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Abstract

Background Surgery for thumb carpometacarpal osteoar-
thritis is offered to patients who do not benefit from non-
operative treatment. Although surgery is generally successful
in reducing symptoms, not all patients benefit. Predicting
clinical improvement after surgery could provide decision
support and enhance preoperative patient selection.

Questions/purposes This study aimed to develop and
validate prediction models for clinically important im-
provement in (1) pain and (2) hand function 12 months
after surgery for thumb carpometacarpal osteoarthritis.

Methods Between November 2011 and June 2020, 2653
patients were surgically treated for thumb carpometacarpal
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osteoarthritis. Patient-reported outcome measures were
used to preoperatively assess pain, hand function, and
satisfaction with hand function, as well as the general
mental health of patients and mindset toward their condi-
tion. Patient characteristics, medical history, patient-
reported symptom severity, and patient-reported mindset
were considered as possible predictors. Patients who had
incomplete Michigan Hand outcomes Questionnaires at
baseline or 12 months postsurgery were excluded, as these
scores were used to determine clinical improvement. The
Michigan Hand outcomes Questionnaire provides sub-
scores for pain and hand function. Scores range from 0 to
100, with higher scores indicating less pain and better hand
function. An improvement of at least the minimum clini-
cally important difference (MCID) of 14.4 for the pain
score and 11.7 for the function score were considered
“clinically relevant.” These values were derived from
previous reports that provided triangulated estimates of two
anchor-based and one distribution-based MCID. Data
collection resulted in a dataset of 1489 patients for the pain
model and 1469 patients for the hand function model. The
data were split into training (60%), validation (20%), and
test (20%) dataset. The training dataset was used to select
the predictive variables and to train our models. The per-
formance of all models was evaluated in the validation
dataset, after which one model was selected for further
evaluation. Performance of this final model was evaluated
on the test dataset. We trained the models using logistic
regression, random forest, and gradient boosting machines
and compared their performance. We chose these algo-
rithms because of their relative simplicity, which makes
them easier to implement and interpret. Model perfor-
mance was assessed using discriminative ability and
qualitative visual inspection of calibration curves.
Discrimination was measured using area under the curve
(AUC) and is a measure of how well the model can dif-
ferentiate between the outcomes (improvement or no im-
provement), with an AUC of 0.5 being equal to chance.
Calibration is a measure of the agreement between the
predicted probabilities and the observed frequencies and
was assessed by visual inspection of calibration curves. We
selected the model with the most promising performance
for clinical implementation (that is, good model perfor-
mance and a low number of predictors) for further evalu-
ation in the test dataset.

Results For pain, the random forest model showed the
most promising results based on discrimination, calibra-
tion, and number of predictors in the validation dataset. In
the test dataset, this pain model had a poor AUC (0.59) and
poor calibration. For function, the gradient boosting ma-
chine showed the most promising results in the validation
dataset. This model had a good AUC (0.74) and good
calibration in the test dataset. The baseline Michigan Hand
outcomes Questionnaire hand function score was the only
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predictor in the model. For the hand function model, we
made a web application that can be accessed via https:/
analyse.equipezorgbedrijven.nl/shiny/cmc1-prediction-
model-Eng/.

Conclusion We developed a promising model that may
allow clinicians to predict the chance of functional im-
provement in an individual patient undergoing surgery for
thumb carpometacarpal osteoarthritis, which would
thereby help in the decision-making process. However,
caution is warranted because our model has not been ex-
ternally validated. Unfortunately, the performance of the
prediction model for pain is insufficient for application in
clinical practice.

Level of Evidence Level 111, therapeutic study.

Introduction

Thumb carpometacarpal (CMC1) osteoarthritis (OA) is
common and increases in frequency with age. The symp-
tomatic prevalence is 2% in men and 7% in women older
than 50 years [20, 35, 46]. The disorder can lead to im-
paired hand function because of pain, weakness, loss of
motion, and progressive deformity [3, 4]. Initial treatment
options are nonsurgical, but surgical treatment might be
indicated for a subset of patients who have persistent pain
and disability. Although surgical treatment is generally
successful in reducing symptoms, not all patients experi-
ence benefits from surgery, and some may not be satisfied
with their treatment [3, 34, 48].

Pain reduction is generally the most important reason
for patients seeking surgical treatment for CMC1 OA,
followed by improving hand function [17]. Therefore, it
would be useful to be able to accurately predict whether a
patient will experience a clinically meaningful reduction in
pain and improvement in hand function after surgery. This
would help in the decision-making process, help manage
patients’ expectations, and assist clinicians in determining
which patients will benefit from surgery; this may lead to
better preoperative patient selection and may improve the
likelihood that patients will be pleased with their surgical
results [34]. However, determining which patients will
benefit from surgical treatment is challenging because
many factors may influence outcomes, such as de-
mographics, clinical characteristics, and psychosocial
profiles [12, 26, 36, 47]. Thus, developing and imple-
menting tools that accurately predict clinical improvement
would be valuable. At present, there are no prediction
models available to predict clinically meaningful im-
provement after the surgical treatment of CMC1 OA.

Machine learning is a type of artificial intelligence
that is seeing wider use in healthcare and is increasingly
being used to develop prediction models [9]. In a recent
editorial, Clinical Orthopaedics and Related Research®
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highlighted the potential value of machine learning in
clinical research [29]. Machine learning is based on al-
gorithms that can build models that learn from sample
data to make predictions without being explicitly pro-
grammed to do so [53]. The models are trained on a
training dataset and then evaluated on one or two other
datasets (validation and test datasets) [53]. Machine-
learning methods can develop models based on large
quantities of possible predictive variables and process
large amounts of data [6]. Therefore, these algorithms
may be better able to identify patterns in large datasets
than traditional statistical methods, which may lead to
better predictive performance [31].

We aimed to develop and validate two prediction
models using machine-learning methods to forecast the
probability of clinically meaningful improvement in (1)
pain and (2) hand function of patients 12 months after
surgery for CMC1 OA. More specifically, in separate
models, we focused on predicting pain reduction and im-
provement in hand function. We trained and validated our
models using different algorithms: one traditional statisti-
cal method and two commonly used machine-learning
algorithms.

