been used to design sequences. Future studies are needed to test and improve the 

choice of the ωm, n parameter set by using the variational formalism given by Equations 

1 and 2. There are several advantages of using this general formalism: (a) First-principle 

patterning metrics describe local and long-range correlations in sequence, unlike other 

intuitive local metrics such as HpC (10), κ (19), and Ωaro (64); (b) chain dimensions and 

size can be directly predicted and compared (similar to Figure 2; see 85) against experiment 

and/or simulation beyond just seeking the size–metric correlation shown in Figure 4a; and 

(c) both electrostatic and nonelectrostatic interactions can be coupled in one framework, 

avoiding ad hoc fitting parameters to weight SHD and SCD.

2.4. Sequence Decoration Matrices Can Provide Detailed Conformational Features

Global metrics of chain dimensions such as Ree and Rg and/or the scaling exponent ν 
are typically used to describe protein sizes (36, 43, 77). Internal distance profiles, defined 

as (ri − rj)2 = ri, j2  between any two amino acids i and j can provide conformational 

features beyond Ree, Rg, and ν. For homopolymers, such profiles are mostly redundant 

because homopolymers display fractal-like behavior with an approximate scaling relation 

(ri − rj)2 ∝ |i − j|2ν. In contrast, heteropolymers such as IDPs display strong heterogeneity 

in their internal distance profiles (19, 63) and may exhibit more nuanced features.

Recent progress in PM provides a framework for computing these ensemble average 

distances—besides global dimensions—as functions of sequence. The internal distance 

profiles are calculated as (ri − rj)2 = |i − j |blr(i, j), where lr(i, j) is the residue pair (i, 

j)-specific renormalized Kuhn length, analogous to the calculation of 〈ree2 〉 given above. 

These distances can be written in terms of a nondimensionalized quantity, xi,j = lr(i, j)/l, with 

a corresponding free energy function, F(xi,j) (46):

βF(xi, j) = 3
2(xi, j − ln xi, j) + 3

2π
3/2SHDMi, j

xi, j
3/2 + 3

2π
3 ω3T i, j

2(i − j)xi, j
3

+ lb
l

6
π

SCDMi, j
xi, j

1/2 .
6.

Equation 6 is a generalization of Equation 1 with four terms that account for the physical 

contributions of I1, I2, I3, and I4 shown in Figure 3. The charge patterning is encoded by 

a specific metric SCDMi,j for a given residue pair i, j, for which the internal distance is 

to be computed. Consequently, the general formalism yields an SCD matrix (SCDM) with 

elements SCDMi,j given by
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SCDMi, j = 1
(i − j) ∑

m = j

i
∑

n = 1

j − 1
qmqn

(m − j)2

(m − n)3/2 + ∑
m = j + 1

i
∑

n = j

m − 1
qmqn(m − n)1/2

+ ∑
m = i + 1

N
∑

n = 1

j − 1
qmqn

(i − j)2

(m − n)3/2 + ∑
m = i + 1

N
∑

n = j

i
qmqn

(i − n)2

(m − n)3/2 .
7.

It is instructive to note that SCD, defined above, is just one element of the SCDM, and is 

only applicable to describing Ree. Notably, we have SCDMi = N,j = 1 = SCD (assuming N ≈ 
N − 1, which is reasonable for large N).

The noncharged patterning can be similarly generalized by creating an SHD matrix (SHDM) 

defined as

SHDMi, j = 1
(i − j) ∑

m = j

i
∑

n = 1

j − 1
ωm, n

(m − j)2

(m − n)5/2 + ∑
m = j + 1

i
∑

n = j

m − 1
ωm, n(m − n)−1/2

+ ∑
m = i + 1

N
∑

n = 1

j − 1
ωm, n

(i − j)2

(m − n)5/2 + ∑
m = i + 1

N
∑

n = j

i
ωm, n

(i − n)2

(m − n)5/2 .
8.

