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ABSTRACT
We tested the hypothesis that obesity influences the pharma-
codynamics of volatile general anesthetics (VGAs) by compar-
ing effects of anesthetic exposure on mortality from traumatic
brain injury (TBI) in lean and obese Drosophila melanogaster.
We induced TBI with a high-impact trauma device. Starvation-
selection over multiple generations resulted in an obese pheno-
type (SS flies). Fed flies served as lean controls (FC flies). Adult
(1–8-day-old) SS and FC flies were exposed to equianesthetic
doses of isoflurane or sevoflurane either before or after TBI. The
principal outcome was percent mortality 24 hours after injury,
expressed as the Mortality Index at 24 hours (MI24). TBI resulted
in a lower MI24 in FC than in SS flies [21 (2.35) and 57.8 (2.14),
respectively n 5 12, P 5 0.0001]. Pre-exposure to isoflurane or
sevoflurane preconditioned FC flies to TBI, reducing the risk of
death to 0.53 (0.25 to 1.13) and 0.82 (0.43 to 1.58), respectively,
but had no preconditioning effect in SS flies. Postexposure to

isoflurane or sevoflurane increased the risk of death in SS flies,
but only postexposure to isoflurane increased the risk in FC flies
[1.39 (0.81 to 2.38)]. Thus, obesity affects the pharmacodynam-
ics of VGAs, thwarting the preconditioning effect of isoflurane
and sevoflurane in TBI.

SIGNIFICANCE STATEMENT
Inadvertent preconditioning in models of traumatic brain injury
(TBI) is a recognized confounder. The findings in a fruit fly (Dro-
sophila melanogaster) model of closed-head TBI indicate that
anesthetic pharmacodynamics are profoundly affected by obe-
sity. Specifically, obesity thwarts the brain-protective effect of
anesthetic preconditioning. This finding is important for experi-
mental studies of TBI and supports the versatility of the fruit fly
as a model for the exploration of anesthetic pharmacodynamics
in a wide parameter space.

Introduction
Preconditioning, i.e., the capacity of anesthetics to induce

tolerance to injury when administered prior to ischemia, is a
potentially valuable property of volatile general anesthetics
(VGAs). Anesthetic preconditioning effectively protects the
brain (Kitano et al., 2007) and the heart (Stadnicka et al.,
2007) from ischemic damage. However, its effectiveness in pro-
tecting the myocardium is suppressed in obese rodents (Song

et al., 2011) and in models of diabetes (Ge et al., 2018).
Although the cause of this failure is not fully understood, it
may be due to metabolic abnormalities linked to excessive
accumulation of lipids in the heart (Nakanishi and Kato,
2014). This pathologic entity is termed "lipotoxic cardiomyopa-
thy" or "fatty heart syndrome" (Szczepaniak et al., 2007).
Rodents develop this syndrome in experimentally induced dia-
betes and obesity (Zhou et al., 2000). Whether these common
comorbidities also influence anesthetic preconditioning of ner-
vous tissue remains unknown as no analogous "lipotoxic" brain
phenotype has been yet described.
Examining anesthetic interactions with experimental brain

injury is notoriously complicated because nonanesthetized con-
trol groups are impossible, as experiments require exposure to
anesthesia for technical (e.g., immobility for surgery) and/or
animal welfare reasons. VGAs, however, profoundly influence
almost all aspects of brain physiology (Statler et al., 2006b;
T�etrault et al., 2008; Staib-Lasarzik et al., 2014; Semple et al.,
2016). As a result, in both focal and diffuse brain damage,
injury and intervention always occur on the background of a
brain exposed to anesthetics, and inadvertent preconditi-
oning may confound the interpretation of experiments and
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interventions. Further complicating matters, the extent and
molecular mechanisms of preconditioning differ among anes-
thetic agents (Statler et al., 2006a). This long-standing prob-
lem has been explicitly recognized by many research groups
and may contribute to the frequent failure in translating find-
ings from mammalian models to human patients.
To address some of these limitations, we have tested the

