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Abstract

An explosion in single cell technologies has revealed a previously underappreciated heterogeneity 

of cell types and novel cell state associations with sex, disease, development and other processes. 

Starting with transcriptome analyses, single cell techniques have been extended to multi-omics 

approaches, and now enable the simultaneous measurement of data modalities and cellular spatial 

context. Data are now available for millions of cells, for whole-genome measurements, and for 

multiple modalities. Although analyses of such multimodal datasets have potential to provide 

new insights into biological processes that cannot be inferred with a single mode of assay, the 

integration of very large, complex, multimodal data into biological models and mechanisms 

represents a considerable challenge. An understanding of the principles of data integration and 

visualization methods is required to determine what methods are best applied to a particular 

single cell data set. Each class of method has advantages and pitfalls in terms of its ability to 

achieve various biological goals, including cell type classification, regulatory network modeling, 

and biological process inference. In choosing a data integration strategy, consideration must be 

given to whether the multiome data are matched (that is, measured on the same cell) or unmatched 

(that is, measured on different cells) and, more importantly, the overall modelling and visualization 

goals of the integrated analysis.
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Introduction

Many different technologies are now available to measure various properties of any 

biological system. For instance, the same physical–chemical properties can be measured 

with different instruments (e.g., RNA sequencing and RNA microarray) and different 

physical–chemical properties can be measured for the same object (e.g., protein and 

RNA content of a cell). In the past few years, genome-scale technologies have led to 

the systematic generation of very large-scale quantitative datasets that comprise multiple 

measurement modalities. Although such multimodal datasets have potential to provide 

unprecedented insights into biological systems, their analysis and interpretation can be 

complicated due to modality-specific technical problems and modeling challenges to 

drawing common inference from different kinds of information.

The term “biological data integration” has been used to describe analytic methods that 

combine information from multiple sources into a single biological inference. At one 

level, biological data integration might represent an extremely broad concept, such as the 

integration of diverse information types including data from Electronic Medical Records, 

genomic analyses, phenotypic assays and literature reviews into a broad scientific model 

or hypothesis1. In this broad context, the term lacks technical meaning and is not pursued 

further here. Rather, we focus on biological data integration in the context of integrating 

large-scale omics data, especially at the single cell level2,3. These types of data have a 

high-degree of multiplexing, for example, with tens of thousands of gene measurements, 

leading to high-dimensional datasets. If we consider the expression level of a single gene 

to be one “dimension” of our data set; then a set of 10,000 genes would create a dataset of 

10,000 dimensions. Each of these dimensions is commonly called a “feature” of the dataset. 

Single cell measurements also tend to have considerable noise and technical artifacts — 

a problem that is somewhat counterbalanced by the ability of new technologies to obtain 

measurements from thousands or even millions of objects, for example cells, in a given 

tissue4,5. This large number of cell measurements alleviates some of the problems associated 

with high dimensional data and noise, but creates additional challenges associated with high 

computational demand and biological complexity.

Despite the challenges associated with high-dimensional data, high-noise and large numbers 

of measurements, high throughput, single cell omics methodologies have already provided 

key insights into kidney biology. For example, single cell analyses have identified over 

30 cell types along the continuous epithelial network; greater diversity likely exists in 

regional and sex-related cell states amongst these groupings6,7. As another example, time-

series single nucleus RNA-sequencing (snRNA-seq) has been used to identify dynamic 

and spatially distinct proinflammatory and profibrotic subsets of proximal tubule cells that 

fail to repair after acute kidney injury (AKI)7,8. Single cell data can also be combined 

with clinical parameters such as those regulated by the kidney including blood pressure, 

blood pH, osmolarity and estimated glomerular filtration rate (eGFR). One single cell 

transcriptomic profiling study of human kidneys with eGFRs above and below 60 ml/min/

1.73 m2 identified AP1 and NKD1 as candidate drivers of kidney fibrosis in patients with 

chronic kidney disease (CKD)9.
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The abovementioned studies uncovered novel insights into kidney biology using single 

cell transcriptomics alone. However, in the last five years, many single cell measurement 

modalities beyond single cell transcriptomics have been developed, including approaches to 

measure multiple data types in the same cell (so-called multiomics single cell data). More 

than 30 single cell multiomics techniques10,11 have been developed since 2015. Although 

these techniques offer invaluable opportunities to interrogate the properties of cells, the 

integration of information from these different modalities presents an acute challenge. The 

high-dimensionality, high noise, and large number of observations underlie this challenge, 

in which the goal is to reconcile and make comparable distinct modalities into a coherent 

biological inference.

Even without explicit computational integration, combining of information from different 

genome-scale data types can yield synergistic inferences. For example, cell-specific gene 

expression data can be coupled with chromatin status information in the region of a SNP 

variant, enabling the prioritization of causal variants for further experimental validation12. 