The derivation of a high-dimensional SCDM and SHDM also shows the power of variational 

calculation that is not limited to computing a scalar metric such as SCD; a single charge 

patterning metric (κ, defined in 19; not to be confused with the inverse Debye length); or 

SHD, local hydropathy cluster (HpC) (10), and Ωaro (64).

The detailed expression for the three-body repulsion denoted by Ti,j, omitted here 

for brevity, can be found in Reference 46. This formalism provides a framework for 

quantitatively estimating the effects of electrostatics for highly charged sequences by 

assuming ωm,n ≈ ω2. Within this approximation, the role of charge patterning on local 

dimensions is exclusively modeled by the SCDM. For a given value of ω2, ω3 and a pair 

of residues i, j, the free energy equation, Equation 6, is minimized to determine xi,j,min. 

The ensemble average distance (Ri,j) between these two residues i, j is calculated using 

Ri, j
2 = ri, j2 = |i − j |blxi, j, min.

Figure 5 shows distance maps under zero-salt conditions for two different IDP sequences 

with specific values of ω2 and ω3. The best estimates for ω2 and ω3 were obtained by 

matching the values of 〈(ri − rj)2〉 generated in an all-atom simulation. The details of the 

protocol for determining ω2 and ω3 are given in Reference 46. Reasonable agreement 

between analytical theory and the all-atom simulation, noted in Figure 5, shows that the 

SCDM can reveal the prominent features of distance maps from the placement of charges 

in the sequence. It is interesting to note that different residue pairs—within the same chain—

can exhibit different conformations, even as different as expanded and collapsed (Figure 5; 

46, figure 4). Approaches rooted in homopolymer models ignore variations in these local 

features. A recent mathematical model supported by coarse-grained simulation has also 

shown independence of the distribution of Ree and Rg for IDPs (96), in stark contrast to 

homopolymer predictions and highlighting limits of homopolymer-centric models.
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Maps of the SCDM can be generated from sequence charge information even when ω3 and 

ω2 values are not known. These graphs can provide critical information about the sets of 

amino acid residue pairs that experience repulsive (or attractive) electrostatic interactions, 

which expand (or compact) the chain. Figure 5c,d shows the electrostatic contributions to 

the intrachain interaction topology (quantified by the SCDM) for two IDPs (for which the 

distance maps are shown in Figure 5a,b). The most repulsive regions correspond to the most 

expanded regions in the distance maps. This feature of SCDM maps has proven useful for 

functional classifications (see Section 4.3).

3. INTRINSICALLY DISORDERED PROTEIN AND REGION 

CONFORMATIONS ARE SENSITIVE TO BIOLOGICAL AND CHEMICAL 

REGULATORS

3.1. Physical Mathematics Can Identify Phosphorylation Hot Spots

PTMs such as phosphorylation can alter IDP sequences by adding negatively charged 

phosphate groups to neutral amino acids such as serine and threonine (3). How do these 

modifications alter IDP conformations? Equation 6 provides a framework for predicting 

PTM-induced changes in SCDMs and consequent changes in internal distance profiles. 

Figure 6 illustrates phosphorylation-induced conformational changes for the wild-type (WT) 

IDP P0A8H9 and its two variants S2T15 and S54S56. The first variant, S2T15, is modified 

by adding negative charges (to mimic the effect of phosphorylation) at amino acids 2 and 

15 in the WT sequence. The second variant, S54S56, has negative charges at residues 54 

and 56 in the WT sequence. Differences in distance maps between the WT and the variants 

show phosphorylation can significantly alter distance profiles. Furthermore, it is evident that 

the choice of phosphorylation site matters. Both the S54S56 and S2T15 variants have the 

same charge composition, with near identical patterning except at two amino acids. These 

differences—due to the long-range nature of electrostatics—are enough to significantly alter 

the SCDMs, resulting in vastly different distance maps. Figure 6a,b shows changes in the 

distance maps that arise from the changes in the SCDMs. These distance maps largely 

agree with the results from the all-atom simulations. There are also noticeable disagreements 

that could be due to finer details of the all-atom simulation that the coarse-grained energy 

function (H) ignores.