effect of VGAs on mortality in a traumatic brain injury (TBI)
model implemented in the fruit fly (Drosophila melanogaster).
This model reproduces key characteristics of TBI in mammals,
including temporary incapacitation (concussion), ataxia, death,
neurodegeneration, and shortened lifespan (Katzenberger
et al., 2013; Putnam et al., 2019; Saikumar et al., 2020), while
also faithfully mimicking the behavioral effects of VGAs (Olufs
et al., 2018). Crucially, as flies pose no animal welfare con-
cerns, control experiments without exposure to anesthetics are
feasible. We have found that exposure of a standard laboratory
fly line (w1118) to the VGAs isoflurane and sevoflurane prior to
TBI effectively preconditioned the brain, as indicated by sup-
pression of 24 hour mortality (Fischer et al., 2018). By con-
trast, exposure to isoflurane after TBI increased mortality. To
test the hypothesis that obesity modulates anesthetic pharma-
codynamics, we inflicted TBI in a fly model of obesity acquired
by starvation selection (see Methods for details), which mimics
many of the phenotypic characteristics of obesity in mammals,
including increased weight and triglyceride storage as well as
behavioral, anatomic, and metabolic abnormalities (Reynolds,
2013; Masek et al., 2014; Hardy et al., 2015). We found that
obesity thwarts anesthetic preconditioning by isoflurane and
sevoflurane in TBI. These data indicate that preconditioning
with VGAs in fruit flies is responsive to biologic variables and
reproduces the effect of obesity on anesthetic pharmacodynam-
ics in mammalian ischemia. Although this information compli-
cates the design of experiments that require the use of
anesthetics, it can be instrumentalized to improve our under-
standing and treatment of TBI.

Materials and Methods
The experiments adhere to applicable ARRIVE (Animal Research:

Reporting of In Vivo Experiments) reporting guidelines (preclinical
animal research). Approval from the Institutional Animal Care and
Use Committee has been waived.

Fly Husbandry. Unless otherwise indicated, experiments were
conducted on flies generously provided by Dr. Allen Gibbs (School of
Life Sciences, University of Nevada, Las Vegas, NV). The original
founding populations for these flies were D. melanogaster collected
from Terhune Orchards, Princeton, NJ in 1999 and maintained as
outbred stocks at 25�C on cornmeal medium. One population under-
went starvation-selection (SS population) over multiple generations by
subjecting sequential generations of flies to severe starvation on 1%
agar until only 15%–20% of the original population survived. Surviv-
ing flies were then placed on food to lay eggs. The next generation of
adults was selected for starvation resistance in the same manner. The
obese phenotype that developed in the SS population was character-
ized by increased lipid storage of nearly two times the amount of total
lipids as the unselected control population, including a 30% increase
in weight and high fat stores along with high whole body triglyceride
levels (Reynolds, 2013). SS flies also had a depressed metabolic rate,
low activity levels, dilated cardiomyopathy, and excess sleep (Rey-
nolds, 2013; Masek et al., 2014; Hardy et al., 2015). The control popu-
lation was cultured under the same conditions as the SS population
but was provided ad libitum food and water and is referred to as the
FC (for fed control) population. We received one subpopulation each of

SS and FC flies that had undergone at least 120 generations of selec-
tion. Once in our laboratory, all flies were maintained on cornmeal-
molasses food at 25�C and used at 1–8 days post eclosion. As evolution-
ary pressure of starvation-selection is removed, SS flies gradually start
losing the obese phenotype. Therefore, experiments reported in Figs. 1,
3, and 4 were performed on generations 2–4. For Figs. 2 and 5, later
generations of SS flies were also used. Fly lines 2P9, D. virilis, and D.
funebris were generously provided by Bob Kreber and Dr. Barry
Ganetzky (Department of Genetics, College of Agricultural and Life Sci-
ences, University of Wisconsin-Madison, Madison, WI). The w1118 line
is a standard line maintained in our laboratory. All experiments were
conducted using mixed sex samples except fly mass that was deter-
mined using males. Fly mass was determined by averaging the results
of 12 replicates of 30 flies for each line using an analytical balance with
0.1mgaccuracy (Mettler Toledo XSE104, Columbus, OH).