Patients and Methods
Study Population

We conducted a retrospective study using longitudinally
maintained data from the Hand-Wrist Study Group, which
is a collaboration between the Xpert Clinics Hand and
Wrist Care and the Departments of Rehabilitation
Medicine and Plastic and Reconstructive Surgery of
Erasmus Medical Centre in Rotterdam, the Netherlands.
The Xpert Clinics comprise 25 locations and 23 European
board-certified (Federation of European Societies for
Surgery of the Hand) hand surgeons. The cohort and data
collection methods have been described in more detail
elsewhere [41]. We used data collected between November
2011 and June 2020. All patients were asked to complete
patient-reported outcome measures before surgery and
12 months after surgery as part of routine outcome
measurements.

We included all patients who received surgery for
CMC1 OA (trapeziectomy with ligament reconstruction
and tendon interposition [LRTI] [8, 16, 42, 51]), and
completed the Michigan Hand outcomes Questionnaire
(MHQ) at baseline and 12 months after surgery. Patients
with an incomplete MHQ were included if they had a
complete MHQ pain score for the development of our pain
model and a complete MHQ function score for the de-
velopment of our hand function model. We excluded pa-
tients who underwent revision surgery and patients treated

with a different surgical technique than trapeziectomy with
LRTI because these procedures are not performed routinely
in our clinics.

Diagnosis and Treatment

Diagnoses were made by European board-certified hand
surgeons based on clinical symptoms and, when required,
additional radiographs of the CMCI1 joint. In general,
surgery was recommended to patients who did not improve
after at least 3 months of nonoperative treatment consisting
of hand therapy and braces. In our clinics, this is about 15%
of patients [45], and surgery generally consists of tra-
peziectomy with ligament reconstruction and tendon in-
terposition. The choice of tendonplasty after trapeziectomy
depended on the surgeon’s preference, which is most likely
influenced by the location of residency. The most per-
formed procedure in our clinics is the Weilby sling [51].
Given that the type of tendonplasty was not structurally
recorded with sufficient detail in the dataset, we did not
include this as possible predictor for our models. We did
not expect this to influence our results because there is no
evidence that one tendonplasty is superior regarding im-
provement in pain, hand function, and patient-reported
outcome measures [48, 49].

Patients

During the data collection period, 2653 patients were
surgically treated for CMC1 OA, excluding revision
surgeries. Of those patients, 68% (1794) were treated
with the Weilby sling procedure. After excluding pa-
tients who did not have complete MHQ score data for
pain or function, 1489 patients were included in the
prediction model development for pain and 1469 pa-
tients were included in the model development for hand
function (Fig. 1). We performed two nonresponder
analyses. One nonresponder analysis was conducted
between all patients who were surgically treated for
CMCI1 OA and those who were included in our datasets
for pain (Supplementary Table 1; http://links.Iww.
com/CORR/A709) and for function (Supplementary
Table 2; http://links.lww.com/CORR/A710); the other
was for patients with missing MHQ scores at 12 months
for pain (Supplementary Table 3; http://links.Iww.
com/CORR/A711) and for function (Supplementary
Table 4; http://links.Iww.com/CORR/A712). Although
we found differences in both analyses in symptom
duration, second opinion (yes/no), and smoking, these
were small effects with a maximum effect size of 0.12.

In the dataset for pain, mean age was 61 = 8 years and
79% (1178 of 1489) were women. Of these patients,
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2653 Patients
surgically treated for
CMCI1 OA

Patients without intake
MHQ pain scores: 429

Pain dataset: 2224

Patients without 12-
months MHQ pain
scores: 735
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Pain dataset: 1489

2653 Patients surgically
treated for CMC1 OA

Patients without
intake MHQ function
scores: 441
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Function dataset: 2212

Patients without 12-
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B

Fig. 1 A-B Flow diagram of patient selection for the (A) pain
dataset and (B) function dataset. During the inclusion period, 2653
patients were surgically treated with primary trapeziectomy with
LRTI. Of these patients, 429 and 441 patients were excluded be-
cause they did not have baseline scores for MHQ pain and MHQ
function, respectively; and 735 and 743 patients were excluded
because of missing MHQ scores at 12 months.
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47% (704 of 1489) were unemployed. The average
preoperative MHQ pain score was 34.3, and the average
preoperative MHQ hand function score was 48.9. The
most common comorbidities were other disorders of the
locomotor system (23% [345 of 1489] of patients) and
rheumatic disorders (17% [251 of 1489] of patients)
(Table 1). Patient characteristics for the hand function
model development were similar to those for the pain
model (Table 2).

Primary Outcome

To assess symptom relief after surgery, we used the dif-
ference in the MHQ scores between baseline and
12 months after surgery [11]. The MHQ is a self-reported
questionnaire developed for all conditions of the hand. It
provides a summary score and subscores for pain, hand
function, ability to complete daily activities, work perfor-
mance, aesthetics, and satisfaction separately. Scores range
from 0 to 100, with higher scores indicating better health
[11]. In this study, we focused on the pain and function
scores of the MHQ. The Dutch-language version of the
MHQ was used [11, 25].

We defined the threshold for a clinically meaningful
improvement as having an increase of at least 14.4 and 11.7
points on the MHQ pain score and function score, re-
spectively. These thresholds are based on the minimum
clinically important differences (MCID). The MCIDs we
used are triangulated estimates of three calculation meth-
ods: two anchor-based question methods and one statistical
distribution method. They were calculated for patients with
atraumatic hand and wrist conditions [32]. These MCIDs
were chosen because determination of MCIDs based on
triangulation of multiple calculation methods is recom-
mended [40]. Furthermore, to our knowledge, there are
currently no MCIDs available for the MHQ that are spe-
cifically determined for CMC1 OA [32]. We dichotomized
each patient’s change in score between baseline and
12 months as threshold reached or threshold not reached.
The prediction models were trained to predict whether a
patient would reach the threshold and thus benefit from
surgery. The outcome of each model represents the pre-
dicted probability of reaching the threshold for the in-
dividual patient.

We also included patients with an MHQ score at intake
higher than 85.6 for pain and greater than 88.3 for hand
function. These patients could not experience an im-
provement of 14.4 or 11.7, respectively, because of a
ceiling effect. Therefore, the chance of these patients
reaching the MCID after 12 months was, per definition,
zero. However, to provide our model with the opportunity
to also learn from these patients, we decided not to exclude
them.