The results of phosphorylating different residues in the WT IDP P0A8H9 also show that 

IDPs propagate phosphorylation signals to distant parts of the sequence. For example, 

modifications at residue numbers 2 and 15 (Figure 6a) can induce changes far away. PM 

provides a formalism to search through numerous combinations of phosphorylation sites to 

identify those hot spots that can induce drastic changes locally and/or far from the site of the 

modification.

3.2. Intrinsically Disordered Protein and Region Conformations Are Sensitive to Salt

The dimensions of charged polymers depend on salt concentration (an example of a 

CR). Consider a PE consisting of charged monomers of only one type—either positive 

or negative. For a PE-like IDP, the electrostatics is purely repulsive; consequently, added 
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salt will screen the repulsions, and the chain will become more compact. However, IDPs 

are typically polyampholytes with both positive and negative charges present in the same 

sequence. Would polyampholytic IDPs contract or expand with salt? The salt dependence 

can be modeled by a screened Coulomb potential within a Debye-Huckle formalism with an 

analytical solution. First, we present the salt dependence of the end-to-end distance (Ree) of 

an IDP. The electrostatics contribution (Q in Equation 2) is modified to Q′ as a function of 

salt. Specifically, Q′ is expressed in terms of κ, the inverse Debye length is defined as κ2 = 

8πlbcs, and cs is the salt concentration (for the exact expression of Q′, see 45, equation 3).

To predict whether an IDP will expand or collapse with the addition of salt, Q′ can be 

expanded in the limit of zero salt, i.e., small κl, as

Q′ ≈ 1
2

6π
x

1
N ∑

m = 2

N
∑

n = 1

m − 1
qmqn m − n − (κl)π

2
1
N ∑

m = 2

N
∑

n = 1

m − 1
qmqn(m − n) + …ℋ . O

. ,
9.

where ℋ . O . are higher-order terms in κl. The first term can be identified as the SCD 

(ignoring constants) expected for the end-to-end distance. The second term yields a new 

sequence charge patterning metric (SCDlow salt) (see Reference 45, equations 4 and 5) 

defined as

SCDlow salt = 1
N ∑

m = 2

N
∑

n = 1

m − 1
qmqn(m − n) . 10.

In the vicinity of zero salt, if SCDlow salt is positive (negative), the ensemble average end-to-

end distance will shrink (expand) upon the addition of salt. An immediate consequence is 

that two IDPs with identical charge compositions but different patternings can have different 

responses to salt due to the different signs of SCDlow salt. Reference 45 provides examples 

of this. The trend predicted by the SCDlow salt metric agrees with the single-molecule Förster 

resonance energy transfer measurements of Schuler and colleagues (67) on a limited set of 

four proteins: CspTm, integrase, and the N-terminal and C-terminal ends of prothymosin-α. 

However, the salt dependence of charged–polar and polar–polar interactions can cause 

deviations from the simple trend based on the sign of SCDlow salt alone. Another important 

physical contribution, which we do not discuss, is the salting-out effect—as proposed 

by Zheng and colleagues (104)—that can modulate salt-dependent shape changes in IDP 

sequences.

The discussion above shows the role of SCDlow salt in determining sequence-specific, salt-

dependent responses in end-to-end distances. The strong variation noted among specific 

residue pair distance profiles suggests that the trends observed for end-to-end distances 

may not be representative of the entire chain. Beyond just the end-to-end distance, the 

salt dependence of internal distances is also revealed by the salt-dependent (i.e., κl) 
SCDM, defined as SCDMi, j(κl) = Qi, j′ /(i − j); salt-dependent Qi, j′  is defined in Reference 

46 (equations 4 and 5).