TBI. TBI was induced using a high-impact trauma device as
described previously (Katzenberger et al., 2013). On the day prior to
an experiment, eight vials containing 20 mixed sex flies were incu-
bated at 25�C with cornmeal-molasses food. On the day of the experi-
ment, flies were rapidly transferred into empty vials. TBI was induced
with four strikes from the high-impact trauma device with the spring
deflected to 90 degrees and 5 minutes between strikes. Anesthetics
were administered either before or after TBI. After injury and anes-
thesia, flies were transferred to vials with cornmeal-molasses food and
incubated at 25�C.

The primary outcome was mortality expressed as the Mortality
Index determined 24 hours after TBI (MI24). We define the MI24 as
the percentage of flies that are dead at 24 hours after TBI minus the
percentage of matching uninjured flies that died within the same 24
hour period. Because mortality after TBI does not differ between male
and female flies, we performed all experiments on mixed sex groups.
Unless otherwise indicated, at least six independent replicates were
performed for each experimental condition.

Anesthesia. We used a custom-built Serial Anesthesia Array to
simultaneously expose up to eight samples of 20 flies each to precise
doses of VGAs in air, as described previously (Fischer et al., 2018; Olufs
et al., 2018). VGAs were administered through the Serial Anesthesia
Array using a Datex-Ohmeda Aestiva/5 anesthesia machine equipped
with commercial agent-specific vaporizers (Datex-Ohmeda Inc., Madi-
son,WI). Compressedgas cylinders (AirgasUSA,LLC.,Radnor, PA) con-
taining air (21%O2/79%N2) provided the carrier gas. To test the effect of
obesity on anesthetic pharmacodynamics, we exposed the flies to anes-
thetics either immediately before or after inflicting TBI, mimicking pre-
and postconditioning, respectively.We used either 2% isoflurane or 3.5%
sevoflurane for both exposure protocols. These anesthetic concentrations
are behaviorally equivalent and do not affectmedian andmaximum life-
spans (Olufs et al., 2018). Thedose of anesthetic administered is reported
as concentration (%) multiplied by duration (hours), e.g., 2% isoflurane
for 2 hours equals 4%h. All flies resumed movement within less than 1
hour after discontinuing isoflurane or sevoflurane (i.e., no flies died
immediately after TBI with or without anesthetic exposure, indicating
that the doses were safe). A typical assay simultaneously tested two con-
trol conditions (i–ii) and two experimental condition (iii, iv): (i) no treat-
ment, (ii) anesthesia alone, (iii) TBI alone, and (iv) TBI and anesthesia.
All experiments were conducted under normobaric conditions.Mortality
under control conditions (i and ii)was less than1%.

Statistical Analysis. This study was exploratory with respect to
examining the obese phenotype. The sample sizes were based on our
experience with previous experiments testing the effect of anesthetics
on theMI24. Data are presented asmean (± standard deviation), number
of biologic replicates (n), and [95% confidence interval]. Each replicate
included 20 individuals except for the determination of weight. To test
for significance between treated and untreated FC and SS flies, we used
the unpaired two-sample student’s t test and ANOVA with Bonferroni’s
multiple comparison test. To compare theMI24 between FC and SS flies
subjected to the same treatment, we used the independent two-sample t
test.We quantified the effect of the VGAs on theMI24 using relative risk
of death, calculated as the relative risk (Altman, 1991). Data underlying
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the calculations is plotted in box [interquartile range (IQR) of P25 to P75,
i.e., 25th to 75th percentile] and whiskers to maximum and minimum
values with ‘1’ 5 mean and ‘horizontal line’ 5 median. Dots indicate
individual replicates.WeusedGraphpadªPrism for all statistical calcu-
lations.We usedHedge’s g to calculate effect size for comparing different
sample sizes and four benchmarks to accommodate the range of our
data (0 no effect; 0.2 small effect, cannot be discerned with the naked
eye; 0.5 medium effect; and 0.8 large effect, can be seen with the naked
eye) (https://www.statisticshowto.com/hedges-g). A negative value indi-
cates an increase and a positive value indicates a decrease in theMI24.