Copyright © 2022 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.
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Table 1. Characteristics of the patients in the training, validation, and test datasets for pain
Complete dataset Training Validation Test
Parameter (n = 1489) % missing (n = 894) (n =298) (n=297)
Age in years 61 8 0 60.5 + 8.2 609 + 7.5 60.3 £ 7.9
Gender, women 79 (1178) 80 (718) 78 (231) 77 (229)
Duration of symptoms in months 372+ 355 2 375 +35.0 359 *+ 36.5 37.6 = 36.0
Second opinion 89 (1325) 0 90 (805) 87 (259) 88 (261)
Hand dominance 0
Right 85 (1269) 85 (762) 85 (252) 86 (255)
Left 10 (143) 9 (83) 11 (33) 9(27)
Both 5(77) 5 (49) 4(13) 5(15)
Dominant hand treated 47 (695) 0 45 (405) 50 (149) 48 (141)
Occupational intensity 0
Not employed 47 (704) 46 (414) 52 (155) 45 (135)
Light 19 (278) 21 (184) 17 (52) 14 (42)
Moderate 22 (333) 21 (190) 20 (59) 28 (84)
Heavy 12 (174) 12 (106) 11 (32) 12 (36)
BMI in kg/m? 26.6 = 3.9 35 26.7 = 3.9 264 *+ 3 26.7 = 4.2
Smoking 45
Never 24 (358) 24 (214) 23 (69) 25 (75)
Disease severity
Preoperative MHQ pain score 343 = 14.1 0 34.12 = 13.98 3495 = 14.75 34.04 = 13.61
Preoperative MHQ function Score 489 £ 17.0 0.6 4841 = 16.25 49.95 * 18.28 49.51 = 17.94
Medical history 35
Diabetes 4 (53) 3(30) 2(7) 5(16)
Cardiovascular system 7 (104) 7 (60) 8 (24) 7 (20)
Thrombosis/vasculitis 1(13) 1(7) 1(3) 1(3)
Respiratory system 8(119) 9(82) 5(15) 7 (22)
Liver/kidneys 1(12) 1(5) 2 (5) 1(2)
Cranial nerves 2 (24) 2(18) 1(2) 1(4)
Locomotor system 23 (345) 24 (215) 21 (63) 23 (67)
Rheumatic disorders 17 (251) 18 (157) 14 (41) 18 (53)
Hemorrhoids/varicosities 11 (166) 10 (87) 11 (33) 15 (46)
Allergies 17 (252) 17 (156) 14 (42) 18 (54)
Hematomas 3 (49) 3(29) 3(9) 4(11)

Data presented as mean = SD or % (n); the training dataset was used to select the predictive variables and to train our models; the
performance of all models was evaluated in the validation dataset, after which one model was selected for further evaluation;
performance of this final model was evaluated on the test data set.

Measurements

We considered several baseline measurements as possible
predictors for our models (Supplementary Table 5; http://
links.lww.com/CORR/A713). Sociodemographic
characteristics such as age, gender, BMI, and occupation
as well as medical history, including comorbidities, were
collected at intake.

Strength was measured at intake using a Biometrics
E-link handgrip dynamometer (Biometrics Ltd). Strength
measurements included grip strength, key pinch strength,

and tip pinch strength. All measurements were performed
according to the guidelines of the American Society of
Hand Therapists [14].

Patient-reported outcome measure questionnaires were
sent by email after consultation with the hand surgeon. The
VAS was used to measure pain at rest and during loading,
hand function, and satisfaction with hand function. Each
subscale ranged from 0 to 100, with a higher score repre-
senting more pain but better hand function and greater
satisfaction. The patient’s mindset toward their condition
and treatment as well as their general mental health and

{E}QWolters Kluwer

Copyright © 2022 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.


http://links.lww.com/CORR/A713
http://links.lww.com/CORR/A713

1276 Loos et al.

Clinical Orthopaedics and Related Research™

Table 2. Characteristics of the patients in the training, validation, and test datasets for function

Complete dataset

Training dataset Validation dataset Test dataset

Parameter (n = 1469) % missing (n = 883) (n =293) (n =293)
Age in years 61 =8 0 61 7 60 = 8 61 =8
Gender, women 79 (1167) 0 78 (689) 81 (236) 83 (242)
Duration of symptoms in months 37 £ 46 2 38 = 36 38 £ 36 34 =32
Second opinion 89 (1305) 0 89 (789) 88 (258) 88 (258)
Hand dominance 0
Right 85 (1251) 85 (748) 89 (260) 83 (243)
Left 10 (141) 10 (90) 7 (21) 10 (30)
Both 5(77) 5 (45) 4(12) 7 (20)
Dominant hand treated 47 (686) 0 49 (428) 46 (136) 42 (122)
Occupational intensity 0
Not employed 47 (691) 49 (428) 44 (130) 45 (133)
Light 19 (277) 18 (156) 20 (58) 22 (63)
Moderate 22 (329) 23 (199) 20 (58) 25 (72)
Heavy 12 (172) 11 (100) 16 (47) 9 (25)
BMI in kg/m? 26.6 = 3.9 36 26.6 = 4.0 264 *+ 3.6 269 = 3.9
Smoking 45
Never 24 (351) 25 (218) 20 (58) 26 (75)
Disease severity
Preoperative MHQ pain score 342 =140 0.3 33.8 = 14.1 345 = 14.0 353 +138
Preoperative MHQ function score 489 £17.0 0 49.1 = 17.2 479 * 16.1 492 + 171
Medical history 36
Diabetes 3(51) 3(30) 3(9) 4(12)
Cardiovascular system 7 (104) 7 (62) 7 (20) 8(22)
Thrombosis/vasculitis 1(13) 1(10) 0.3 (1) 1(2)
Respiratory system 8(118) 8 (70) 7 (21) 9 (27)
Liver/kidneys 1(12) 1(8) 1(2) 1(2)
Cranial nerves 2 (22) 2 (15) 2 (5) 1(2)
Locomotor system 23 (337) 24 (208) 19 (55) 25 (74)
Rheumatic disorders 17 (243) 18 (158) 13 (37) 16 (48)
Hemorrhoids/varicosities 11 (162) 11 (101) 11 (33) 10 (28)
Allergies 17 (249) 17 (149) 16 (47) 18 (53)
Hematomas 3 (49) 3(30) 4 (13) 2 (6)

Data presented as mean = SD or % (n); the training dataset was used to select the predictive variables and to train our models; the
performance of all models was evaluated in the validation dataset, after which one model was selected for further evaluation;
performance of this final model was evaluated on the test data set.

quality of life were measured using several patient-reported
outcome measures: the Brief Illness Perception
Questionnaire, Credibility and Expectancy Questionnaire,
the Patient Health Questionnaire-4, the Pain
Catastrophizing Scale, and the Euro-QoL-5D-5L. The
Dutch-language versions of all questionnaires were used
[7, 13, 21, 27, 44]. We continue to improve our data col-
lection and add new variables to the routine measurements.
For example, the psychological questionnaires were added
in September 2017. Therefore, only patients treated after
September 2017 were invited to complete the
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psychological questionnaires. For the pain model, 248
patients were enrolled after September 2017 and for
function 234 patients were enrolled.