Ghosh et al. Page 10

Annu Rev Biophys. Author manuscript; available in PMC 2022 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Expanding near zero salt, an SCDM matrix of low-salt metrics defined as SCDMlow salt 

(analogous to SCDlow salt, defined above for the end-to-end distance) is given by

SCDMlow salt, i, j = 1
(i − j) ∑

m = j

i
∑

n = 1

j − 1
qmqn

(m − j)2

(m − n) + ∑
m = j + 1

i
∑

n = j

m − 1
qmqn(m − n)

+ ∑
m = i + 1

N
∑

n = 1

j − 1
qmqn

(i − j)2

(m − n) + ∑
m = i + 1

N
∑

n = j

i
qmqn

(i − n)2

(m − n) .
11.

Positive (negative) values of SCDMlow salt,i,j would cause ensemble average 〈ri, j2 〉 to 

shrink (expand) with the addition of salt. An intriguing outcome of this is that some 

sequences may have both positive and negative elements in their SCDMlow salt, implying 

drastically different responses to salt at different distances. Figure 7 shows an example of 

an SCDMlow salt map for protein P0A8H9 with positive values in some regions expected 

to shrink—in contrast to other regions expected to expand—upon addition of salt near the 

zero-salt regime. Differential salt response between different pairs of amino acid residues 

(in the context of the full protein) have been experimentally observed by Schuler and 

colleagues (67). Hofmann and colleagues (102) also reported different salt responses for 

different segments of the full protein. However, we emphasize that theoretical predictions 

based on SCDMlow salt are purely within the Debye-Hückle approximation. Deviations from 

these predictions may also occur for additional driving forces, such as polar-charge and 

salting-out effects not included in this review. As expected, i = N, j = 1, and N ≈ (N − 1) 

yield SCDlow salt in Equation 10.

4. PHYSICAL MATHEMATICS MODELS FOR INTRINSICALLY 

DISORDERED PROTEIN AND REGION FUNCTIONS

PM is increasingly being used in modeling the functional features of IDPs. IDPs participate 

in many biological processes, from signaling and cellular differentiation to formation of 

membraneless organelles. Many of these functions rely on interactions among multiple 

copies of the same IDP or between IDPs and other macromolecules in disordered modes. 

Many of these modes of interaction are amenable to approximate models with closed-form 

solutions.

4.1. Analytical Models Predict Sequence-Dependent Phase Separation

Solutions of IDPs, either by themselves or in association with other macromolecules, can 

phase separate into protein-rich and dilute liquid phases. This phenomenon, known as 

liquid–liquid phase separation (LLPS), is emerging as a key mechanism in the formation 

of membraneless organelles and in numerous biological functions (4, 8, 42, 48, 52, 82, 

91). In many such examples, IDPs in a homogeneous phase will phase separate below a 

critical temperature Tc. Below Tc, for a range of bulk protein densities, the solution will 

coexist in both the protein-rich and dilute phases, yielding a phase coexistence curve. 

Experiments are beginning to measure sequence-dependent Tcs and phase coexistence 

curves by modulating the amino acid composition or by shuffling the amino acid patterning 

at a fixed composition (11, 64, 72, 87, 100). In a seminal work, Chan and colleagues 
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(56) developed a theoretical formalism using the random phase approximation (RPA; 

detailed below) to determine Tc as a function of sequence charge patterning. The sequence 

dependence of RPA theory explained remarkably well experimentally observed differences 

in phase-separation propensities, and their salt dependence, between two sequences: WT 

Ddx4 protein and its charge-scrambled (CS) version (64, 72). The CS version, created by 

keeping the same composition as in the WT but dispersing charges more evenly, did not 

phase separate, in contrast to the WT sequence. The theory of Chan and colleagues was the 

first of its kind to successfully explain the sequence dependence of an IDP’s propensity for 

phase separation. Figure 8 shows an application of the same theory to contrasting the phase 

separation propensity of the two different phosphorylated versions of P0A8H9 discussed 

above. The theory predicts that the phase separation propensity of the S54S56 variant is 

higher than that of the S2T15 variant, indicating the critical role of phosphorylation hot 

spots in determining LLPS. Both modifications have same charge composition but different 

patterning.