Results
SS Flies Are Heavier and at Increased Risk of Mor-

tality after TBI. Under our culture conditions, SS flies
exhibited an easily recognizable obese phenotype weighing
40%–50% more than FC flies (1.25 versus 0.84 mg/fly), in
agreement with previously reported data (Reynolds, 2013). To
investigate whether the obesity phenotype alters the risk of
early mortality after TBI, we determined the MI24 of FC and
SS flies after four strikes with the high-impact trauma device
(Fig. 1). The MI24 of FC flies was 20.1 (±2.35) n5 6, confidence
interval (CI) [17.6 to 22.5], close to that previously reported for
w1118

flies of the same age (Fischer et al., 2018). By contrast,
the MI24 of SS flies was 57.8 (±2.14), n 5 6, CI [55.5 to 60.0],
which is in the top decile of MI24 values reported for inbred
and outbred collections (Katzenberger et al., 2015) (Fig. 1). In
summary, changes associated with obesity induced by experi-
mental evolution increased the relative risk of TBI-induced
early death 2.85-fold CI [1.86 to 4.37] (P < 0.0001).
Early Mortality Is Positively Correlated with Fly

Weight. To examine whether the high MI24 of SS flies was
attributable to their increased weight, we examined male flies
from four other fly lineswhose weights varied over a 3-fold range
from 0.5 to 1.7 mg/fly, bracketing the weight of FC and SS flies
(Fig. 2). In addition to FC and SS flies, we included twoDrosoph-
ila melanogaster lines with the following weights: w1118 0.55
(±0.02)mg/fly, and 2P9 0.73 (±0.02)mg/fly aswell as lines ofDro-
sophila virilis 1.57 (±0.03) mg/fly and Drosophila funebris 1.62
(±0.05) mg/fly. w1118 is a standard laboratory line and 2P9 is an
uncharacterized P-element insertion line. FC flies weighed 0.84
(±0.09) mg/fly. SS flies from the 2nd to 10th, i.e., early (E) genera-
tions maintained an obese phenotype (GenE) and weighed 1.25
(±0.1) mg/fly. The late (L) generation SS flies that were losing
the obese phenotype (SS GenL) weighed 0.97 (±0.1) mg/fly by
generation 20. All lines were tested at 1–8 days old. We found
that fly weight was highly correlated with the MI24 (R25 0.96)
(Fig. 2). This might be expected because both the force imparted
on the flies and the energy they were subjected to should be
proportional to their mass [i.e., force 5 mass × acceleration
(F 5 ma) and energy 5 1/2 mass × velocity of impact squared
(E 5 1/2 mv2)]. The close, but not perfect, correlation between
the weight of a fly and the MI24 leaves room for other factors to
affect the MI24 (e.g., genetic background). We previously found
that when tested at 0–7 days old, inbred fly lines from the Dro-
sophila Genetic Reference Panel, whose males vary in weight
from 0.58 to 0.87 mg/fly (Unckless et al., 2015), had MI24 values
that varied from 8 to 58 (Katzenberger et al., 2015), which
exceeds the expected variability based exclusively on weight of
23 to 37 predicted by the data in Fig. 2. These data indicate that
the weight plays a major role in increasing TBI-induced mortal-
ity of SS over FC flies, but it remains possible that increased

mortality of SS flies results from severe secondary injuries due to
cellular andmolecular effects associatedwith obesity.
Anesthetic Pretreatment Does Not Precondition SS

Flies. To test the hypothesis that obesity influences anes-
thetic pharmacodynamics, we assayed the effect of anesthetic
exposure prior to TBI. In FC flies, pretreatment with equia-
nesthetic doses of isoflurane (4%h) or sevoflurane (7%h)
reduced the MI24 from 17.5 (5.1, n 5 24) to 9.4 (4.1, n 5 16)
and to 14.3 (3.5, n 5 8) for isoflurane and sevoflurane (P <
0.0001 and 0.18), respectively (Fig. 3). Thus, exposure to iso-
flurane preconditioned flies to TBI, whereas sevoflurane
trended toward this phenotype. Preconditioning resulted in a
reduction of the relative risk of death to 0.53 [CI 0.25 to 1.13]
and 0.82 [CI 0.43 to 1.58] for isoflurane and sevoflurane,
respectively. By contrast, pre-exposure of SS flies with the
same doses of isoflurane or sevoflurane did not precondition to

Fig. 1. Obesity is associated with increased mortality. The Mortality
Index at 24 hours after TBI (MI24) was determined in 1–8-day-old lean
FC (fed control) and obese SS (starvation-selected) flies. The relative
risk of death was 2.85 (CI [1.86 to 4.37], n 5 6 per group). 1 indicates
the mean, the horizontal line indicates the median, the box indicates
25th to 75th percentile, the whiskers extend to minimal and maximal
values, and dots indicate individual replicates.