Missing Data

There was a substantial proportion of missing data on
mindset because only patients who were included between
September 2017 and June 2020 were asked to complete
these questionnaires. Furthermore, there was also a
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substantial number of nonresponders to the other mea-
surements because these measures were collected as part of
daily clinical practice. Therefore, we performed a non-
responder analysis by comparing baseline characteristics.
We imputed data using the k-nearest-neighbor imputation
implementation in the Caret package [28], as missingness
is most likely missing completely at random or missing at
random. Madley-Dowd et al. [33] reported that datasets
with up to 90% of missing data can be reasonably imputed
using multiple imputation.

Data Splitting and Measurements of Performance

Patient-reported outcome measures, sociodemographic char-
acteristics, and strength of the affected hand before surgery
were considered as possible predictors in our models. To
avoid overfitting and to base decisions for the most promising
model(s) on, we split the resulting data into training (60%),
validation (20%), and test datasets (20%) (Fig. 2). Both the
validation dataset and test dataset refer to a sample of the
dataset that is separate from the training dataset [53]. To select
the algorithm for our final model, we applied all algorithms to
the validation dataset and selected the one with the most
promising performance in terms of (1) discrimination, (2)
calibration, and (3) the number of predictors as our final
model. We also took the number of predictors into account
because we believe a low number of predictors will make the
model easier to implement and use in daily practice. The test
dataset was then used to evaluate the performance of this final
model based on discrimination and calibration.

The random split of the dataset for the pain model
(1489) resulted in a training dataset of 894 patients, a
validation dataset of 298 patients, and a test dataset of 297
patients. In the training dataset, 73% (653 of 894) of pa-
tients reached the MCID threshold of 14.4 points on the
MHQ pain scale. In both the validation (218 of 298) and
test (217 of 297) datasets, 73% of patients reached the
MCID threshold.

The dataset for the hand function model (1469) was
randomly split into a training dataset of 883 patients, a
validation dataset of 293, and a test dataset of 293. In the
training dataset, 56% (494 of 883) of patients reached the
MCID threshold of 11.7 points on the MHQ function scale.
In both the validation dataset and test dataset, 56% (164 of
293) of patients reached the MCID threshold.

For the dataset for the pain model development
(Supplementary Table 6; http://links.Iww.
com/CORR/A714) and the dataset for the hand function
development (Supplementary Table 7; http:/links.lww.
com/CORR/A715), there were no important differences in
patient characteristics and preoperative patient-reported
outcome measure values between the training, validation,
and test datasets.

Ethical Approval

The medical ethics review board at Erasmus Medical
Centre approved the study. This study was reported
according to the guidelines of the Transparent Reporting
of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis statement [37]. All patients pro-
vided written informed consent for their data to be used for
research purposes.

Statistical Analysis and Machine Learning

After splitting the data, we standardized the data and im-
puted missing data. Standardization consisted of centering
and scaling the data [53]. When standardization and im-
putation are performed before splitting the data, the vali-
dation and test dataset are not completely independent,
which can result in a model performance that is too opti-
mistic. Therefore, we performed standardization and im-
putation after splitting.

We compared three algorithms: logistic regression
(generalized linear models), random forest, and gradient
boosting machines. Logistic regression is a traditional
regression-based statistical model. Random forest and
gradient boosting machines are decision tree—based
machine-learning models. We decided to use gradient
boosting machine and random forest algorithms as our
machine-learning algorithms for several reasons. First,
they are relatively simple to implement, and because of
their similarities with decision trees, they are easier to in-
terpret than other, more complex algorithms [53]. Second,
they are computationally less expensive and require less
extensive datasets [6, 31, 53]. We selected variables for our
models using recursive feature elimination with five re-
peats of 10-fold cross-validation in each training dataset
(Fig. 2). Recursive feature elimination can be considered as
backward selection of predictive variables. It starts by
building a model that includes all variables as predictors.
For each predictor, an importance score is computed, and
predictors with the lowest score are removed. Then the
model is rebuilt, and the process is repeated until model
performance decreases by removing another variable [19].

Because the surgical treatment of CMC1 OA is gener-
ally successful [48], we expected more patients in the
threshold-reached group than in the threshold-not-reached
group. This was confirmed by a preliminary analysis for the
MCID for pain, with 73% in the threshold-reached group
and 27% of patients in the threshold-not-reached group. To
account for this imbalance, we incorporated resampling in
the feature elimination process. Thus, for our pain model,
we performed recursive feature elimination three times for
each machine-learning algorithm: without sampling, with
up-sampling, and with down-sampling. With up-sampling,
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Complete dataset
n = 1489 (Pain)
n = 1469 (Function)

Training dataset

n = 894 (Pain)
n = 883 (Function)

Pre-processing ——————————————>

Recursive feature
elimination

N

Upsampling/
downsampling

_

GLM RF GBM

Validation dataset Test dataset
n =298 (Pain) n =297 (Pain)
n =293 (Function) n =293 (Function)

Evaluating

[&——— Testing models le— performance of

selected model on
test dataset

Fig. 2 This flow diagram shows the selection of prediction models. The complete dataset was split into training (60%), validation
(20%), and test (20%) datasets. The training set was used for feature elimination, resampling, and training of the prediction models.
The best-performing models of each algorithm were evaluated in the validation dataset. The performance of the model with the
best AUC and calibration in the validation dataset was further evaluated in the test dataset; GLM = generalized linear model; RF =
random forest; GBM = gradient boosting machine; AUC = area under the curve.

randomly selected patients are duplicated in the minority
group, and with down-sampling, randomly selected pa-
tients are removed from the majority group. Because the
resampling methods have disadvantages [10], we tested
both. A preliminary analysis of the MCID for hand func-
tion showed the data were sufficiently balanced, with 56%
in the threshold-reached group and 44% of patients in the
threshold-not-reached group. Therefore, resampling was
not needed in the function dataset. For each machine-
learning algorithm for pain, the best-performing resam-
pling method was selected based on area under the curve
(AUC) values and the number of predictors. The AUC is a
measure of the discriminative ability of a model; that is, the
ability of the model to classify the two different groups
correctly [23]. The models with the most promising per-
formance were then used for further analysis.