Multi-modal data often augment independent evidence from each mode. For example, one 

study13 found that single nucleus assay for transposase-accessible chromatin sequencing 

(snATAC-seq) refined kidney cell type clusters obtained via snRNA-seq, revealing more 

clusters with potential clinical relevance. In another study, use of both single cell RNA 

sequencing (scRNA-seq) and snATAC-seq enabled the identification of a cell-specific 

regulatory network by inferring upstream regulators from analyses of cis-element motifs14. 

In that study, the identification of cis-regulatory elements with ATAC-seq helped overcome 

difficulties in detecting regulatory genes, such as transcription factors, in transcriptome data 

as a consequence of their low abundance. This study and others exemplify that the use of 

multiple modes of omics information can enable combined inferences that cannot otherwise 

be obtained from any single mode. Thus, the integration of multi-modal omics data has 

potential to synthesize more knowledge than would be gained as a sum of individual 

measurements.

Here, we review developments in computational methods for multi-omics data integration. 

We first provide a general overview of the principles of data integration. Then, we take 

a more practical data-centric view of what methods might be applied to a particular 

data set, starting with a discussion of methods for integrated analyses of multiomics data 

measured on the same cell, followed by discussion of methods for integrated analyses of 

multiomics data measured on different cells. We then consider data visualization methods 

that can integrate different measurement modalities and finally discuss current and future 

challenges for single cell data integration and prospects for application to kidney biology. 

Throughout our review, we focus on principles and general factors that determine strengths 

and challenges of different approaches.

Overview of single cell data integration

As described above, available studies demonstrate that even ad hoc integration of multi-

modal data can yield inferences that cannot be made with single mode of assay. Many 

different more principled computational methods are now available to aid the integration of 

single cell multi-modal omics data, each with different advantages and drawbacks (Figure 
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1). Here, we first overview the general principles of these different approaches before 

describing details of the methods in the next section.

Quantitative causal modelling

The most principled form of multi-modal data integration is that which takes into account 

the actual biological processes that generate the measurements (Fig. 1a). For example, 

chromatin states, RNA levels, and protein levels represent different aspects of a single 

system-level molecular dynamics of a cell, where a causal relationship exists between the 

epigenome state, the number of RNA molecules, and the number of protein molecules. An 

accurate quantitative systems model of the cell (Box 1) would allow associating multi-modal 

measurements to parameters of the model, leading to an integrated inference of the dynamic 

state of the cell. Some computational approaches incorporate partial systems model of a 

cell’s molecular dynamics. For example, the popular algorithm for RNA velocity15 posits 

a differential equation model of the kinetics of transcription, splicing and degradation, and 

estimates the parameters of the model using exonic and intronic reads, in effect integrating 

the two types of read data into a single model inference. The computational tool protaccel16 

extends this kinetic model to include a differential equation term for proteins, allowing a 

model-based integration of RNA and protein data, such as can be obtained using methods 

that enable simultaneous measurement of proteins and mRNAs in single cells (e.g., CITE-

seq17 and REAP-seq18). A cell systems model-based data integration approach is ideal for 

integration of multi-modal data, but currently made impossible by the lack of dependable 

models for most dynamic molecular processes in a cell — especially models that can predict 

the dynamics of small finite numbers of molecules in a single cell or complex processes like 

chromosome remodeling.

Statistical modelling

In the absence of a causal kinetic model, another possible integration approach is to 

relate different measurement modalities to each other with a statistical model (Fig. 1b). 

For example, a statistical relationship could be modeled between RNA levels and protein 

levels19; or for example, between the location and amount of open chromatin around a 

gene and its RNA levels (so-called gene activity models20). Therefore, one possible class of 

methods for integrating different data modalities is to create a statistical model between two 

or more modalities such that the value from one data type can be mapped to another type. 

Such models could be calibrated (that is, the model parameters estimated) from reference 

datasets or fit to the dataset of interest. When such an approach is used, in effect, all of 

the data points of one modality are converted to (mapped to) the other modality, potentially 

augmenting the power of the dataset. The downside of this approach is that such translation 

does not provide additional insights into biological processes related to each data type since 

this process merely converts one data type into another.

Latent space modelling

Converting one data type to another can be seen as constructing a (mathematical) function 

(often called a map) between one set of variables and another. The idea that measurements 

are related by functions motivates a more abstract framework for data integration. We might 

model data of type A, type B, and type C as a mathematical function from an abstract 
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set of states, which we call “latent states” or “latent space” and corresponding variables 

“latent variables”. More concretely, the transcriptome, the proteome, and chromatin states 

might all be considered an aspect of an abstract “latent molecular state” of a cell (Fig. 1c). 