Fig. 2. Early mortality (MI24) is correlated with weight for six fruit
flies lines. Weight (independent variable) and the MI24 were deter-
mined for four lines of D. melanogaster (w1118, FC, SS, 2P9) and for D.
funebris and D. virilis. The data were fitted with a simple linear
regression. Tested SS flies were pooled into two groups determined by
the time dots of their reproduction cycles in the laboratory: early
(2nd–10th generation, SS-E) and late (up to generation 20, SS-L). For
the determination of MI24, n 5 14 except for SS-E where n 5 24. The
MI24 for the tested lines positively correlated with weight (R25 0.96).
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TBI. The MI24 without pre-exposure was 58.1 (±6.6, n 5 27)
and with pre-exposure was 60.7 (±10.9, n 5 21) and 62.8
(±11.4, n 5 8) for isoflurane and sevoflurane, respectively. We
conclude that although the effectiveness of preconditioning in
FC flies is comparable to the previously reported protective
effects of these agents in w1118

flies (Fischer et al., 2018;
Schiffman et al., 2020), the obese phenotype generated by star-
vation-selection is associated with changes that thwart molec-
ular mechanisms underlying anesthetic preconditioning.
Anesthesia after TBI Selectively Increases the MI24.

In contrast to the unambiguous effectiveness of precondition-
ing, the results from exposure to VGAs after ischemia (i.e., post-
conditioning) are mixed (Lucchinetti et al., 2005; Li and Zuo,
2011). We tested the effect of exposure to VGAs after TBI using
the same doses of isoflurane and sevoflurane as used for pre-
exposure. Exposure of FC flies to isoflurane after TBI increased
the MI24 from 18.2 (±3.1, n 5 16) to 25.1 (±6.5, n 5 8), also
increasing the risk ratio for death to 1.38 [CI 0.81 to 2.38),
whereas the MI24 was not appreciably affected by sevoflurane
(18.4 ± 4.3, n 5 8). (Fig. 4). These results replicate our findings
inw1118

flies, in that postexposure with isoflurane but not sevo-
flurane revealed a toxic potential of VGAs when administered
after TBI (Fischer et al., 2018; Schiffman et al., 2020). The out-
comes differed somewhat in SS flies where exposure to both
isoflurane and sevoflurane increased the MI24 from 56.8 (±8.1,
n 5 26) to 73.3 (±18.4, n 5 13) and to 69.7(±17.3, n 5 13),
respectively. Postconditioning hence increased the risk of death
to 1.28 [CI 1.04 to 1.58] and 1.23 [CI 0.99 to 1.52] for isoflurane
and sevoflurane, respectively. These results in SS flies resemble
the increase in MI24 from post-treatment with both agents
reported for oldw1118

flies (Schiffman et al., 2020). We conclude
that metabolic changes associated with obesity lower the
threshold for VGA toxicity and reveal a toxic potential for sevo-
flurane in the context of an injured brain.
Pre-Exposure and Postexposure Phenotypes Nor-

malize after Many Generations in the Absence of
Starvation-Selection. Figs. 3 and 4 show that early genera-
tion (# 5th generation) SS flies are distinct from FC flies in

their resistance to preconditioning of TBI by isoflurane and
sevoflurane and toxicity from postexposure to sevoflurane. To
test whether these distinct phenotypes persist after SS flies
lose the obese phenotype, we examined flies up to the 10th

generation. The MI24 declined proportionally to the loss of
weight (Fig. 2, SS-E and SS-L) but remained higher than that
of FC flies (Fig. 5). After the eighth generation, pre-exposure
to isoflurane suppressed the MI24 (Fig. 5A, SS gen 9–10). Con-
comitantly, postexposure to sevoflurane lost its toxic effect
(Fig. 5B, SS gen 9–10). We conclude that pathways mediating
the molecular mechanisms of the effects of VGAs on survival
after TBI recover after prolonged absence of starvation-
selection.