The selected models, one from each machine-learning
algorithm and with the predictive variables selected using
recursive feature elimination, were trained in the original
training set. After training the models, we analyzed per-
formance in the validation set using AUC values and cal-
ibration. Calibration is a measure of the model’s fit and
refers to the agreement between predicted probabilities and
the observed frequency of the outcome [15]. In other

{J}‘@Wolters Kluwer

words, this indicates whether, for example, out of 10 pa-
tients with a predicted probability to improve of 0.6, we
observe that six patients actually improved. Calibration
was visually assessed using calibration curves [15, 24, 38].
The model performs well on calibration when the calibra-
tion curve is close to the bisector. If the calibration curve
lies above the bisector, it means the model underestimates
the probability of the patient reaching the MCID; if the
calibration curve lies under the bisector, the model over-
estimates the probability. The confidence belts represent
the estimated degree of uncertainty of the calibration curve
[15]. We then selected the algorithm with the best AUC and
calibration. Additionally, we considered the number of
predictors. This model was further evaluated in our test
dataset using discriminative ability (AUC) and calibration
(visual inspection of calibration curves). An AUC between
0.7 and 0.8 was considered acceptable discrimination, an
AUC between 0.8 and 0.9 excellent, and an AUC above 0.9
outstanding [23]. Furthermore, we determined the sensi-
tivity and specificity, positive predictive value, and nega-
tive predictive value.

The analysis was performed using R statistical pro-
gramming, version 1.3.1073 (R Foundation). Prediction
models were trained using the Caret package, version
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Table 3. Model properties in the test dataset of the selected prediction models for pain and function
Training method Results
Number AUCinthe Sensitivity in Specificity in  Positive Negative Threshold for
Sampling of test the test the test predictive predictive improvement or no
Outcome Algorithm method variables  dataset dataset dataset value value improvement
Pain Random  Downsampling 27 0.59 0.67 0.49 0.78 0.35 0.72
forest
Function  Gradient No sampling 1 0.74 0.62 0.72 0.73 0.60 0.62
boosting
machine

6.0-86 [28]. A p value < 0.05 was considered statistically
significant.

Results
Pain Model

In the validation dataset, the random forest model with down-
sampling showed the most promising performance in terms of
discrimination, visual inspection of calibration curves
(Supplementary Fig. 1A-C; http://links.lww.
com/CORR/A716), and number of  predictors
(Supplementary Table 8; http:/links.lww.com/CORR/A717).
This model was evaluated further (Supplementary File 1; http://
links.Iww.com/CORR/A718). Unfortunately, in the test
dataset, it performed poorly with an AUC of 0.59 (95%
confidence interval 0.52 to 0.66), which is hardly better than
chance. Sensitivity was 0.67 and specificity was 0.49 at a
threshold of 0.72 (Table 3). In addition, a visual inspection of
the calibration curve also indicated poor calibration (Fig. 3). We
therefore believe this model should not be used in clinical
practice.

Function Model

In the validation dataset, the gradient boosting machines
model was selected for further evaluation because it
showed the most promising performance in terms of dis-
crimination, calibration (Supplementary Fig. 2A-C; http://
links.lww.com/CORR/A719), and the fact that it required
only a single predictor variable (Supplementary File 1;
http:/links.Iww.com/CORR/A718): the MHQ function
score at baseline (Supplementary Table §; http://links.
lww.com/CORR/A717). In the test dataset, it had a good
discriminative ability, with an AUC of 0.74 (95% CI 0.69
to 0.80) (Table 3). Sensitivity was 0.62 and specificity was
0.72 at a threshold of 0.62 (Table 3). A visual inspection of
the calibration curve showed good calibration (Fig. 4). We
have made this model available as a web application.

The model predicts the change of reaching the MCID for
hand function for an individual patient 12 months after
surgery, given the patient’s preoperative MHQ hand
function score (Supplementary Fig. 3; http:/links.lww.
com/CORR/A720).

The final hand function model is presented as a Shiny
internet  application, accessible at  https:/analyse.
equipezorgbedrijven.nl/shiny/cmc1-prediction-model-Engy/.
The app currently does not have the Conformité Européenne
(CE) mark and has not yet been externally validated; there-
fore, caution is warranted when using the application.

The R code of the models is available via GitHub [39].
Because of the poor predictive ability, we did not make an
internet application for the pain model.

Discussion

Assessing the likelihood of success is an important part of the
decision to undergo a certain treatment, especially when the
treatment is invasive and elective in nature such as the surgical
treatment of CMC1 OA. Thus, communicating the chance of a
successful outcome can help the decision-making process.
However, predicting which patients will improve in symptoms
is difficult. Therefore, a model that predicts the probability of
improvement for each patient might contribute to the shared
decision-making process. It could also help manage patients’
expectations of the treatment outcome. This study aimed to
develop prediction models for the probability of clinically
meaningful improvement in pain and hand function 12 months
after trapeziectomy with LRTI for CMC1 OA. Unfortunately,
despite the relatively large dataset with many variables, we
considered the performance of the pain model as insufficient
for clinical practice. However, the hand function model had a
good discriminative ability and good calibration in our test
dataset. This model was a gradient boosting machines model
with the baseline MHQ hand function score as the only pre-
dictor. We have made an internet application of our hand
function model, which can be accessed via https://analyse.
equipezorgbedrijven.nl/shiny/cmc1-prediction-model-Eng/.

To calculate the prediction of an individual patient, the
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Calibration of the RF model for pain in the test set
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Fig. 3 This graph shows the calibration curve of the selected prediction model (random
forest) for pain in the test dataset and a histogram of the distribution of the predicted
probabilities of improvement. Calibration refers to agreement between the predicted
probabilities and observed probabilities. In other words, if 10 people had a probability of
improvement of 0.6, did six people actually improve? The model performs well on cali-
bration when the calibration curve lies close to the bisector. Calibration for our pain model
was insufficient because of the wide confidence interval and because the curve does not

cover the lower probability range.

preoperative MHQ function score of the patient is submitted.
The model then calculates the probability of improvement 12
months after surgery. If the MHQ function score of the patient
is unknown, it can be calculated in the application by an-
swering five questions.

