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Abstract

Motivation: Understanding whether and which microbes played a mediating role between an exposure and a dis-
ease outcome are essential for researchers to develop clinical interventions to treat the disease by modulating the
microbes. Existing methods for mediation analysis of the microbiome are often limited to a global test of
community-level mediation or selection of mediating microbes without control of the false discovery rate (FDR).
Further, while the null hypothesis of no mediation at each microbe is a composite null that consists of three types of
null, most existing methods treat the microbes as if they were all under the same type of null, leading to excessive
false positive results.

Results: We propose a new approach based on inverse regression that regresses the microbiome data at each taxon
on the exposure and the exposure-adjusted outcome. Then, the P-values for testing the coefficients are used to test
mediation at both the community and individual taxon levels. This approach fits nicely into our Linear
Decomposition Model (LDM) framework, so our new method LDM-med, implemented in the LDM framework, enjoys
all the features of the LDM, e.g. allowing an arbitrary number of taxa to be tested simultaneously, supporting con-
tinuous, discrete, or multivariate exposures and outcomes (including survival outcomes), and so on. Using extensive
simulations, we showed that LDM-med always preserved the FDR of testing individual taxa and had adequate sensi-
tivity; LDM-med always controlled the type I error of the global test and had compelling power over existing meth-
ods. The flexibility of LDM-med for a variety of mediation analyses is illustrated by an application to a murine micro-
biome dataset, which identified several plausible mediating taxa.
Availability and implementation: Our new method has been added to our R package LDM, which is available on
GitHub at https://github.com/yijuanhu/LDM.
Contact: yijuan.hu@emory.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

While most microbiome studies conducted so far have focused on
bivariate associations between the microbiome and the covariates
of interest (e.g. environmental factors and clinical outcomes) (Bai
et al., 2019; Dunlop et al., 2021), increasing studies have emerged
recently to elucidate the biological mechanisms underlying the
complex interplay between environmental exposures, the micro-
biome and clinical outcomes. In many cases, it is of interest to
understand whether the microbiome plays a mediating role be-
tween an exposure and an outcome (Dolan and Chang, 2017; Pope
et al., 2017; Wang et al., 2020), as depicted in Figure 1a. For ex-
ample, does diet have any effect on inflammatory bowel diseases
that is mediated through the perturbation of the gut microbiome
(Dolan and Chang, 2017)? How does the change in the gut micro-
biome due to antibiotic exposure cause the change in mouse body
weight (Wang et al., 2020)? It is of particular importance to

identify the specific microbes that are responsible for the overall
mediation effect, which is essential for researchers to develop clin-
ical interventions to modify the outcome by modulating the media-
ting microbes, e.g. through antibiotics or probiotics that directly
modify the number of the microbes, or prebiotics that modify mi-
crobial products, such as metabolites (Berg et al., 2020; Quigley
and Gajula, 2020).

Compared to the test of bivariate associations, one challenge in
the test of mediation is the composite null hypothesis. Let T denote
the exposure (or treatment), M ¼ ðM1; . . . ;MJÞ the J mediators, O
the outcome and Z the confounding covariates; using this notation,
the mediation relationships are shown in Figure 1b. To claim a me-
diation effect of a microbe, both the exposure–microbe and mi-
crobe–outcome associations (given the exposure) are required to be
significant. Thus, the null hypothesis of no mediation at microbe j is
a composite null that consists of no microbe–outcome association,
no exposure–microbe association, or neither:
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T !Mj =! O; T =!Mj ! O; or T =!Mj =! O;

which are referred to as the type-I, type-II and type-III null hypothe-
ses, respectively. It is highly likely that different microbes are under
different types of null. For example, antibiotic use may perturb a
large number of microbes but most of them do no modify mouse
body weight, whereas some microbes remain intact from antibiotic
use but do interact with the body weight; of course, there are
microbes that are not associated with either factor. In this example,
we have all three types of null, and a valid analysis should acknow-
ledge that.

A further challenge in the test of mediation with microbiome
data arises from the complex features of the data. The taxa count
data are high-dimensional with typically many more taxa than sam-
ples, and it is of interest to test all taxa simultaneously for mediation
effects with multiple testing correction that controls the false discov-
ery rate (FDR). The data are also sparse (having 50–90% zero
counts), compositional (measuring relative abundances that sum to
one) and highly overdispersed. In addition, microbiome studies may
have complex exposures or outcomes that can be either continuous
or discrete, as well as multivariate (comprising multiple compo-
nents, such as categorical variables with more than two levels); the
outcome can even be censored-survival times (Jenq et al., 2015;
Spencer et al., 2021). These studies often have potential confound-
ing covariates, small sample sizes (e.g. 30–100) and complex designs
[e.g. clustered data (Hu and Satten, 2020), matched sets (Zhu et al.,
2021) and longitudinal sampling]. The capability to handle all these
features is essential for any statistical method to be practically
useful.

In view of the challenges in testing mediation with high-
dimensional microbiome data, the two existing methods, MedTest
(Zhang et al., 2018) and MODIMA (Hamidi et al., 2019), are
restricted to testing the overall mediation effect at the community
level. Although other methods, namely CMM (Sohn and Li, 2019)
[and CMMB, the extension for binary outcomes (Sohn et al.,
2022)], SparseMCMM (Wang et al., 2020) and Zhang’s method
(Zhang et al., 2021) attempt to identify individual mediating taxa,
they have no control of any error rate (e.g. the FDR). Specifically,
MedTest and MODIMA base their tests on distance matrices that
summarize the high-dimensional data into between-sample dissimi-
larity measurements, and thus produce a global P-value only. Also,
they treat the taxa as if they are all under the same type of null in
their permutation procedures that provide the null distributions of
the test statistics, and thus may not control the type I error when
this assumption does not hold. Further, although they can accom-
modate binary outcomes without any modification, MedTest does
not allow multivariate exposures or outcomes and MODIMA does
not allow adjustment of confounders. Finally, MedTest, by using
principal components of the distance matrix as mediators, may not
capture mediation effects in rare taxa; MODIMA highly depends on
the choice of the distance metric and currently does not provide an
omnibus test.