That is, if the cell is in a latent state X, then mathematical functions of X will predict 

the number of RNA molecules and protein molecules, and the parts of chromatin that 

are open. Many machine learning methods such as autoencoders (Box 1) and statistical 

methods such as factor models (see below) involve estimating a latent space, assumed to 

determine the observed multi-modal values. This latent space, in a sense, is a representation 

of the integrated data because it “explains” all of the observed data in different modalities. 

This concept of latent space from which the observations arise is one of the most 

common methods of data integration, as discussed below. Different approaches differ in 

the mathematical functions that map from the latent space to observations (e.g., linear 

functions versus non-linear functions), in how they model the observed data (e.g., as a 

probabilistic observation from the latent space), in whether they model only in the vicinity 

of the observed data or model the entire relationship between latent and measurement 

spaces, and in the notion of model fit that they use. In the absence of a more mechanical or 

causal model, the family of latent space models encapsulates the natural idea that different 

types of measurements must all represent some aspect of an unknown molecular state of the 

cell. The main downside of such models is that the latent space typically does not have a 

physical or chemical interpretation, making it difficult to know what the integrated space 

means in terms of the actual molecular state of a cell. In addition, the same set of cells may 

have different latent space representations that model different hidden biological states. For 

example, the same set of cells might have a latent space representation of their cell cycles, 

another latent space representation of their circadian rhythms, and yet another latent space 

representation of their cell type identities. Therefore, the utility and variety of the latent 

space as a model of data integration depends on the goals of the biological inference.

Late integration

The last class of methods for data integration might be called “late integration”21 in the 

sense that this approach does not attempt to relate measurements to each other, but rather 

attempts to use each data modality to infer a model or result unique to that data type, and 

then attempts to integrate the output models or results (Fig. 1d). For example, we might 

infer gene regulatory networks from the transcriptome and from the proteome independently, 

and then apply an algorithm to create a consensus network. Another example might be 

estimating cell type clusters in each data modality independently before applying algorithms 

to reconcile the clusters. The above-described study that used snATAC-seq to uncover the 

dynamics of activity of transcription factors, which were then matched with single cell 

transcriptome data to identify gene regulatory circuits involved in kidney development22 can 

also be thought of as a late integration approach, despite the fact that study did not use an 

explicit single computational algorithm.

In the best-case scenario, integrated multi-omics or multi-modal analysis can help derive 

a causal model of cellular processes22, for example by using the different data modalities 

to fit a systems process model. Even without a causal model, analyses across modalities 

can generate a stronger biological inference than can be achieved with single modality 
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analysis. As an example, one study23 found that correlation between chromatin accessibility 

and gene expression better reflects chromatin conformation than chromatin accessibility 

information alone. Data from different modalities can also provide independent evidence for 

hypothesized processes. For example, motifs in the open cis-chromatin regions uncovered 

by ATAC-seq can be used to provide additional evidence for transcriptome-based gene 

regulatory relationships. Approaches that convert between different data modalities or 

construct a common latent space can augment mutual information derived from each 

modality and increase the power of subsequent inference. For example, clustering analysis 

on an integrated latent space might yield more stable estimates of cell types that more 

closely follow biological processes than that with single modality inference. For exploratory 

analyses of diseases, integrating multiple measurement modalities might also help narrow 

the molecular nature of the malfunctioning processes and help determine, for example, 

whether a disease-related change in gene expression is caused by changes in DNA 

methylation or chromatin accessibility. In sum, the different approaches of data integration 

can help the resulting inference become more than the sum of its parts. Below we take a 

more practical data-centric view of what methods one might apply given a particular set of 

data (Figure 2).

Integrating jointly profiled multiomics data

The greatest challenge for single cell measurements is recovering molecular fractions 

from limited amounts of material24,25. This problem of molecule recovery efficiency is 

exacerbated when attempts are made to recover different molecular compartments such 

as DNA and RNA. However, simultaneous measurements from the same cell alleviates 

one challenge of multi-modal data integration — mapping the measurement from one 

modality to another where each modality is measured on a different cell. Here, we refer to 

data with multimodal measurements on the same cell as matched data. The most popular 

matched multimodal technique is joint snRNA-seq and snATAC-seq, such as achieved 

using methods including sci-CAR26, SNARE-seq27, paired-seq28, SHARE-seq29 and the 

10X Genomics multiome solution, which enable isolation and measurement of single cell 

nuclear transcriptomic and chromatin accessibility data. Techniques are also available for 

joint measurement of transcriptomic and surface protein data, such as achieved using CITE-

seq17 and REAP-seq18. Furthermore, technology has been built to measure single cell 

phenotypes along with transcriptomic data, providing an important additional dimension for 

single cell profiling30. The technologies used for matched multiomics have been reviewed 

elsewhere10,31,32.