Limitations

This study has some limitations. Although the models were
internally validated in a separate test dataset, no external

{J:J?@Wolters Kluwer

validation was performed. Evaluating predictive performance
of these models in a prospective setting with new patients
could be a valuable addition. The current models are gener-
alizable to settings where patients with thumb base osteoar-
thritis are first treated nonsurgically, and trapeziectomy with
LRTTI is considered when symptoms are not sufficiently re-
lieved. No distinction was made between different tendon-
plasties that can be considered as LRTI because they are very
similar and there is little evidence for differences in patient-
reported outcomes between these techniques [41, 49]. Before
generalizing predictions from our model to other surgical
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Calibration of the GBM model for function in the test set
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Fig. 4 This graph shows the calibration curve of the selected prediction model (gradient
boosting machines) for function in the test dataset and a histogram of the distribution of
the predicted probabilities of improvement. Calibration refers to agreement between the
predicted probabilities and observed probabilities. In other words, if 10 people had a
probability of improvement of 0.6, did six people actually improve? The model performs
well on calibration when the calibration curve lies close to the bisector. Our model for

function shows good calibration.

treatment options than trapeziectomy with LRTI, such as ar-
throdesis and prosthetics, additional validation is needed.
Another important limitation is the relatively high pro-
portion of missing data, which is inherent to the nature of the
dataset, where all patients are invited to complete multiple
patient-reported outcome measures as part as routine outcome
measures. Specifically, there was a high proportion of missing
data for the psychological variables, which have only been
collected since September 2017. We have chosen to still in-
clude these because previous studies have shown that these are
associated with treatment outcomes of thumb base

osteoarthritis [18, 52]. Additionally, we compared patient
characteristics and preoperative symptom severity to assess
whether nonresponders differed from responders and found
only small differences with negligible effect sizes. Missing data
were imputed using k-nearest neighbors, but multiple impu-
tation would be preferable. However, to our knowledge, this is
currently not implemented in R. When this implementation is
available, this may possibly result in better prediction models in
the future.

Our models predict the probability that a patient will
reach a clinically meaningful improvement, defined as

{J:}@Wolters Kluwer

Copyright © 2022 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.



1282 Loos et al.

Clinical Orthopaedics and Related Research™

reaching the MCID for the MHQ pain score and the
MHQ function score [32]. These MCID scores were
calculated for patients with atraumatic hand and wrist
conditions, not specifically for patients with CMC1 OA.
Additionally, the MCID threshold is determined for
patient populations and may be less relevant for in-
dividual patients. Therefore, we believe it is important to
clearly communicate our definition of improvement to
clinicians and patients when using this model, empha-
sizing that this improvement is considered relevant for
most patients but not all. Furthermore, we used random
forest and gradient boosting as machine-learning algorithms in
our study. It is, however, possible that more complex algo-
rithms, such as artificial neural networks, have a better pre-
dictive performance. In our case, the relatively small dataset
compared with other studies on machine leaming limited our
choice of algorithms. Further, the use of additional variables
such as preoperative goniometric measurements, genetics, or
comorbidities might have improved the performance of our
prediction models [12, 22, 50]. However, we did not have
sufficient data to evaluate these variables. In our opinion, the
inclusion of variables such as genetics would make it harder to
implement our model in daily clinical practice.

Finally, we judged that the AUC of the pain model
(0.59) was insufficient since it was only slightly better
than chance, and the AUC of the hand function model
(0.74) was sufficient for application in clinical practice,
given that it met the threshold for acceptable discrimi-
nation [23]. However, what is considered “sufficient”
might be debatable and dependent on the action that will
follow from the prediction on the model. We therefore
strongly recommend that the model is only used as a
decision aid that provides additional insight into the
expected outcome of surgery.

Pain Model

The performance of our best-performing pain model was
insufficient. The model performed poorly on both dis-
crimination and calibration and should therefore not be
used in clinical practice. This is in line with reports on
surgery for OA of other joints [30, 43] and the finding
that pain after total joint arthroplasty cannot accurately
be predicted using clinical variables [5]. The nature of
postoperative pain might be different from preoperative
OA-related pain, and this is therefore more difficult to
predict. In clinical practice, we have noticed that many
patients indicate they still experience pain but not the
familiar OA-related pain that was the surgical indication.
Because there are indications that genetic factors play a
role in chronic and neuropathic pain [22, 50], this may
be a direction for further research into predicting post-
operative pain.

am—
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Function Model

Our hand function model showed reasonable performance in
terms of discrimination and calibration and required only one
predictor. This model was used for the development of a web
application that is publicly available online and can be used to
help guide the decision-making process. However, since our
model has not been externally validated, caution is warranted.
The model was a gradient boosting machines algorithm.

In our study, machine-learning algorithms had a better
predictive performance in both our datasets than the tradi-
tional statistical logistic regression model. Although the dis-
criminative ability of the logistic regression model for hand
function was only marginally worse than that of the gradient
boosting machines model in the validation dataset, it required
almost 80 variables as input, whereas the gradient boosting
machines model only required one (Supplementary Table §;
http:/links.Iww.com/CORR/A717). Machine-learning algo-
rithms might be better equipped to deal with the nonlinearities
in datasets [1, 31] that are often present in real-world data. It
might, however, be possible to fit these nonlinear effects using
statistical methods such as generalized additive models or
nonlinear effects in logistic regression.

Although some studies have reported prognostic factors
influencing the outcome of surgical treatment of CMC1 OA
[2, 12, 26, 36], the development of a prediction model is new.
One study examined the prognostic value of preoperative
patient-reported disability and psychological characteristics
for early postoperative outcomes with a mean follow-up of
14 weeks [26]. The authors found that patients with greater
preoperative disability experienced more improvement after
surgery but did not find an association between psychological
factors and outcomes. This is in line with the results of our
hand function model, which only requires baseline function
as a predictor. Another study evaluated the relationship be-
tween the duration of symptoms and surgical outcomes [2].
The authors found that patients with an increased duration of
symptoms had a poorer postoperative outcome. Although the
duration of symptoms was one of the variables in our dataset,
this was not one of the predicting variables in our models.
This indicates that in our dataset, the duration of symptoms
did not have sufficient predictive power.

Conclusion

We developed a model to predict the probability of improve-
ment in hand function 12 months after trapeziectomy and
LRTI for CMC1 OA. The model had good discriminative
ability and good calibration in our test dataset. Unfortunately,
the performance of our pain model was insufficient for use in
practice. The final model for hand function was used to de-
velop an online application that can be used to estimate the
chance of survival for an individual patient. However, our
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model does not have CE marking and has not been externally
validated. By making our model available online, we encour-
age others to validate the model in their patient populations.