In this article, we focus on testing, rather than estimation, of me-
diation effects at individual taxa with a goal of controlling the FDR.
This strategy is very common in the initial scan of high-dimensional
features in omic studies (Asher et al., 2009; Hu and Lin, 2010; Hu
et al., 2015); ‘fine mapping’ of mechanistic mediators and formal es-
timation of their mediation effects can be performed more easily
after the dimension is greatly reduced. We find that, the testing ob-
jective can be facilitated by using inverse regression that regresses
the microbiome data at each taxon on the exposure and the

exposure-adjusted outcome. We implement the inverse regression
model using our Linear Decomposition Model (LDM) framework
(Hu and Satten, 2020; Hu et al., 2021; Zhu et al., 2021) that we
developed originally for testing microbiome associations (Hu and
Satten, 2020). As the LDM was designed to specifically handle the
microbiome data complexities (e.g. high-dimensionality, sparsity
and overdispersion), our LDM-based mediation analysis naturally
inherits these features. As the LDM models each taxon separately,
our approach allows different taxa to be under different types of
null. Finally, like MedTest and MODIMA, we also develop a global
test of community-level mediation; our global test statistic is a co-
herent combination of our taxon-specific statistics. The main advan-
tage of our approach is that results for individual taxa are available;
neither MedTest nor MODIMA provide taxon-specific results.

The rest of this article is organized as follows. In Section 2, we
first give the motivation for using inverse regression and the LDM
framework. Then, we consider four ways of testing individual taxa
for mediation and then a method that aggregates the taxon-level in-
formation to test the overall mediation in a community. In Section
3, we first present simulation results in which we numerically com-
pared the four ways of testing individual taxa and selected the one
with the best performance, and we compared our global test to
existing tests. Then, we present the application to a real study on
murine microbiome. We conclude with Section 4.

2 Materials and methods

2.1 Motivation
Our starting point is the following classical model for multiple medi-
ators (VanderWeele and Vansteelandt, 2014). For a continuous out-
come and J continuous (potential) mediators with no exposure–
mediator and mediator–mediator interactions, the model specifies a
linear model for each mediator and a linear model for the outcome
that includes the effects of all mediators:

EðMjjZ;TÞ ¼ a0;j þ aT
Z;jZþ a1;jT; (1)

EðOjZ;T;M1; . . . ;MJÞ ¼ h0 þ hT
ZZþ h1T þ

XJ

j¼1
h2;jMj; (2)

where the notation was introduced in Figure 1b. It can be derived
that the overall (total) mediation effect through ðM1; . . . ;MJÞ takes
the form

PJ
j¼1 a1;jh2;j (VanderWeele and Vansteelandt, 2014); note

that a1;j characterizes the effect of T on Mj given Z, and h2;j charac-
terizes the effect of Mj on O given Z and T and all other Mjs. When
the mediators are independent of one another conditional on Z and
T, each product term a1;jh2;j can be interpreted as the mediation ef-
fect through a single mediator Mj. Even if the mediators are not con-
ditionally independent, a non-zero value of a1;jh2;j indicates a non-
zero contribution of Mj to the overall mediation effect. Thus, our
objective can be achieved by testing whether a1;jh2;j ¼ 0 at each po-
tential mediator. However, the forward outcome model (2), al-
though describing the mediation process in a natural order and
enabling intuitive forms for the mediation effects, are not easily gen-
eralizable to an outcome that is a discrete, multivariate or censored-
survival-time variable. In addition, Model (2) does not permit a
large number of mediators, e.g. more mediators than samples, unless
some regularization is imposed.

2.2 Inverse regression model
The limitations of the forward outcome model motivated us to
adopt the inverse regression model that exchanges the positions of
the outcome and mediators. Inverse regression is a commonly used
approach, which, e.g. has been widely used in genetics studies of
multiple phenotypes (Majumdar et al., 2015; O’Reilly et al., 2012;
Wu and Pankow, 2015). It has a key advantage of accommodating
different types of outcomes. Also, it allows a large number of micro-
bial taxa to be analyzed simultaneously by treating each taxon as
the response variable in the regression, one at a time.

Fig. 1. (a) Some effect of the exposure on the outcome is mediated through multiple

microbes. (b) T denotes the exposure, ðM1; . . . ;MJÞ the microbes, O the outcome

and Z the confounders
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Here, we assume that a mediating taxon acts through its relative
abundance, so we let Mj denote the relative abundance of taxon j, al-
though our methodology can easily accommodate presence–absence
data (Mj taking Value 1 or 0 indicating non-zero read count of taxon
j in a sample). We find that, by properly orthogonalizing the expos-
ure variable T and outcome variable O, we can obtain an inverse re-
gression model that ‘merges’ both the mediator model (1) and the
forward regression model (2) into one regression. To this end, we
define Tr to be the residual of T after orthogonalizing against Z, and
Or to be the residual of O after orthogonalizing against (Z, T). We
consider the inverse regression model for taxon j

EðMjjZ;T;OÞ ¼ b0;j þ bT
Z;jZþ b1;jTr þ b2;jOr: (3)

We show in Supplementary Text S1 that b1;j ¼ a1;j and that b2;j ¼ 0
and h2;j ¼ 0 coincide. As a result, testing

H0j : b1;jb2;j ¼ 0; (4)

is equivalent to testing a1;jh2;j ¼ 0, i.e. whether there exists a medi-
ation effect through taxon j. We can test (4) by obtaining the least-
squares estimates from (3), denoted by b̂1;j and b̂2;j, forming the test
statistic jb̂1;jb̂2;jj, and using permutation to provide the null distribu-
tion of the test statistic. All of these can be achieved by using the
LDM framework with minor modifications.