Naïve approaches

A number of methods have been developed for the integration of matched multimodal data 

(Table 1). A naive approach is to transform the data in such a way that all the features (i.e., 

the measured attributes) have homogeneous statistical characteristics. A classic approach in 

organismal systematic biology is to scale each feature by its variation across samples33,34 

(in our case, cells). However, this approach results in all features being considered equally 

important in determining cell variation, which is not biologically reasonable given their 

disparity in functional importance. A related approach is to give each value of a feature a 
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probabilistic score, perhaps with different models for feature sets, such that the values can 

have consistent probabilistic interpretation. One example of a model that uses this approach, 

BREM-SC, assumes a multinomial distribution of each gene in each cell type, for both 

RNA and protein count matrices obtained using CITE-seq. This type of model enables a 

probabilistic clustering of cell types35. We note this approach is distinct from attempting to 

statistically translate measurements of one modality onto another. These naïve approaches 

are simple but ignore the biological context of the different modalities and instead attempt to 

harmonize the statistical characteristics of the different features, limiting their utility.

Latent space approaches

A more model-based theoretical approach is to consider each measurement, regardless of 

its modality, an “aspect” (or a “view”) of an underlying relationship between the cells. 

That is, we would assume the existence of a common latent space. One tool that uses this 

approach to dissect heterogeneity in joint transcriptome and epigenome profiling data is 

called Single cell Aggregation and Integration (scAI)36. To solve the problem presented 

by the fact that typical epigenomic information such as that obtained through scATAC-seq 

is often sparse with a high false negative rate, scAI first replaces a cell’s value with a 

similarly weighted average of a random selection of its neighbor’s values to ‘smooth over’ 

sparse values. It then infers an underlying common latent space by assuming that the data 

matrix of the transcriptome and the epigenome can be approximated by a weighted linear 

function of the shared underlying space. An additional constraint (known as a sparseness 

constraint) is introduced to make the underlying space as simple as possible, along with 

another constraint that tries to optimize the preservation of original cell-to-cell relatedness 

in the underlying common space. Application of this method to joint transcriptome and 

epigenome data from kidney enabled the identification of two subpopulations with distinct 

open chromatin profiles but similar transcriptomes36, indicating the need to consider both 

modalities in order to precisely characterize cell identities.

Latent space approaches can be thought of integrating at the level of features (that is, 

early integration). Multi-omics Factor Analysis (MOFA) and its updated version, MOFA+, 

implement group factor analysis to identify shared variation across multiple modalities37,38. 

The basic models of MOFA and MOFA+ are similar to that of scAI; that is, the observed 

data in each modality is considered a linear weighted function of an underlying common 

latent space. MOFA+ adds multiple underlying latent spaces to account for group effects 

such as different experimental batches. The main difference with scAI is that MOFA and 

MOFA+ explicitly attach a probability model such that each cell’s feature value is a random 

variable that is a function of the common latent space. Thus, while the basic mathematical 

structure of the model is similar to that of scAI, the way MOFA associates the model to 

the data is different. Although not tailored for single cell data specifically, the utility of this 

tool to study a dataset with joint single-cell methylation and transcriptome profiles has been 

demonstrated37.

Another tool, totalVI39 also has similar structure to that of scAI and MOFA in that observed 

transcriptome and protein measurements (as achieved using CITE-seq17) are considered 

functions of a common latent space. TotalVI relates the observed data and modeled data 
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with a machine learning model (deep neural network) that implements an encoder-decoder 

scheme (Box 1). The middle layer of this encoder-decoder neural network can be interpreted 

as a common latent space and used as the integrated variable set to carry out downstream 

analyses. A potential advantage of totalVI over scAI and MOFA methods is that the neural 

network architecture allows more complex (non-linear) relationships between the common 

latent space and measured features.

Late integration approaches

The above methods either explicitly or implicitly aim to infer a common representation 

space from multi-omics data. An alternative approach involves the integration of data at 

the level of inferred models (that is, late integration) such as affinity relationships in each 

modality. One such method40 called Weighted Nearest Neighbor (WNN) analysis in Seurat 

V4 synthesizes a combined measure of cell-to-cell affinity from modality-specific affinity 

models; e.g., cell-cell relationships calculated using RNA data and protein data. We first 

note that data in each modality can be used to compute neighboring relationships of a cell; 

i.e., we can have a neighborhood by RNA data and neighborhood by protein data. WNN 

proposes to measure the informativeness of each kind of neighborhood by assessing how 

well the cells in each type of neighborhood predicts the RNA or protein value of a given 

cell. These computations are used to synthesize a weighted average of cell-to-cell affinities 

from that of each modality. Synthesizing affinity relationships based on a more principled 

computation idea called “message passing” was proposed in the method Similarity Network 

Fusion41 (SNF). In this approach, first a neighborhood relationship is calculated for each 

object (i.e., cell) from the similarity (or affinity) matrix of each modality. Then the similarity 

matrices of each modality are “fused” together by “passing” the relationship information 

from the set of neighboring objects of one matrix to the other matrix, back-and-forth 

iteratively until they converge. This basic approach was implemented in CiteFuse42 as a 

method to integrate affinity relationships from RNA and surface protein from CITE-seq.