4.1.1. Simple explanation of random phase approximation and its 
improvement.—Models of phase separation must account for two key elements: the 

presence of multiple chains interacting with one another and the connectivity of each 

individual chain. The RPA formalism introduces field variables {ϕ} corresponding to the 

density of monomers and describing the presence of multiple chains. These variables are 

not directly constrained by chain connectivity. Variables {R}, describing the single-chain 

conformational ensemble, in contrast, must respect the connectivity of the monomers. The 

central aim of RPA is to account for an effective field (a function of {ϕ}) experienced 

by a single chain due to the presence of other chains. Consequently, the distribution of 

conformations {R} depends on {ϕ}, and {ϕ} itself is a function of {R}. For analytical 

tractability, RPA makes a simplifying approximation by neglecting higher-order fluctuations 

in {ϕ}, which is reasonable when densities are not too low. As part of this simplification, 

any explicit dependence of {R} on {ϕ} is ignored, and contributions from {ϕ} are kept only 

to the second order. This simplification allows chain connectivity to be accounted for within 

the simplest framework of a Gaussian chain. The simplified RPA predicts that the Tc of a PE 

(an IDP with only one type of charge) will increase with the length of the PE, contradicting 

earlier theoretical results, which had predicted that Tc saturates with increased chain length 

(70). A modified RPA called renormalized Gaussian RPA (rG-RPA) adopts a self-consistent 

formalism in which correlations in {ϕ} are calculated using a single-chain conformational 

ensemble {R}, which in turn depends on {ϕ} (54). This modification incorporates single-

chain conformations correctly in building models for multichain interactions. rG-RPA 

recovers the correct limiting results for PE phase behavior. Furthermore, rG-RPA is able to 

explain differences in phase-separation propensities in WT and CS forms of Ddx4, capturing 

the sequence effect. A unified analytical framework such as rG-RPA demonstrates the power 

of first-principle PM models that can describe both polyampholyte and PE phase behavior 

(54). It is also important to note that the sequence-specific RPA formalism—despite the 

assumptions of weak fluctuations—is different from purely mean-field Flory-Huggins theory 

(for the interaction term), which completely neglects spatial dependence and fails to capture 

sequence specificity, providing another example of the importance of PM.
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4.1.2. Unresolved issues.—There are still many caveats to rG-RPA. First, the theory 

assumes a uniform dielectric constant, even in the presence of salt. Recent work from the 

Chan group (23, 101) has addressed this issue and has shown that the approximation may 

cause modest deviations but not major changes. Second, extensions of the rG-RPA models 

are needed to describe the combinations of charge and noncharge patterning in chains that 

have charges, π, and hydrophobic interactions (23, 64, 72). Coarse-grained simulations are 

being developed with different interaction parameters to explain experimental data (23, 64, 

99). Insights gained from these simulations may help to further advance first-principles 

analytical theory using rG-RPA. It is also important to develop PM models to estimate 

the effect of neglecting fluctuations beyond the second order, which are expected to be 

important in systems at low densities. At present, strong fluctuations are modeled by 

numerical solutions of stochastic differential equations using a self-consistent field theory 

formalism (18, 65). However, the quantitative, sequence-specific effects of these corrections 

are still unclear. For calculating the phase diagrams of PEs, in analytical calculations where 

higher-order terms to infinite order were approximately added within a closure relation 

(69), corrections beyond RPA were found to be insignificant compared with other terms 

(70). Improved models of the actual temperature dependence of the interaction parameters 

are also needed to address the lower critical solution temperatures, where proteins phase 

separate upon increases in temperature (26). Analytical models are needed to delineate 

the competition between liquid and other phases (such as solids and gels) that dictate the 

properties of condensates (7, 86).