2.3 Overview of the LDM
Here, we give a brief overview of the LDM. It was originally devel-
oped for testing associations between the microbiome and the cova-
riates of interest. It is based on a linear model that regresses the
microbiome data at each taxon on the sequentially orthogonalized
covariates that include first the confounding covariates that we wish
to adjust for and then the covariates that we wish to test. Thus, it
allows an arbitrary number of taxa (including arbitrarily rare taxa)
to be tested simultaneously. The covariates can be continuous, dis-
crete or multivariate variables, or even censored-survival times; note
that the survival times and censoring statuses are first fit by a Cox
model to be converted to the Martingale or deviance residuals,
which are then used as a generic continuous covariate in the LDM
(Hu et al., 2022). The taxon data can be at the relative abundance
scale, arcsin-root-transformed relative abundance scale or the pres-
ence–absence scale (Hu et al., 2021), and their results can be com-
bined to provide omnibus tests (Zhu et al., 2022). The inference of
associations in the LDM is based on permutation (i.e. permuting the
orthogonalized covariates) to circumvent making parametric
assumptions about the distribution of the microbiome data. Thus,
the inference is robust to sparse and overdispersed count data, as
well as small sample sizes, and the LDM always has good control of
the FDR. Also, the permutation can be conducted to preserve the
sample structure [e.g. clustered data (Hu and Satten, 2020), matched
sets (Zhu et al., 2021)], so the LDM can accommodate certain com-
plex designs. The covariate types, taxon data scales and sample
structures that the LDM supports were summarized in Figure 1 of
Zhu et al. (2022). As a result, our mediation analysis implemented
in the LDM framework naturally inherits all these features from the
LDM.

2.4 Testing mediation effects at individual taxa
As mentioned after Equation (4), it is most natural to consider the
following statistic for testing the mediation effect at taxon j:

Uj ¼ jb̂1;jb̂2;jj:

To provide a reference distribution for this statistic under the com-
posite null of no mediation, we calculate the following statistic
under the bth (b ¼ 1; . . . ;B) permutation:

U
ðbÞ
j ¼ maxfjb̂1;jb̂

ðbÞ
2;j j; jb̂

ðbÞ
1;j b̂2;jj; jb̂

ðbÞ
1;j b̂

ðbÞ
2;j jg;

where b̂
ðbÞ
1;j and b̂

ðbÞ
2;j are obtained by permuting Tr and Or, separately,

to break the T–Mj association given Z and the Mj–O association

given (Z, T), respectively, and they are directly available from the
LDM. The three product terms in U

ðbÞ
j correspond to the test statis-

tics under the type-I, type-II, and type-III null hypotheses. Because
U
ðbÞ
j is the maximum of three statistics whereas Uj is not, U

ðbÞ
j is in-

herently conservative in the sense that its distribution is more spread
out than the true distribution of Uj under a specific type of null (un-
known). Finally, the permutation P-value for taxon j is calculated to
be pj ¼ B�1

PB
b¼1 IfU

ðbÞ
j � Ujg, which is then corrected for multiple

testing by Sandve’s sequential stopping rule (Sandve et al., 2011) as
implemented in the LDM. We refer to this approach to testing indi-
vidual taxa as LDM-med-product. However, it is unclear how to
handle multivariate exposures or outcomes, in which case there are
more than one element in b1;j or b2;j.

A second way is to base the test statistic on the P-values p1;j and
p2;j for testing b1;j ¼ 0 and b2;j ¼ 0, respectively, which naturally ac-
commodate multivariate exposures or outcomes and are directly
available from the LDM. Now we consider the test statistic

Zj ¼ maxðp1;j;p2;jÞ;

and assess the significance of Zj by using the same permutation pro-
cedure as above and calculating the statistic

Z
ðbÞ
j ¼ minfmaxðp1;j; p

ðbÞ
2;j Þ;maxðpðbÞ1;j ; p2;jÞ;maxðpðbÞ1;j ; p

ðbÞ
2;j Þg;

where the null P-values p
ðbÞ
1;j and p

ðbÞ
2;j are based on the rank statistics

of b̂
ðbÞ
1;j and b̂

ðbÞ
2;j , respectively, among all permutation replicates

(Westfall and Young, 1993). Note that maxðp1;j; p2;jÞ can also be
directly used as an analytical P-value for testing a single mediator
(Boca et al., 2014), but here, we choose permutation for inference
because permutation is more robust and the permutation replicates
are readily available from the LDM. Similarly to U

ðbÞ
j , the statistic

Z
ðbÞ
j is inherently conservative. Finally, the permutation P-value is

calculated to be pj ¼ B�1
PB

b¼1 IfZ
ðbÞ
j � Zjg and corrected for mul-

tiple testing by Sandve’s sequential stopping rule (Sandve et al.,
2011) as implemented in the LDM. We refer to this approach as
LDM-med-maxP. In fact, this approach was found to be equivalent
to LDM-med-product in simple settings, e.g. when all variables are
normally distributed (Boca et al., 2014). However, besides the con-
servative U

ðbÞ
j and Z

ðbÞ
j , the stringent correction of all J tests in both

LDM-med-product and LDM-med-maxP tends to make them even
more inefficient.