Integrating independent multimodal data

With current technologies, a more common problem than the integration of matched datasets 

is the integration of two or more independently collected datasets (that is, unmatched 

data), with different modalities. The emergence of comprehensive, single modality, 

single cell datasets across whole organisms43,44,45, has led to an abundance of highly 

accessible data of this type. In general, experimental approaches for joint measurements 

of certain modalities are still under development or maybe impossible. For example, 

approaches to simultaneously quantify single cell transcriptome and whole proteome are 

extremely challenging as single cell proteomics techniques are rapidly advancing but still 

lack resolution46. Single cell lipidomics has been more successful than proteomics at 

quantitatively identifying molecular species47, but we are not aware of any attempts at 

multimodal measurement of lipidomics data. The key problem for unmatched data is that 

measurements from each modality are unlikely to have cell-to-cell correspondence. That is, 

in measurements from one set of cells using one modality, say proteins, and another set 

of cells for another modality, say the transcriptome, it is highly unlikely that there will be 

cells in each set that correspond exactly to the same cell state for both modalities. Thus, 
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almost by definition, we cannot integrate information at the level of individual cells when 

measurements are not matched. Current integration approaches, therefore, attempt to match 

groups of cells, either at the level of distinct cell types, or at the level of local ensembles 

(neighboring cells). Alternatively, some methods try to statistically map one feature space 

to another feature space. Here, we classify these methods into three main categories: those 

that match by annotated cell groups; those that match by a shared feature set; and those that 

match without a common feature set (Table 2).

Matching by annotated cell groups

When different measurements are made on different sets of data, one coarse grained 

approach to integrate those measurements is to match groups of cells (e.g., clusters) 

between the modalities. The clusters in each modality can be associated manually if the 

clusters correspond to known cell types, which might have been inferred from expert 

knowledge (e.g., marker gene expression). If cluster label information is not available from 

established annotations, other features that are biologically informative can be used, such 

as the proximity of open chromatin to expressed genes, averaged over the ensemble of the 

cluster to match clusters from each modality. One study, for example, integrated scRNA 

and scATAC data48 by linking open chromatin peaks of scATAC-seq cell clusters with the 

expression of scRNA-seq cell clusters through their proximity in the genome, from which 

they inferred enhancer–promoter pairs. These enhancer–promoter pairs were consistent with 

prior knowledge of regulatory networks, supporting the utility of this method. Another 

approach, MAESTRO49, incorporates additional information from ChIP-seq databases to 

help define transcriptional regulators and match clusters based on scRNA and scATAC data.

Matching at the cell group level is also common practice in analyses of spatial 

transcriptome data. Most current spatial transcriptomics technologies either lack resolution 

or transcriptome complexity (reviewed elsewhere50); however, integrating scRNA-seq with 

spatial data can help overcome these two limitations. For example, training of a machine 

learning classifier, Support Vector Machine (SVM), on highly variable genes from annotated 

scRNA-seq clusters enabled the classifier to identify and map major cell types from 

sequential fluorescence in situ hybridization (seqFISH) data with which only 125 genes had 

been profiled51. For spatial transcriptomics data with low cellular resolution — such as that 

obtained using 10X Visium and slide-seq52, scRNA-seq data can be used to deconvolute the 

spatially averaged low resolution readout and increase resolution by estimating frequencies 

of each cell type53.

Matching with shared feature sets

In rare cases, measurement modalities might be different, but their common molecular basis 

can be used to match the features. For example, STvEA54 matches CITE-seq data with 

multiplexed immunohistochemistry (mIHC) or flow cytometry data using measurements 

of protein abundance as the common factor. Matching is achieved through mutual nearest 

neighbor (MNN) correction55 on the two data matrices, enabling automated annotation of 

mIHC (or flow cytometry) data with labels from CITE-seq data. Given two sets of objects 

and a notion of distance across the datasets, MNN identifies pairs of objects in the two sets 

that are considered to be each other’s nearest neighbor. A classic application of MNN is in 
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identifying homologs amongst gene paralogs; variations of the MNN principle have been 

used widely in data integration.