4.1.3. Single-chain and many-chain physics can be related.—The success of rG-

RPA also highlights the importance of single-chain conformations in predicting multichain 

phase behavior. The apparent interdependence between single-chain and multichain physics, 

inspired by earlier homopolymer results, has been elucidated in recent work. First, 

Lin & Chan (55) showed that the Tcs predicted using RPA [for Das & Pappu (19) 

sequences] strongly correlate with the SCD values for the single chain. Consistent with 

their observation, S54S56 has lower SCD and a higher propensity to phase separate (Figure 

8) compared with S2T15 even though both sequences have same charge composition. Mittal 

and colleagues (24) performed coarse-grained simulations to establish the relationships 

between the temperature dependence of single-chain conformations and phase diagrams. 

Pappu and colleagues (108) have quantitatively shown how the temperature dependence 

of single-chain conformations can be used to predict solution phase diagrams. More 

recently, Lindorff-Larsen and colleagues (99) optimized a coarse-grained model against 

single-chain biophysical properties to predict multichain phase separation. Rana and 

colleagues (76) made an intriguing observation that normalized SCD can approximately 

determine competition between phase separation and aggregation in coarse-grained models 

of disordered proteins. These and other experimental studies (64, 78) highlight the 

importance of studying single-chain behavior to advance our understanding of solution 

behavior.
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4.2. A Joint Sequence Charge Decoration Metric Describes Complexation Between Two 
Chains

Complexation is a frequent mode of protein–protein interaction. Much of the dimeric 

complexation of proteins leads to the formation of ordered structures. Schuler and 

colleagues (9) demonstrated a novel interaction mechanism in which two dissimilar IDPs 

can form a fully disordered complex. Their coarse-grained simulations show that simple 

electrostatics modeled by Debye-Hückle theory is sufficient to capture experimentally 

observed conformational features. Chan and colleagues (1) provided an analytical theory 

to quantify the binding constant between identical or dissimilar (A and B) pairs of IDPs. 

Intriguingly, the theory finds a metric, joint SCD (jSCD), that correlates with the binding 

constant. jSCD is defined as

jSCD({qA, qB}) = − 1
2NANB

∑
s, t = 1

NA
∑

l, m = 1

NB
qsAqtAql

BqmB[ s − t + l − m ]1/2, 12.

where {qA} is the sequence of charged amino acids in chain A, and {qB} is that of chain 

B. Reference 1 provides the derivation of jSCD and its application to different pairs of 

heteropolymer sequences. Coacervation of polycation and polyanion chains—a limiting case 

of the example studied by Schuler and colleagues—is attracting a lot of interest in studies of 

synthetic polymers (60, 74). An interesting problem arises at the interface of complexation 

and phase separation. Recent work by Chan and colleagues (58) provided a mathematical 

model to couple the two processes and compare the results with experiments.

4.3. Charge Decoration Metrics Can Be Useful for Functional Annotation

Functionally similar intrinsically disordered regions (IDRs)—disordered segments between 

two structured regions—can have low sequence similarity detectable by traditional sequence 

alignment algorithms. Consequently, sequence and/or structure alignments, which are 

traditionally applied to predicting the functions of folded proteins, are not useful for 

predicting functionally similar IDRs. How then do we classify functionally similar IDRs? 

Is it possible to identify functional similarities among IDRs by finding similarities in their 

sequence decoration metrics, even when they are not similar in sequence alignments? Large-

scale bioinformatic analyses have found underlying molecular features that are hidden in 

sequences but can be used to discern functionally similar proteins (105). Given that the 

SCDM can provide a high-dimensional representation of the charged patterning of a protein, 

it is natural to test the ability of SCDMs to classify IDPs (47, 73).