A third approach is to directly apply the MultiMed procedure
(Sampson et al., 2018) to the LDM P-values p1;j and p2;j, which was
developed to improve the efficiency of testing a large number of
mediators. The idea is to restrict the mediation testing to a subset of
taxa that have relatively small p1;j and p2;j. Here, we briefly describe
this procedure; the theoretical properties that guarantee the FDR
control can be found in the original papers (Bogomolov and Heller,
2018; Sampson et al., 2018). First, for a nominal FDR level a, find
the subset of taxa with relatively small p1;j to be
xS1 ¼ fj : p1;j < a=2g, and denote the cardinality of the subset by
S1 ¼ CðxS1Þ. Similarly, find the subset with relatively small p2;j to be
xS2 ¼ fj : p2;j < a=2g and denote S2 ¼ CðxS2Þ. Then, the down-
stream testing of mediation is restricted to taxa at the intersection of
the two subsets, which can greatly alleviate multiple testing correc-
tion. For taxon j 2 xS1 \ xS2, define the subset-adjusted P-value

pS;j ¼ 2maxðS2p1;j; S1p2;jÞ:

Taxon j is declared to be a mediator if the FDR-adjusted P-value

pD;j ¼ min
j0 :pS;j0 �pS;j

pS;j0=rankðpS;j0 Þ � a:

We call this approach LDM-med-subset. Although the subset-based
approach has shown to be more efficient than the approach based
on the product of coefficients (similar to our first approach) in the
context of controlling the family-wise error rate (Sampson et al.,
2018), it is of interest to re-evaluate these approaches in the context
of controlling the FDR.

A fourth approach is to directly apply the HDMT procedure
(Dai et al., 2022) to the LDM P-values p1;j and p2;j, which was
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developed to overcome the conservativeness of a mediation test due
to the composite null. The core of the HDMT procedure is based on
estimating the proportions of the three types of null and then the
underlying mixture null distribution of the statistic maxðp1;j;p2;jÞ.
We call this approach LDM-med-HDMT.

2.5 Testing the overall mediation effect in a community
If every taxon in a community is under some type of null (not neces-
sarily the same type), we declare a null community with no medi-
ation effect. Recall that Zj ¼ maxðp1;j; p2;jÞ has frequently been used
as a P-value for testing a single mediator (Boca et al., 2014). Given
these ‘P-values’ at individual taxa, it is straightforward to construct
a global test statistic by combining these ‘P-values’. Here, we adopt
the Harmonic mean method (Wilson, 2019) to aggregate Zjs, which
is more robust to the dependence structure among taxa than Fisher’s
method. The harmonic mean of Zjs is J=ð

PJ
j¼1 Z

�1
j Þ, where a smaller

value corresponds to a stronger evidence against the null hypothesis.
To have a usual test statistic with a reverse directionality, we choose
the statistic for the global test to be

Zglobal ¼
XJ

j¼1

Z
�1
j :

We assess the significance of Zglobal via permutation, since permuta-
tion is more robust and the permutation replicates are readily avail-
able. The statistic based on bth permutation replicate is
Z
ðbÞ
global ¼

PJ
j¼1 fZ

ðbÞ
j g

�1; where Z
ðbÞ
j has been introduced earlier.

Finally, the permutation P-value for the global test is given by
pglobal ¼ B�1

PB
b¼1 IfZ

ðbÞ
global � Zglobalg. We call this test LDM-med-

global, which is a natural extension of LDM-med-maxP but is also
compatible with LDM-med-subset and LDM-med-HDMT in the
sense that all are based on the P-values p1;j and p2;j.

3 Results

3.1 Simulation studies
Our simulations were based on data on 856 taxa of the upper-
respiratory-tract (URT) microbiome (Charlson et al., 2010), and the
mediator model (1) and the forward outcome model (2) as genera-
tive models. We focused on the sample size 100 but also considered
30 in some cases, because our murine microbiome dataset has 36
samples. Suppose that the exposure variable Ti is binary and that an
equal number of samples were exposed (Ti ¼ 1) and unexposed
(Ti ¼ 0). We considered continuous outcomes as well as binary out-
comes. In what follows, we number the taxa by decreasing relative
abundance so that Taxon 1 is the most abundant. We considered
three mediation mechanisms, in which we assumed the mediating
taxa were the top five most abundant taxa (Taxa 1–5), five less
abundant taxa (Taxa 51–55) and a mixture of the two sets (Taxa 4–
5 and 51–52); we refer to them as M-common, M-rare and M-
mixed, respectively. In all scenarios, we selected Taxa 6–10 to be
associated with the exposure but not with the outcome, and Taxa
11–15 to be associated with the outcome but not with the exposure,
corresponding to the type-I and type-II null taxa, respectively.