Discussion
The principal finding of this work is that obesity resulting

from starvation-selection interferes with preconditioning of a
TBI outcome by VGAs. To reach this conclusion, we combined
two fly models (TBI and obesity) that reproduce many features
of their counterparts in higher animals, and we took advan-
tage of the fact that key pharmacokinetic and pharmacody-
namic properties of VGAs (Fischer et al., 2018; Olufs et al.,
2018) are also evolutionarily conserved.
Preconditioning by VGAs in mammals is well documented

but its mechanisms are not fully understood. Diverse injurious
stimuli can precondition the brain but all of them have exceed-
ingly narrow therapeutic indices rapidly resulting in injury
when a certain, largely ill-defined threshold is exceeded (Sten-
zel-Poore et al., 2004; Gidday, 2006; Obrenovitch, 2008; Yoko-
bori et al., 2013). VGAs are exceptional in that preconditioning
is induced rapidly, but even sustained exposure will not injure
the adult "healthy" brain. Therefore, the mechanism underly-
ing anesthetic preconditioning must differ qualitatively and/or
quantitatively from other preconditioning stressors that have
to be administered either very briefly (e.g., hypoxia and

Fig. 3. Obese flies are resistant to the preconditioning effect of pre-
exposure to VGAs. Exposure of FC flies (fed control, i.e., lean flies) to
the isoflurane prior to TBI (left) reduced the MI24. The effect was large
for isoflurane (Hedge’s g 1.7; P < 0.0001, ANOVA with Bonferroni’s
test) and medium (Hedge’s g 0.7; (P 5 0.18, ANOVA with Bonferroni’s
test) for sevoflurane. Exposure of SS flies (starvation-selected, i.e.,
obese flies) to either VGA did not appreciably affect the MI24 (right).
1 indicates the mean, the horizontal line indicates the median, the box
indicates 25th to 75th percentile, whiskers extend to the minimal and
maximal values, and dots indicate individual replicates.

Fig. 4. Exposure to VGAs after TBI increases mortality in obese flies.
Exposure of FC flies (fed control, i.e., lean flies) to isoflurane but not to
sevoflurane after TBI increased the MI24 (left). By contrast, exposure
of SS flies (starvation-selected, i.e., obese flies) to both isoflurane and
sevoflurane increased the MI24 (right). Hedge’s g effect size of isoflur-
ane in FC and SS flies was large (-1.5 and -1.3, respectively, P <
0.0001 for both comparisons, ANOVA with Bonferroni’s multiple com-
parisons test). The effect of sevoflurane in SS flies was large (Hedge’s
g �1.1, P < 0.0001), whereas there was no effect in FC flies (Hedge’s
g 0). 1 indicates the mean, the horizontal line indicates the median,
the box indicates 25th to 75th percentile, whiskers extend to the mini-
mal and maximal values, and dots indicate individual replicates.
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oxidative stress) or for prolonged periods of time [e.g., hyper-
thermia (Shohami et al., 1994; Su et al., 2009)].
The principal, not mutually exclusive, mechanisms of anes-

thetic preconditioning under investigation are: (i) signaling
from an early increase of intracellular Ca21 (Gray et al., 2005;
Weber, 2012), (ii) triggering of proteostatic responses (e.g., the
unfolded protein response) (Baker et al., 2011; McClintick
et al., 2011), (iii) isoflurane-induced mitochondrial reactive
oxygen species-mediated signaling cascades leading to ische-
mic tolerance (Hirata et al., 2011) by modulation of the AMPK
(AMP-activated protein kinase) signaling pathway (Song
et al., 2011), (iv) inducible nitric oxide synthase, implicated in
both ischemic and anesthetic preconditioning (Kapinya et al.,
2002) with possibly different sources of NO in the heart versus
the brain (Kapinya et al., 2002; Amour et al., 2009), (v)

modulation of the immune-inflammatory system, possibly via
VGA-induced modulation of the transcription factor NF-kap-
paB (Zhang et al., 2013), and (vi) modulation of the mitochon-
drial inner membrane permeability transition pore (mPTP)
(Sedlic et al., 2010). The mPTP serves as a rescue pathway for
excessive mitochondrial Ca21 accumulation and its opening is
a critical, irreversible step committing a cell to apoptosis. The
state of the mPTP is controlled by numerous upstream and
downstream targets and even its exact molecular composition
is under debate (Baines and Guti�errez-Aguilar, 2018), but
delays in its opening have been suggested with various types
of preconditioning (Pravdic et al., 2009).
Obesity modulates some of these pathways. For example,