Further motivation for using SCDMs in discerning functional classes comes from two 

observations: (a) SCDMs have the ability to describe subtle features of conformations, 

and (b) conformational features can be similar among homologous IDPs (75). Indeed, 

high-dimensional features embedded in the SCDM can be used to distinguish functional 

and nonfunctional proteins within the Ste50 protein family (47). Ste50 is an IDR between 

two folded domains (107). It is critical to cell growth and shape. Moses and colleagues 

(107) classified five IDRs in functional and nonfunctional categories based on cell growth, 

shape, and basal protein expression. The five IDRs are the WT Ste50 from Saccharomyces 
cerevisiae; the doubly phosphorylated version of that WT; the WT Ste50 from a different 
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organism, Lachancea kluyveri; and two other, unrelated IDRs, RAD26 and Pex5. The 

SCDM-based classification scheme is consistent with the experimental classification scheme 

(see Reference 47 for more).

Briefly, the classification algorithm proceeds in a few steps (47): (a) An IDR’s SCDM is 

first binarized to capture the repulsive or attractive nature of the electrostatics interactions, 

(b) binarized SCDMs (bSCDMs) are properly resized to compare proteins of different sizes, 

and (c) these bSCDMs are subsequently decomposed using principal component analysis 

to keep only the essential features and avoid any spurious information that may cause an 

artifact. The same algorithm was also reasonably successful in functionally classifying two 

other protein families: (a) protein family PSC, which is critical in chromatin remodeling 

(6), and (b) the RAM region of the Notch receptor (90). Each of these three proteins is 

highly charged, which justifies the use of the SCDM for functional classification while 

neglecting the contribution of other interactions (embedded in the SHDM). However, for 

IDPs with fewer charges, SHDM metrics in combination with the SCDM may be important 

for functional predictions. Recent work from Moses and colleagues (105, 106) revealed 

multiple molecular features—different from the patterning metrics noted above—that can be 

used to rescue and predict function.
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SUMMARY POINTS

1. The PM of IDPs describes rules of regulation that control IDP conformations.

2. Models for describing single-chain conformations inform the multichain 

physics of phase separation.

3. The physical mathematical relationships of IDPs provide insights into 

biological functions.

4. Physical mathematical equations—balancing accuracy and efficiency—

overcome combinatorial challenges that may impede design strategies for new 

polymers or proteins.
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FUTURE ISSUES

1. Further improvement in electrostatic modeling is needed to include the 

roles of degree of ionization (of charged moieties) and of charge–dipole 

and dipole–dipole interactions. Furthermore, to improve the predictability of 

the conformational properties of single chains, transferable nonelectrostatics 

interaction parameters that can be combined with electrostatic models are 

needed.

2. Models for sequence-dependent phase separations are needed to account for 

noncharge interactions, strong fluctuations at low density, and lower critical 

solution temperatures. Existing theoretical platforms can be used to learn 

about the competition between LLPS and other physical processes such as 

gelation, aggregation, and complexation for which analytical models exist.

3. Efforts to build functional classification algorithms for IDPs are limited 

by the small numbers of data on IDP functions now available for suitable 

comparisons. More experimental measurements with designed variants are 

needed for building algorithms beyond the SCDM and for developing new 

patterning metrics (such as SHDMs that describe noncharge amino acids), as 

well as including molecular features beyond patterning metrics.
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Figure 1. 
Interplay between BRs (e.g., mutations or PTMs that directly change the sequence) and 

CRs (e.g., changes in solution conditions) can be complex and lead to a combinatorial 

explosion, requiring a PM-based approach. Abbreviations: BR, biological regulator; CR, 

chemical regulator; PM, physical mathematics; PTM, posttranslational modification.
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Figure 2. 
The SCD metric (the same as Q in Equation 2) is a measure of the patterning of positive 

and negative charges. Two sequences (top, bottom) can have the same number of positive 

and negative charges (composition) but differences in patterning, reflected in their differing 