To generate the read count data, we first set the baseline (when
Ti ¼ 0) relative abundances of all taxa for all samples, denoted by
pi ¼ ðpi1; pi2; . . . ; piJÞ, to the population means that were estimated
from the URT data. To induce the effects of the exposure Ti on a set
of associated taxa (e.g. the mediating taxa or type-I null taxa), for
those unexposed we kept p i unchanged; for those exposed we
decreased pij for some of the associated taxa by a percentage, which
equals bTM for the mediating taxa and aTM (0 or 0.6) for the type-I
null taxa, and we redistributed the decreased amount evenly over
the remaining of the associated taxa. This way ensures that the rela-
tive abundances of non-associated taxa remain intact and the modi-
fied pi satisfies the compositional constraint (unit sum). Note that
bTM captures the effects of the exposure on the mediating taxa and
aTM captures the effects of the exposure on the type-I null taxa.
Specifically, in M-common, the increasing set of the mediating taxa

was Taxa 1–2 and the decreasing set was Taxa 3–5; in M-rare, the
two sets were Taxa 51–52 and 53–55; in M-mixed, the two sets
were Taxa 4 and 52 and Taxa 5 and 51. Among the type-I null taxa,
the two sets were Taxa 6–7 and 8–10. The modified pi represents
the mean relative abundances conditional on the exposure value.
Then, we introduced sample heterogeneity by drawing the sample-
specific composition pi ¼ ðpi1; pi2; . . . ;piJÞ from the Dirichlet distri-
bution Dirðp i; hÞ with mean p i (after modification) and overdisper-
sion h that was set to 0.02 (as estimated from the URT data).
Finally, we generated the read count data Mi ¼ ðMi1;Mi2; . . . ;MiJÞ
using the Multinomial distribution with mean pi and the library sizes
(sequencing depth) sampled from Nð10 000; ð10 000=3Þ2Þ and left
truncated at 500.

To generate the outcome that is influenced by the mediating
taxa, denoted by M, and the type-II null taxa, denoted by N , we
partitioned each set of taxa into two subsets (M1 andM2; N 1 and
N 2) with approximately equal total relative abundance. In particu-
lar, we setM1 andM2 to be the increasing and decreasing sets, re-
spectively, that were determined earlier relative to the exposure and
have similar total relative abundance; we set N 1 and N 2 to be Taxa
11–12 and 13–15, respectively. To simulate a continuous outcome,
we used the model

Oi ¼ bTOTi þ bMOscale
X

j2M1

pij �
X

j2M2

pij

� �

þ aMOscale
X
j2N 1

pij �
X
j2N 2

pij

� �
þ �i; (5)

where scaleð:Þ is a scaling function that standardizes a variable to
have mean 0 and standard deviance 1, bTO characterizes the direct
effect of the exposure on the outcome and was fixed at 0.2 here,
bMO characterizes the effects of the mediating taxa on the outcome,
aMO characterizes the effects of the type-II taxa and was fixed at 0
or 0.4, and the error term �i was drawn from Nð0;0:52Þ. It can be
verified that the taxa that are neither mediators nor type-II null taxa
were uncorrelated with the outcome after controlling for Ti, owing
to the counterbalancing effects of taxa in M1 and M2 (or N 1 and
N 2) on the outcome. To simulate a binary outcome, we calculated
the probability PrðOi ¼ 1jTi; piÞ ¼ expðliÞ=f1þ expðliÞg with li

being the same linear predictor as in (5), without the error term �i.
To simulate a confounder, we note that a confounder has effects

on the exposure, the microbiome and the outcome (Fig. 1b). Thus,
we first simulated the binary confounder Zi with 70% ‘success’ rate
among the exposed and 30% among the unexposed. Then, we used
the same decreasing and increasing sets of the mediating taxa as
determined earlier, now with the deduction percentage cZM ¼ 0:3,
and the same operation as for the exposure to further modify pi for
those with Zi ¼ 1. Finally, we modified the linear predictor in the
outcome model (5) to include the term cZOZi with cZO fixed at 0.7.

Prior to analysis, we filtered out taxa that were found in fewer
than 5 subjects in the dataset, which resulted in �460 taxa remain-
ing in analysis. For testing mediation effects at individual taxa, we
compared our four approaches: LDM-med-maxP, LDM-med-prod-
uct, LDM-med-subset and LDM-med-HDMT (using the asymptotic
version as recommended because the proportions of the type-I and
type-II null taxa are small in all scenarios here). The sensitivity (pro-
portion of the truly mediating taxa that were detected) and empiric-
al FDR were assessed at the nominal level of 10% based on 1000
replicates of data. Note that none of CMM, SparseMCMM and
Zhang’s method worked for our simulated data, as they either gave
errors (due to the large number of taxa or extensive zero count data)
or ran more than 10 h. For testing the overall mediation effect, we
applied LDM-med-global and compared it to MedTest and
MODIMA whenever the latter were applicable. For MedTest, we
adopted the omnibus test based on both the Bray–Curtis and
Jaccard distance matrices, which would work well when mediating
taxa are abundant and less abundant, respectively, and thus form a
complementary pair. For MODIMA, we chose Bray–Curtis, as
MODIMA allows one distance measure only and Bray–Curtis is the
most commonly used distance in the literature and was also fre-
quently used in the MODIMA paper. The type I error and power
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were assessed at the nominal level 0.05 based on 10 000 and 1000

replicates of data, respectively.

3.2 Simulation results
For testing mediation at individual taxa, the subset approach (LDM-

med-subset) had substantially improved sensitivity over the product
(LDM-med-product) and maxP (LDM-med-maxP) approaches in all
scenarios, while the latter two always had similar performance

(Figs 2–6 and Supplementary Figs S1 and S2). As expected, all three
approaches yielded conservative empirical FDR in all scenarios.

Although the empirical FDR of the HDMT approach (LDM-med-
HDMT) is less conservative (i.e. closer to the nominal level), its
sensitivity results are generally comparable to those from LDM-

med-subset in all scenarios. For these reasons, we always select
LDM-med-subset as the recommended method for testing individual
taxa.