the failure of preconditioning was attributed to interference
with sevoflurane-induced phosphorylation of AMPK and acti-
vation of eNOS (endothelial nitric oxide synthase) in the myo-
cardium of obese rats (Song et al., 2011) and with
misregulation of microRNA 21 and NOS by isoflurane in the
hearts of diabetic mice (Ge et al., 2018). The degree to which
similar processes play a role in the brain remains to be investi-
gated, and experiments presented in this paper are a first
step.
The use of Drosophila as a model for clinical conditions is

only possible because of extensive evolutionary conservation.
For example, over 70% of human disease-causing genes have
orthologs in the fly (Reiter et al., 2001) and, as basic cellular
processes are conserved between flies and humans, both share
secondary molecular and cellular events triggered by injury
(Chow and Reiter, 2017). For example, oxidative stress is a
major molecular driver of obesity-related complications (Furu-
kawa et al., 2004) and plays similar role in obesity models in
the fruit fly (Trindade de Paula et al., 2016).
Our previous work has shown that pretreatment with VGAs

effectively protected flies from death due to TBI (Fischer et al.,
2018; Schiffman et al., 2020), indicating that some molecular
mechanisms by which anesthetics precondition are operational
in flies. Here we expand on these findings by showing that, in
agreement with data from the rodent myocardium (Song
et al., 2011; Ge et al., 2018), obesity interferes with isoflurane
preconditioning in brain injury. We cannot make a statement
regarding sevoflurane in this context because the reduction in
MI24 by sevoflurane preconditioning, despite a moderate effect
size, did not reach the threshold for statistical significance (P
5 0.18). These findings are particularly relevant for experi-
mental studies of TBI. For example, in TBI induced in rodents
either by fluid percussion (Wu et al., 2003) or controlled-corti-
cal impact (Hoane et al., 2011), diet-induced obesity resulted
in worsened outcomes. Both research groups attributed their
findings to the effect of diet and/or obesity on biochemical
alterations such as brain BDNF (brain derived neurotrophic
factor) levels. It is notable though that all animals were
exposed to general anesthetics around the time of injury.
Therefore, although a role for BDNF is possible, the alterna-
tive explanation of differential preconditioning between exper-
imental groups by anesthetics cannot be excluded, illustrating
the value of unconventional approaches using invertebrate
models to complex, multifactorial pathologies like TBI.
The high MI24 and the lack of preconditioning in SS flies

resemble the phenotypes of aged laboratory flies (Schiffman
et al., 2020). Aging increases vulnerability to TBI in humans
(Maas et al., 2008) and flies (Katzenberger et al., 2013) and
also reduces the effectiveness of preconditioning in the human

Fig. 5. Anesthetic pharmacodynamics gradually normalize after termi-
nation of starvation-selection. (A) SS flies became susceptible to isoflur-
ane preconditioning after the 8th generation. (B) Postexposure toxicity
of sevoflurane disappears in SS flies after the 8th generation. Gray
bars indicate the MI24 without anesthetic exposure, purple bars indi-
cate preconditioning with 15 minutes of 2% isoflurane, and yellow bars
indicate postexposure to 15 minutes of 3.5% sevoflurane. SS gen 5–8
and SS gen 9–10 indicate the number of generations that the flies
reproduced on cornmeal-molasses food. FC are fed control, i.e., lean
flies. Note: the MI24 of SS flies remains higher than that of FC flies.
1 indicates the mean, the horizontal line indicates the median, the box
indicates 25th to 75th percentile, whiskers extend to the minimal and
maximal values, and dots indicate individual replicates.
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myocardium (Mio et al., 2008). Because starvation-selection
does not shorten lifespan (Archer et al., 2003), FC and SS flies
were injured at the same point in their lifespan. One explana-
tion for our findings may be that obesity associated changes
result in a premature aging-like phenotype revealed under
stress caused by TBI.
In summary, although neither TBI nor obesity in flies

equals their human counterparts, flies are a useful tool to
inform research in higher animals by exploring parameters
that would be difficult, expensive, or simply unethical to exam-
ine in higher animals.
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