Group Authorship

Members of the Hand-Wrist Study include: R. Arjen M
Blomme MD; Berbel J.R. Sluijter MD, PhD; Dirk-Jan J.C.
van der Avoort MD; Alexander Kroeze MD; Jeroen Smit
MD, PhD; Jan Debeij MD, PhD; Erik T. Walbeehm MD,
PhD; Gijs M. van Couwelaar MD; Guus M. Vermeulen MD,
PhD; Hans de Schipper MD; Hans Temming MD; Jeroen
Hvan Uchelen MD, PhD; H. Luitzen deBoer MD; Nicoline
de Haas MD; Kennard Harmsen MD; Oliver T. Zéphel MD,
PhD; Reinier Feitz MD; Richard Koch MD; Steven E.R.
Hovius MD, PhD; Thybout M. Moojen MD, PhD; Xander
Smit MD, PhD; Rob van Huis PT; Pierre Y. Pennehouat PT;
Karin Schoneveld PT, MSc; Yara E. van Kooij PT, MSc;
Robbert M. Wouters PT, PhD; Paul Zagt PT; Folkert J. van
Ewijk PT; Joris J. Veltkamp PT; Alexandra Fink PT;
Willemijn A. de Ridder PT, MSc; Miguel C. Jansen MD,
PhD; Mark J.W. van der Oest PhD; Pepijn O. Sun MD; Joris
S. Teunissen BSc; Jak Dekker MSc; Marlies L. Jansen-
Landheer MD, MSc; Marloes H.P. ter Stege MSc

Acknowledgments We would like to thank all patients who have filled
out questionnaires as part of their clinical care and who agreed that their
data could be anonymously used for the present study. In addition, we
would like to acknowledge the caregivers and personnel of Xpert Clinic,
Handtherapie Nederland, and Equipe Zorgbedrijven for assisting in the
routine outcome measurements that are the basis for this manuscript.

References

1. Auret L, Aldrich C. Interpretation of nonlinear relationships
between process variables by use of random forests. Minerals
Engineering. 2012;35:27-42.

2. Baca ME, Rozental TD, McFarlane K, Hall MJ, Ostergaard PJ,
Harper CM. Trapeziometacarpal joint arthritis: is duration of
symptoms a predictor of surgical outcomes? J Hand Surg Am.
2020;45:1184.1181-1184.e1187.

3. Baker RH, Al-Shukri J, Davis TR. Evidence-based medicine:
thumb basal joint arthritis. Plast Reconstr Surg. 2017;139:
256e-266e.

4. Bakri K, Moran SL. Thumb carpometacarpal arthritis. Plast
Reconstr Surg. 2015;135:508-520.

5. Barroso J, Wakaizumi K, Reckziegel D, et al. Prognostics for
pain in osteoarthritis: do clinical measures predict pain after total
joint replacement? PLoS One. 2020;15:¢0222370.

6. Bayliss L, Jones LD. The role of artificial intelligence and ma-
chine learning in predicting orthopaedic outcomes. Bone Joint J.
2019;101:1476-1478.

7. Broadbent E, Petrie KJ, Main J, Weinman J. The brief illness
perception questionnaire. J Psychosom Res. 2006;60:631-637.

8. Burton RI, Pellegrini VD Jr. Surgical management of basal joint
arthritis of the thumb. Part II. Ligament reconstruction with tendon
interposition arthroplasty. J Hand Surg Am. 1986;11:324-332.

10.
11.
12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Copyright © 2022 by the Association of Bone and Joint Surgeons

. Cabitza F, Locoro A, Banfi G. Machine learning in orthopedics: a

literature review. Front Bioeng Biotechnol. 2018;6:75.

Chawla NV. Data mining for imbalanced datasets: an overview.
In: Maimon O, Rokach L, ed. Data Mining and Knowledge
Discovery Handbook. Springer US; 2010:875-886.

Chung KC, Pillsbury MS, Walters MR, Hayward RA. Reliability
and validity testing of the Michigan Hand outcomes
Questionnaire. J Hand Surg Am. 1998;23:575-587.

Degreef, De Smet L. Predictors of outcome in surgical treatment
for basal joint osteoarthritis of the thumb. Clin Rheumatol. 2006;
25:140-142.

Devilly GJ, Borkovec TD. Psychometric properties of the
credibility/expectancy questionnaire. J Behav Ther Exp
Psychiatry. 2000;31:73-86.

. Fess E, Moran C. American Society of Hand Therapists Clinical

Assessment Recommendations. American Society of Hand
Therapists; 1981.

Finazzi S, Poole D, Luciani D, Cogo PE, Bertolini G. Calibration
belt for quality-of-care assessment based on dichotomous out-
comes. PLoS One. 2011;6:¢16110.

Froimson Al. Tendon arthroplasty of the trapeziometacarpal
joint. Clin Orthop Relat Res. 1970;70:191-199.

Frouzakis R, Herren DB, Marks M. Evaluation of expectations
and expectation fulfillment in patients treated for tra-
peziometacarpal osteoarthritis. J Hand Surg Am. 2015;40:
483-490.

Giesinger JM, Kuster MS, Behrend H, Giesinger K. Association
of psychological status and patient-reported physical outcome
measures in joint arthroplasty: a lack of divergent validity. Health
Qual Life Outcomes. 2013;11:64.

Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for
cancer classification using support vector machines. Machine
Learning. 2002;46:389-422.

Haugen IK, Englund M, Aliabadi P, et al. Prevalence, incidence
and progression of hand osteoarthritis in the general population:
the Framingham Osteoarthritis Study. Ann Rheum Dis. 2011;70:
1581-1586.

Herdman M, Gudex C, Lloyd A, et al. Development and pre-
liminary testing of the new five-level version of EQ-5D (EQ-5D-
SL). Qual Life Res. 2011;20:1727-1736.

Hoofwijk DM, van Reij RR, Rutten BP, Kenis G, Buhre WF,
Joosten EA. Genetic polymorphisms and their association with
the prevalence and severity of chronic postsurgical pain: a sys-
tematic review. Br J Anaesth. 2016;117:708-719.

Hosmer DW, Lemeshow S. Assessing the fit of the model. In:
Hosmer DW, Lemeshow S. Applied Logistic Regression. John
Wiley and Sons; 2000:143-202.

Huang Y, Li W, Macheret F, Gabriel RA, Ohno-Machado L. A
tutorial on calibration measurements and calibration models for
clinical prediction models. J Am Med Inform Assoc. 2020;27:
621-633.

Huijsmans RS, Sliter H, Aufdemkampe G. Michigan Hand
Outcomes Questionnaire-Dutch Language Version; een vragenlijst
voor patienten met handfunctieproblemen. Fysiopraxis. 2001;9:
38-41.