The type I error results of the global tests in M-common, M-rare
and M-mixed are summarized in Table 1 and Supplementary Table
S1. We considered 12 scenarios under the global null hypothesis,
each corresponding to a specific combination of the three types of
null taxa in a simulated community. For example, when
ðbTM;bMO; aTM; aMOÞ ¼ ð0; 0:4; 0; 0Þ, the pre-selected mediating
taxa reduced to the type-II null taxa (bTM ¼ 0 and bMO ¼ 0:4), and
both the pre-selected type-I and type-II null taxa reduced to the
type-III null taxa (aTM ¼ 0 and aMO ¼ 0); here the type-III null taxa
were viewed as a special case of either the type-I or type-II null taxa
whichever existed in the community, so this community was deter-
mined to have type-II null taxa only. Clearly, MedTest and
MODIMA easily lost control of the type I error whenever the type-I
and type-II null taxa coexisted in the community. In all scenarios,
LDM-med-global controlled the type I error; in fact, it was conser-
vative as expected. In scenarios that consist of a single type of null
taxa, MedTest and MODIMA controlled the type I error; then
LDM-med-global appeared to have more conservative type I error
than MedTest and MODIMA because LDM-med-global still
allowed different taxa to be under different types of null.

In the presence of a confounder (Supplementary Table S2),
LDM-med-global controlled the type I error even when the

Fig. 2. Simulation results in M-mixed with a continuous outcome and no con-

founder, in the absence of type-I and type-II null taxa (aTM ¼ 0 and aMO ¼ 0). The

upper and middle panels pertain to sensitivity and empirical FDR, respectively, of

the four approaches to testing individual taxa: LDM-med-product, LDM-med-

maxP, LDM-med-subset and LDM-med-HDMT, which are based on the product of

coefficients as the test statistic, the maximum of coefficient P-values as the test stat-

istic, a subset of promising taxa and the HDMT procedure, respectively. The gray

dotted line in the middle panel represents the nominal level of 10% for the FDR.

The lower panel pertains to power of the proposed global test, LDM-med-global

and the existing global tests, MedTest and MODIMA. The gray dashed line there

represents the nominal level 0.05 for the type I error

Fig. 3. Simulation results in M-mixed with a continuous outcome and a confounder,

in the absence of type-I and type-II null taxa. MODIMA was excluded because it

does not allow adjustment of confounders

Fig. 4. Simulation results in M-mixed with a continuous outcome and no con-

founder, in the presence of type-I and type-II null taxa (aTM ¼ 0:6 and aMO ¼ 0:4).

MedTest and MODIMA were both excluded because they did not control the type I

error (Table 1)

Fig. 5. Simulation results in M-mixed with a binary outcome and no confounder, in

the absence of type-I and type-II null taxa. LDM-med-global�� is a variant of LDM-

med-global that assumed the same type of null (unknown) for all taxa as was

assumed in MedTest. The sample size was increased to 200 to obtain adequate

power
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confounder was not adjusted for, due to its conservativeness. As this
provided no clue to the extent of the confounding effect and thus the
capability of LDM-med-global in adjusting for the confounding ef-
fect, we considered a variant of LDM-med-global, called LDM-
med-global�, that used the information on the type of null for each
taxon (only available in simulation). Specifically, we modified Z

ðbÞ
j

to be maxðp1;j;p
ðbÞ
2;j Þ; maxðpðbÞ1;j ; p2;jÞ or maxðpðbÞ1;j ; p

ðbÞ
2;j Þ depending on

the actual type of null at taxon j. LDM-med-global� yielded inflated
type I error when the confounder was not adjusted in the regression
and type I error close to 0.05 when it was adjusted, demonstrating
that LDM-med-global� (and hence LDM-med-global) was effective
in adjusting for confounders.

For evaluating power of the global tests, we started with the
scenarios when there were neither type-I nor type-II null taxa
(aTM ¼ aMO ¼ 0), under which MedTest and MODIMA were valid.
We also started with the simple case of a continuous outcome and
no confounder. In M-common (Supplementary Fig. S1), MedTest
and MODIMA were more powerful than LDM-med-global,

whereas in M-rare (Supplementary Fig. S2), they were much less
powerful than LDM-med-global, demonstrating that MedTest and
MODIMA were effective in capturing mediation effects in abundant
taxa but in not rare ones. In M-mixed (Fig. 2), the power of LDM-
med-global crossed with that of MedTest and MODIMA; LDM-
med-global performed best when bMO was relatively large. The rela-
tive power of LDM-med-global and MedTest remained largely un-
changed when a confounder was introduced to M-mixed (Fig. 3);
MODIMA was not included for comparison in this case because it
cannot adjust for the confounder. When the type-I and type-II null
taxa were both introduced (Fig. 4), they invalidated both MedTest
and MODIMA but minimally affected the performance of LDM-
med-global. When we switched to a binary outcome (Fig. 5), LDM-
med-global lost power to MedTest and MODIMA. We wanted to
know whether the power loss was the price that LDM-med-global
paid in order to always allow different types of null at different
taxa. To investigate this, we considered another variant of LDM-
med-global, called LDM-med-global��, that assumed the same type
of null (unknown) across all taxa as assumed in MedTest and

MODIMA, and modified Z
ðbÞ
global to be maxf

PJ
j¼1 ½maxðp1;j; p

ðbÞ
2;j Þ�

�1;PJ
j¼1 ½maxðpðbÞ1;j ; p2;jÞ��1;

PJ
j¼1 ½maxðpðbÞ1;j ;p

ðbÞ
2;j Þ�

�1g. Indeed, LDM-

med-global�� gained substantially power over LDM-med-global and
had comparable or even better power than MedTest. Finally, when
the sample size was reduced to merely 30 in the same scenario as in
Figure 2, we observed similar patterns of results in Figure 6 com-
pared to Figure 2.