In the absence of a common molecular basis, measurements of one modality may be 

connected to features of another modality by some (biologically motivated) statistical 

model to enable joint analysis. For example, clonealign56 assumes that increased DNA 

copy number (inferred from scDNA-seq data) in cancer cells will result in increased gene 

expression within the corresponding region. Many scRNA–scATAC integration methods 

synthetically construct a “gene activity matrix” from ATAC data, which is treated as a 

gene expression feature set. Multiple models have been proposed to infer gene activities 

from chromatin accessibility data. Seurat V357 aggregates all ATAC reads from −2kb of 

the transcription start site (TSS) throughout the whole gene body to predict expression 

levels. MAESTRO49 assigns weights to each peak with an exponential decay based on the 

distance to the TSS. The Cicero model20 is more complex and takes into consideration read 

depth and distal elements that are co-accessible with the TSS. Mapping features of one 

modality onto another often creates systematic differences that are similar to normalization 

problems and batch effects. Therefore, good calibration after feature conversion is essential 

for matching to be successful. Calibration can begin before integration: for example, Seurat 

V3 and STvEA carry out normalization of both datasets before integration, whereas this 

step is usually skipped by other models. Seurat V3 and MAESTRO pipelines implement 

canonical correlation analysis (CCA) to align the two datasets, which are then mapped to 

the same gene expression feature space. They then apply MNN correction55 for additional 

alignment.

Integration of unmatched data by latent models

Similar to matched data cases, data from each modality can be modelled as maps from an 

abstract set of common factors (latent factors). LIGER58 uses an integrative non-negative 

matrix factorization (iNMF59) approach to jointly factorize multiple cell-by-feature matrices 

into cell-by-factor matrices and factor-by-gene matrices using a set of common factors 

for all matrices and another set of factors specific to each matrix. Factors here refer 

to hypothetical underlying (latent) features that can be thought as abstract cell states 

that determine observed values. Multiple modalities can be integrated through statistical 

modelling of features; for example, by using a quantitative measure of gene accessibility 

from snATAC-seq to estimate gene activity for integration with scRNA-seq. The factor 

loadings of each gene are usually interpreted as “metagenes ” and the magnitude of 

modality-specific factors is constrained and regularized (Box 1). The factor loadings of 

each cell are used for clustering and cell matching. Matrix factorization methods assume that 

observed data are weighted linear functions of the latent decompositions but similar to above 

discussion of totalVI39, more complex relationships can be modeled with neural networks. 

MAGAN60 implements a type of neural network called dual Generative Adversarial 

Network (dual GAN) that uses a new architecture to map two datasets from different 

modalities reciprocally.

Obtaining a shared feature set by mapping between modalities can be challenging or even 

impractical when the measurements from each cell are vastly distinct. Rather than operating 
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on a discrete set of observed data points, another approach is to consider modeling the 

entire “space” of data for each modality and map the spaces to each other. Manifold (Box 

1) alignment and related methods assume that individual cells occupy some geometric 

subset of the feature space of a given modality. These geometric subsets have been called 

a “manifold” in the literature (with some abuse of the mathematical term). These manifolds 

can be thought as smooth curved surface that characterize a biologically feasible set of 

values for a given collection of cells. Manifold alignment methods assume that a shared 

latent structure (manifold) underlies each dataset and tries to learn a shared manifold among 

datasets to build correspondence between them. The approach is similar to linear latent 

variable models but with more generality.

Tools that implement manifold alignment include MATCHER61, MMD-MA62, and 

UnionCom63. These methods start with dimension reduction of the datasets. As an 

important first step, dimension reduction methods are chosen to be consistent with 

the model assumption and suitable to the data structure. MATCHER starts with the 

assumption that a one-dimensional structure exists along which all cells lie (this one-

dimension can be interpreted as “pseudotime ”), MATCHER then fits a stochastic model] 

to infer a one-dimensional manifold structure (i.e., pseudotime) for each data modality. 

Subsequently, so-called monotonic warping function, is learned to match the two or 

more one-dimensional manifolds with pre-specified manifold orientation. Here, monotonic 

warping function means a function that associates two variables to each other that is 

strictly increasing or decreasing—i.e., order-preserving.). Schematically, MMD-MA maps 

geometric relationships within each modality feature space to a common space in a 

way that minimizes geometric distortions between each modality space while maintaining 

the intra-space configuration. UnionCom embeds each modality into a distance matrix 

that encapsulates a low-dimensional manifold for each modality. A well-defined pairwise 

distance matrix is sufficient to represent the complete geometric configuration of points. 

Thus, two matrices in UnionCom represent the estimated geometric relationships of the 

cells in each measurement modality. By optimizing a notion of difference between the two 

geometric configurations, the configurations of two modalities are matched and probabilistic 

cell correspondence between the two datasets are computed. Somewhat distinct from 

manifold alignment, SCOT64 uses the notion of optimal transport, which tries to define a 

relationship between two sets of objects, each with a number of classes (e.g., cell types) and 

different frequency of objects in each class. The computed relationship takes into account 

both the frequency of objects in each class and a measure of distance between the objects.