Kazmers NH, Grasu B, Presson AP, Ou Z, Henrie NB, Tyser AR.
The prognostic value of preoperative patient-reported function
and psychological characteristics on early outcomes following
trapeziectomy with ligament reconstruction tendon interposition
for treatment of thumb carpometacarpal osteoarthritis. J Hand
Surg Am. 2020;45:469-478.

Kroenke K, Spitzer RL, Williams JB, Léwe B. An ultra-brief
screening scale for anxiety and depression: the PHQ-4.
Psychosomatics. 2009;50:613-621.

{J:}@Wolters Kluwer

. Unauthorized reproduction of this article is prohibited.



1284 Loos et al. Clinical Orthopaedics and Related Research™
28. Kuhn M. Building Predictive Models in R Using the Caret 41. Selles RW, Wouters RM, Poelstra R, et al. Routine health out-
Package. 2008. 2008;28:26. come measurement: development, design, and implementation of

29. Leopold SS, Porcher R, Gebhardt MC, et al. Editorial: Opposites the Hand and Wrist Cohort. Plast Reconstr Surg. 2020;146:
attract at CORR®-machine learning and qualitative research. Clin 343-354.

Orthop Relat Res. 2020;478:2193-2196. 42. Sigfusson R, Lundborg G. Abductor pollicis longus tendon

30. Lewis GN, Rice DA, McNair PJ, Kluger M. Predictors of per- arthroplasty for treatment of arthrosis in the first carpometacarpal
sistent pain after total knee arthroplasty: a systematic review and joint. Scand J Plast Reconstr Surg Hand Surg. 1991;25:73-77.
meta-analysis. Br J Anaesth. 2015;114:551-561. 43. Spekreijse K, Steyerberg E, Tsehaie J, et al. Predicting outcome

31. Liu NT, Salinas J. Machine learning for predicting outcomes in after surgery for carpometacarpal osteoarthritis: a prospective
trauma. Shock. 2017;48:504-510. study. HAND. 2016;11:1S-2S.

32. London DA, Stepan JG, Calfee RP. Determining the Michigan 44. Sullivan M, Bishop S, Pivik J. The Pain Catastrophizing Scale:
Hand Outcomes Questionnaire minimal clinically important development and validation. Psychological Assessment. 1995;7:
difference by means of three methods. Plast Reconstr Surg. 2014, 524-532.

133:616-625. o . 45. Tsehaie J, Spekreijse KR, Wouters RM, et al. Outcome of a hand

33. Madley-Dowd P, Hughes R, Tilling K, Heron J. The proportion orthosis and hand therapy for carpometacarpal osteoarthritis in
9fm1s51pg data should. not l?e used to guide decisions on multiple daily practice: a prospective cohort study. J Hand Surg Am.2018;
imputation. JCIU:! Epzdgmzol. 2019;110:63-73. ‘ . 43:1000-1009.¢1001.

34. Mgrks M, Audige L,_Relssner L,.Henen. DB ,.Schmdele 8, Vliet 46. van der Oest MJW, Duraku LS, Andrinopoulou ER, et al. The
Vhe'land TP,' D.et.errr.nnants ofpatl.ent satisfaction after surgery or prevalence of radiographic thumb base osteoarthritis: a meta-
corticosteroid injection for trapeziometacarpal osteoarthritis: re- . . . "0,

; analysis. Osteoarthritis Cartilage. 2021;29:785-792.
sults of a prospective cohort study. Arch Orthop Trauma Surg. 47. van der Oest MJW, Teunissen JS, Poelstra R, Feitz R, Burdorf A,
2015;135:141-147. Selles RW. Factors affecting return to work after surgical treat-

35. Marshall M, van der Windt D, Nicholls E, Myers H, Dziedzic K. o . .

. . o ment of trapeziometacarpal joint osteoarthritis. J Hand Surg Eur
Radiographic thumb osteoarthritis: frequency, patterns and as-
sociations with pain and clinical assessment findings in a Vol. 202146:979-984.
. . . ) 48. Vermeulen GM, Slijper H, Feitz R, Hovius SE, Moojen TM,
community-dwelling population. Rheumatology (Oxford). 2011; . .
50-735-739. Selles RW. Surgical management of primary thumb carpometa-

36. Moineau G, Richou J, Liot M, Le Nen D. Prognostic factors for carpal osteoarthritis: a systematic review. J Hand Surg Am. 2011,
the recovery of hand function following trapeziectomy with 36:!57'169',
ligamentoplasty stabilisation. Orthop Traumatol Surg Res. 2009, 49. Wajon A, me(.:omb T, Carr E_’ Edmunds L Ada} L Surgery for
05:352-358. thumb (trapeziometacarpal joint) osteoarthritis. Cochrane

37. Moons KG, Altman DG, Reitsma JB, et al. Transparent Database Syst Rev. 2015;2015 :CD 004631. .
Reporting of a multivariable prediction model for Individual 50. Warner SC, van Meurs JBJ, Schiphof D, et al. Genome-wide
Prognosis or Diagnosis (TRIPOD): explanation and elaboration. association scan of neuropathic pain symptoms post total joint
Ann Intern Med. 2015;162:W1-73. replacement highlights a variant in the protein-kinase C gene. Eur

38. Nattino G, Finazzi S, Bertolini G. A new calibration test and a Journal Hum Gene. 2017;25:446-451.
reappraisal of the calibration belt for the assessment of prediction 51. Weilby A. Tendon interposition arthroplasty of the first carpo-
models based on dichotomous outcomes. Stat Med. 2014;33: metacarpal joint. J Hand Surg Br. 1988;13:421-425.
2390-2407. 52. Wouters RM, Porsius JT, van der Oest MJW, et al. Psychological

39. Ninalouisa. Ninalouisa/CMC1-Prediction: Release CMCl1 characteristics, female sex, and opioid use predict acute post-
Prediction (Version V2.0). Zenodo. Available at: https://doi. operative pain in patients surgically treated for thumb base os-
org/10.5281/zenodo.5032347. Accessed June 25 2021. teoarthritis: a cohort study. Plast Reconstr Surg. 2020;146:

40. Revicki D, Hays RD, Cella D, Sloan J. Recommended methods 1307-1316.
for determining responsiveness and minimally important differ- 53. Zhang X-D. Machine Learning. In: Zhang X-D, ed. 4 Matrix
ences for patient-reported outcomes. J Clin Epidemiol. 2008;61: Algebra Approach to Artificial Intelligence. Springer Singapore;
102-109. 2020:223-440.

=)

{23, Wolters Kluwer

Copyright © 2022 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.5281/zenodo.5032347
https://doi.org/10.5281/zenodo.5032347