3.3 Murine microbiome study
We analyzed the data generated from a murine microbiome study
(Schulfer et al., 2019), which was conducted to explore whether the
sub-therapeutic antibiotic treatment (STAT) would alter the gut
microbiome composition and whether the altered gut microbiome
would affect the body weight gain later in life. We focused on male
mice for this analysis. The male mice were first randomized into the
STAT and control groups, which was used as a binary exposure
variable in our analysis. Then, their fecal samples were collected lon-
gitudinally at Days 21 and 28. Bacterial DNAs were extracted from
the fecal samples, sequenced for the 16S rRNA gene, and summar-
ized into a taxa count table that initially contained 149 genera.
Samples with <1800 reads, and genera with <10% presence or
0.01% mean relative abundance were filtered out, so the final taxa
count table for our analysis included 41 genera and 36 mice (23
exposed to STAT and 13 unexposed); each mouse had two micro-
biome measurements at both time points. The mice body weight (in
grams) prior to sacrifice was measured and used as a continuous
outcome variable in our analysis. There were no additional covari-
ates to be adjusted, as all potential confounders had been well-
controlled in the randomized experiment.

It can be seen from Supplementary Figure S3 that mice exposed
to STAT were heavier than the control mice, with a small Wilcoxon
P-value 0.011. This motivated us to test whether this effect of STAT
on body weight was mediated through the gut microbiome. For
detecting individual mediating taxa (at the nominal FDR level of
20%, which was relatively high because the total number of genera
was small), we applied LDM-med-subset and LDM-med-HDMT.
For testing the overall mediation effect of the gut microbiome, we
applied LDM-med-global, as well as MedTest, MODIMA and
SparseMCMM whenever they were applicable. Note that, although
the outcome distribution somewhat deviated from the normal distri-
bution (Supplementary Fig. S3), all methods should be robust to the
deviation because LDM-related tests treat the outcome as a covari-
ate, and MedTest, MODIMA and SparseMCMM all base their in-
ference on permutation.

All main results were summarized in Table 2. We first restricted
our mediation analysis to the cross-sectional microbiome data at
Day 28 only. LDM-med-subset detected seven significant mediators,
[Ruminococus] (a species that is misclassified to the genus
Ruminococcus and is now awaiting to be formally renamed through
the appropriate Code of Nomenclature), Candidatus Arthromitus,
Clostridiales, Clostridium, Ruminococcus, Dehalobacterium and

Fig. 6. Simulation results in the same scenario as in Figure 2 but with sample size 30

Table 1. Type I error (at level 0.05) of the global tests in M-mixed

with a continuous outcome and no confounder, in 12 scenarios

under the global null

Method

bTM bMO aTM aMO Type(s)

of null

LDM-

med-

global

MedTest MODIMA

0.0 0.4 0.0 0.0 II 0.010 0.024 0.044

— — — 0.4 II 0.007 0.024 0.048

— — 0.6 0.0 I, II 0.010 0.504 0.936

— — — 0.4 I, II 0.010 0.547 0.985

0.6 0.0 0.0 0.0 I 0.004 0.031 0.042

— — — 0.4 I, II 0.007 0.270 0.720

— — 0.6 0.0 I 0.008 0.038 0.051

— — — 0.4 I, II 0.010 0.282 0.811

0.0 0.0 0.0 0.0 III 0.000 0.004 0.003

— — — 0.4 II 0.005 0.018 0.039

— — 0.6 0.0 I 0.006 0.030 0.053

— — — 0.4 I, II 0.009 0.317 0.813

Note: MedTest is the omnibus test that combines results from analyzing

the Bray–Curtis and Jaccard distances. MODIMA is based on the Bray–Curtis

distance. The parameters bTM and bMO determine the type of null that the

pre-selected mediating taxa reduce to; aTM controls the existence of the pre-

selected type-I null taxa and aMO controls the existence of the pre-selected

type-II null taxa.
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Oscillospira, among which the first three genera were detected by
LDM-med-HDMT. If the nominal FDR level of 10% were used,
LDM-med-subset would detect one mediator [Ruminococcus] while
LDM-med-HDMT would detect none. These results provided add-
itional support for selecting LDM-med-subset over LDM-med-
HDMT. Although SparseMCMM identified six mediators (shown
in their Supplementary Table S9), two of which ([Ruminococus] and
Clostridium) overlapped with our detection list, SparseMCMM had
no control for the FDR. To gain more insights into these results, we
performed analysis of the bivariate association between the expos-
ure and the relative abundance of each taxon using the Wilcoxon
rank-sum test, and the bivariate association between each taxon and
the outcome conditional on the exposure using the standard linear
regression (treating the outcome as the response variable, and the
exposure and taxon as covariates). We corrected multiple testing in
each association analysis by the Benjamini–Hochberg procedure
(Benjamini and Hochberg, 1995) at the nominal FDR level of 20%.
As shown in Supplementary Table S3, 25 taxa were detected to be
associated with the exposure, including all seven mediators detected
by LDM-med-subset; five of the seven mediators were confirmed to
be associated with the outcome, and the other two mediators ranked
next but failed to pass the threshold of significance here. Thus, the
mediators identified by LDM-med-subset seem plausible. For testing
the community-level mediation, LDM-med-global produced a global
P-value 0.0351. SparseMCMM yielded a more significant global P-
value 0.004. Both MedTest (the omnibus test of Bray–Curtis and
Jaccard distances) and MODIMA (based on the Bray–Curtis dis-
tance) produced non-significant global P-values 0.379 and 0.133,
respectively.