Matching different modalities by aggregation is a natural idea but tends to lose individual 

cell resolution. Some approaches attempt to recover individual cell resolution through initial 

aggregated matching and then refinement, but the results from these approaches can be 

highly dependent on initial conditions. Matching by applying statistical models between the 

features of the different modalities can provide cell level resolution but this approach is 

highly dependent on the accuracy of the statistical models. Although a clear relationship 

exists between chromatin states and gene expression, the exact relationship, especially 

with respect to temporal dynamics is unclear. Matching by latent space or manifold 

alignment models are somewhat more principled approaches than those like aggregation and 

refinement, but the available models are complex and their interpretation in biological terms 
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is often unclear. In sum, the available approaches have different strengths and weaknesses, 

and their utility is likely to be highly data and problem dependent.

Visualization of multiomics data

Computational visualization tools or interactive websites that allow user-friendly searches 

and display of features notably promote data sharing and reuse. Two large categories of 

data visualization exist in the context of single cell biology. One might be called “unbiased” 

visualization, and includes various dimension reduction approaches that attempt to display 

all data points. The other might be called “knowledge-driven” visualization, whereby certain 

curated aspects of the data (e.g., a focal subset of cells) are displayed. Although multiple 

tools have been developed for visualizing scRNA-seq data, tools for explicit visualization 

of single cell multiomics data are scarce. Below we provide a brief overview of current 

methods and discuss future directions for multi-modal single cell visualization.

Unbiased visualization

Dimension reduction and unbiased visualization has been critical for interpreting complex 

single cell data. The diverse cell types and states within a single cell dataset means 

that visualizing cells as a point in a two-dimensional or three-dimensional image is 

useful for evaluating data qualities, cell identities, developmental trajectories, and batch 

effects65. Various visualization methods have been implemented based on dimension 

reduction approaches, including tSNE, UMAP66, PHATE67, and force-directed graphs68. 

These methods extend from classic linear projection methods like Principal Component 

Analysis (PCA), which is based on projecting data points onto (orthogonal) directions of 

maximum variation, and embedding methods such as Multi-Dimensional Scaling (MDS). 

MDS embodies the general idea of computing one set of distance relationship in the 

original high-dimensions and then placing points in lower dimensions such that distance 

relationships in the lower dimensions are as similar to that of the original dimensions as 

possible. Variations of MDS involve different ways to define distances or measure the 

distortions between high and low dimensional distance relationships. The main problem 

faced by dimension reduction and visualization methods is that the configuration of points 

in a high dimension state cannot be represented in lower dimensions without error, and the 

methods therefore have to tradeoff the kinds of distortions that they allow. Typically, it is 

hard to uniformly spread out the distortions from smaller distances (e.g. within clusters) to 

those from larger distances (e.g., between clusters). These kinds of tradeoffs are determined 

by the approaches used to calculate distances and measure high-to-low distortions; typical 

options tradeoff accuracy at large distances for accuracy at smaller distances.

Methods such as tSNE, UMAP and PHATE add another twist to the dimension reduction 

approach by allowing inhomogeneous notions of distance or similarity. That is, a distance 

from point X to point Y might be different from that of point Y to point X. One 

interpretation of this approach is that the inhomogeneity in distances is related to curvature 

or (diffusion) velocity; thus, the distance of X to Y might be analogized to going uphill 

versus Y to X going downhill, or a particular region might have high curvature and 

is therefore hard to traverse. Modern methods of visualization also implement nonlinear 
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notions of distance (or similarity) such that certain distances are emphasized whereas 

others are deemphasized, which often allows the resulting embeddings to highlight cluster 

relationships. These methods try to control the arbitrary freedom allowed by such flexibility 

by imposing user defined constraints (e.g., “perplexity” in tSNE (Box 1)). We caution 

that the high flexibility of these methods can complicate the interpretation of data. The 

visualizations can also be unstable, either because the algorithms start from random initial 

configurations or due to the sensitivity to the addition and subtraction of points. In-depth 

discussion of tools for the visualization of single cell data can be found elsewhere69.

Unbiased visualization approaches naturally extend to multiomics single cell data as long as 

the above-described integration methods produce representation in a common space. Any of 

the available dimension reduction methods can be used to visualize integrated relationships 

within a common latent space, for instance, a shared gene expression space (by gene activity 

modeling) or a common layer in neural net. For example, the multiomics visualization arm 

of scAI36, called VscAI, enables visualization of cells, genes, and (accessibility) loci by an 

embedding that reflects the low dimensional latent space. However, the nature of integrative 

analyses suggests the need for more complex multiple views of the data. For example, we 

might want to see single cells laid out in the common latent space and then also see their 

configuration in each of the measurement modalities, in particular with cell correspondences 

in each space. Although it is possible to switch views (as described elsewhere44,6), currently 

available methods do not easily show correspondence between layers. It would be desirable 

to have visualization systems similar to Geographic Information Systems (GIS), such as 

those used in landscape ecology70, which have layers of multi-modal maps.