SCDs. Blocky sequences (bottom) tend to have lower SCDs compared with sequences where 

charges are more dispersed (top). Abbreviation: SCD, sequence charge decoration. Figure 

adapted with permission from Reference 33.
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Figure 3. 
The energy function (H) of an analytical framework for determining the Ree of a sequence 

that includes charged monomers accounts for chain connectivity (I1), two-body (I2) and 

three-body (I3) short-range interactions, and long-range electrostatic interactions (I4). The 

exact functional form of H can be found in References 31 and 46.
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Figure 4. 
(a) SCD captures variations in size (Rg in angstroms) obtained from all-atom Monte Carlo 

simulations for 30 sequences, each having 25 Es and 25 Ks arranged in different orders. (b) 

Equations 1 and 2 can be used to predict the size (Ree = ⟨ree2 ⟩1/2 in angstroms) dependence 

on ω2 (proxy for temperature or solution conditions) for a typical choice of ω3 = 0.1, b = 3.8 

Å, and l = 8 Å, lb = 7.2 Å. The difference between the black curve (representing a sequence 

with alternating Es and Ks) and the red curve (a sequence with a block of 25 Es followed 

by 25 Ks) highlights the effect of charge patterning revealed by the SCD embedded in the 

Equation 2. Abbreviations: E, glutamic acid; K, lysine; SCD, sequence charge decoration.
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Figure 5. 
Equation 6 provides distance maps quantified by xi,j values (lower triangles) for two 

intrinsically disordered protein and region sequences: (a) prothymosin-α and (b) DP00877. 

Color coding denotes the different values of xi,j (normalized between 0 and 1) for residue 

pairs i, j (x and y axes). The noncharge parameters ω3 and ω2 were obtained to best 

match the all-atom simulation data of xi,j shown in the upper triangle (for details, see 

Reference 46). (c, d ) The most expanded regions (bright yellow) in distance maps in panels 

a and b correspond to the bright red (repulsive) regions in the respective sequence charge 

decoration matrix maps shown for (c) prothymosin-α and (d ) DP00877. Figure adapted 

from Reference 46 with permission from AIP Publishing.
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Figure 6. 
Intrinsically disordered proteins and regions have hot spots for phosphorylation. Distance 

profiles, given by sequence-specific xi,j (relating to ⟨ri, j2 ⟩) for amino acid pairs i, j, for 

two different phosphorylated forms, (a) S2T15 and (b) S54S56, of the wild-type protein 

P0A8H9 show that specific phosphorylation sites induce drastic conformational changes 

at all scales. Positive (red) and negative (blue) differences are evident in these heat maps. 

Theoretical results (lower triangles) exhibit trends similar to the all-atom simulation results 

(upper triangles). The arrows point to sequence sites of phosphorylation that can generate 

changes in distances among sites that are remote in the sequence (circle). Figure adapted 

from Reference 46 with permission from AIP Publishing.
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Figure 7. 
Residue pair–specific distances can have varying salt responses. Elements of SCDMlow salt 

(calculated using Equation 11) corresponding to different residue pairs (in the x and y 
axes) are shown for protein P0A8H9. The red regions denote positive values of the matrix 

elements, implying that the addition of salt near the zero-salt limit will shrink the distances 

among the respective residue pairs, while the blue regions denote pairs of amino acids 

for which the distances will expand upon addition of salt. Abbreviation: SCDM, sequence 

charge decoration matrix.
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Figure 8. 
Phosphorylation hot spots can influence the propensity to phase separate. Phase diagrams 

(density ϕ in the x axis and dimensionless temperature l/lb in the y axis) of two 

different phosphorylated versions (S54S56 in orange and S2T15 in black) of the wild-type 

protein P0A8H9 have been computed using the theory of Chan and colleagues (56). 

This theory predicts that two sequences with the same charge composition but with 

different patterning can have different critical points and propensities to phase separate. 

The effect of phosphorylation has been modeled by introducing a minus charge at the site of 

phosphorylation.
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