We also performed mediation analysis of the longitudinal (clus-
tered) microbiome data at both Days 21 and 28. Note that the out-
come was observed only once per subject. While no other methods
exist to analyze mediation of the microbiome data with correlations,
LDM-related tests inherited such a capability from the LDM (by set-
ting perm.within.type¼‘none’ and perm.between.type¼‘free’). Here,
a time variable (1/0) indicating Day 28 was included as a covariate
Z, as the microbiome composition was found to be significantly dif-
ferent between the two times (P-value 0.040 by the LDM for analyz-
ing the matched-pair data). The results of mediation analysis by

LDM-related tests were largely consistent with the previous results
based on the data at Day 28 only. We again performed analysis of
bivariate associations between the exposure and each taxon by
applying the LDM to the clustered data (adjusted for the time ef-
fect); we performed analysis of bivariate associations between each
taxon and the outcome conditional on the exposure using the stand-
ard linear regression (regressing the outcome variable on the expos-
ure, the relative abundances of the taxon at Days 21 and 28, and
testing the joint effect of the two relative abundance variables using
the F-test). The results were again largely consistent with the previ-
ous results on bivariate associations using the data at Day 28 only
(Supplementary Table S3).

Finally, to illustrate the capability of LDM-related tests to han-
dle categorical outcome variables, we converted the continuous out-
come variable into a three-level categorical variable by the 33rd and
66th percentiles. For this type of outcome variables, only LDM-
related tests and MODIMA were applicable, none of which, how-
ever, identified any significant mediation effect.

4 Discussion

We presented a new approach to mediation analysis of the micro-
biome that is based on inverse regression and the LDM framework.
We call the mediation framework based on the LDM LDM-med,
which consists of LDM-med-subset for testing the taxon-level medi-
ation and LDM-med-global for testing the community-level medi-
ation. LDM-med offers maximum robustness to the complex features
in the taxa count data (e.g. high-dimensionality, sparsity and overdis-
persion), and provides extensive flexibility to accommodate various
exposures and outcomes and study designs. Specifically, using the
simulated and real data, we demonstrated the capabilities of LDM-
med to deal with null taxa under different types of null hypothesis of
no mediation, continuous, binary and multivariate outcomes, clus-
tered data with the exposure and outcome variables varying between
the clusters, and adjustment of confounding covariates. In addition,
LDM-med could also handle clustered data with the exposure and/or
outcome variables varying within the clusters (Zhu et al., 2021), and
perform analysis at the presence–absence scale using a rarefaction-

Table 2. Mediation analysis of the murine microbiome dataset

Three analyses

Method Day 28 (continuous outcome) Days 21 and 28 (clustered

samplesb)

Day 28 (multivariate

outcomec)

Detected taxa LDM-med-subset [Ruminococcus]a [Ruminococcus] None

(FDR¼ 20%) Candidatus Arthromitus Candidatus Arthromitusa —

Clostridiales Clostridiales —

Clostridium Clostridiuma —

Ruminococcus — —

Dehalobacterium — —

Oscillospira — —

LDM-med-HDMT [Ruminococcus] [Ruminococcus] None

Candidatus Arthromitus Candidatus Arthromitus —

Clostridiales Clostridiales —

— Clostridium —

Global P-value LDM-med-global 0.0351 0.0387 0.633

MedTest 0.379 — —

MODIMA 0.133 — 0.177

SparseMCMM 0.004 — —

Note: [Ruminococcus] is a species that is misclassified to the genus Ruminococcus and is now awaiting to be formally renamed through the appropriate Code

of Nomenclature.
aTaxa that would have been detected at the nominal FDR level of 10%.
bThe microbiome data from Days 21 and 28 tend to cluster within subjects, i.e. more correlated within subjects.
cThe weight gain outcome values were categorized into three categories by the 33rd and 66th percentiles. The detected taxa are listed such that the common

taxa generated from different analyses appear in the same rows.
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without-resampling approach (Hu et al., 2021). In summary, LDM-
med can be highly useful in practice.

We have added LDM-med to our existing R package LDM. The
computation of LDM-med is as efficient as the LDM. For example,
using a single-thread MacBook Pro laptop (2.9 GHz Quad-Core
Intel Core i7, 16 GB memory), it took 46 s to analyze one simulated
dataset having 100 samples and �460 taxa (after filtering); it took
126 s to analyze one simulated dataset having 200 samples and
�700 taxa (after filtering). The murine dataset was at a smaller
scale, consisting of 36 mice and 41 genera, so it took only 5 and 12 s
to analyze the data at Day 28 only and the data at both Days 21 and
28, respectively.

LDM-med tests the marginal mediation effect for each taxon, and
thus the identified mediators may not all be true biological mediators,
which are called ‘probable mediators’ but not ‘true mediators’
(Sampson et al., 2018). This compromise was made in order to obtain
controlled FDR for the detected mediators, which we deem as critical
in the initial ‘scan’ of high-dimensional features to generate ‘targets’
to follow up in the downstream mechanistic study. This strategy has
been very common in the analysis of high-dimensional omic data
(Asher et al., 2009; Hu et al., 2015; Sampson et al., 2018).
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