Knowledge-driven visualization

Single cell data is used by researchers to derive additional biological inferences —a 

process that is often called down-stream analysis. These downstream analyses result in 

the production of additional visual objects. Common examples of these visual objects 

include violin plots for visualizing cell type marker genes, di-graphs to visualize cellular 

interactions, or even simple annotation overlay to visualize a focal subset of cells. Other 

visual devices that focus on particular knowledge-driven assumptions include displays 

of motif enrichment along with the expression of corresponding transcription factors14, 

visualization of sequence reads along genomic tracks71, and other associated annotation 

data organized by genomic coordinates71,72. One important approach to incorporate existing 

knowledge for single cell data is to associate spatio-temporal information with single cell 

visualization. Temporal trajectories have been visualized using many different pseudotime 

methods; for example, the RNA velocity method15 displays estimated displacement vectors 

to extrapolate the “flow” of cell differentiation states. Approaches for the visualization of 

single cell data in the context of anatomical ontology (e.g., KidneyCellExplorer6) or within 

detailed 3D models (e.g., NIH HuBMAP project73 ) is under development.

Future directions for data visualization

Additional visualization tools and frameworks are needed to fully appreciate the complexity 

of multimodal data (Figure 3). Visualization tools with greater flexibility to enable the 

display of multiple and coordinated views that link objects in various modalities will aid 
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visual explorations of multi-modal relationships. However, even multiple layers of data 

visualization will be insufficient to fully explore the biological structure of multimodal data 

if the visualizations are static. Complex data are best explored with interactive systems 

that enable dynamic modifications of views, such as the ability to re-display subsets of 

data or dynamically switch between different modalities. One critical consideration is the 

computational speed required for such interactive visualizations and analyses, especially for 

very large datasets (e.g., those with 106 cell datasets4,5). As datasets scale to extremely large 

sizes, issues of where to store and compute the views — for example, in the cloud or on a 

client computer —become non-trivial.

Viscello44, Cerebro74, VscAI36, and Giotto75 are some of the tools that currently allow some 

degree of interactive multimodal single cell data visualization. Some consortia including 

ReBuilding a Kidney (RBK; https://www.rebuildingakidney.org/) and GenitoUrinary 

Development Molecular Anatomy Project (GUDMAP;gudmap.org/) integrate interactive 

single cell visualizers in their data archive. However, these tools are not fully interactive in 

the sense that they cannot recompute the visualization to an arbitrary choice of views or 

subsets of data.

Challenges for single cell multimodal data integration

We reviewed some of the existing approaches to data integration for single cell multi-modal 

data but our review only touches the surface of the very active on-going research in this 

area. For all of the approaches, there are some common challenges to be considered. 

These challenges can originate from the process of data collection, data conversion, and 

data interpretation. Here we discuss some of the most prominent challenges to single cell 

multi-modal data integration.

Accounting for data characteristics

It is well-acknowledged that single cell data are noisy. This noise arises from biological and 

technical variation. Common biological variation includes the stochastic bursting of genes75, 

variation arising from circadian rhythm77 and cell cycling78, and variation arising from 

local cell environment. The contribution of technical variations is debated, but may include 

uneven dropouts and coverage79,25, transcript contamination (from ambient RNA )80, and 

multiplets 81. In general, single cell assays, especially high-throughput assays, tend to 

be lossy because the technologies tradeoff sensitivity (e.g., efficient capture of the RNA 

molecules in a cell) for throughput, resulting in sparse datasets. This sparsity is a huge 

challenge and is typically approached by “borrowing” local information from nearby cells, 

which can introduce additional biases. Multi-omics approaches have the potential to resolve 

some confounding factors, sparsity, or noise in a single modality by ‘borrowing’ information 

in the other modality, but this integration does not always improve the prediction power 

achieved by a single modality82. Noise across multiple layers can be amplified, leading to 

a decrease in the signal strength83. An important problem in single cell analysis is that 

commonly used noise models typically use off-the-shelf parametric models, such as Poisson 

zero inflation models and negative binomial models84,85, whereas in practice, single cell 
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noise does not seem to be well modeled by these parametric models and systematic control 

experiments to measure the characteristics of the noise have been rare79,86.

Although models have been built to distinguish biological and technical variation in scRNA-

seq data87, models to account for heterogenous noise across multiple modalities still need 

to be developed. In some cases, the problem of heterogeneous noise is handled best by 

“early integration”, whereby the input datasets themselves are operated on to make a single 

compatible matrix; for example, by applying weights and concatenating the datasets. In 

other cases, the problem is best approached by “intermediate integration”; for example, 

using the latent space methods approach to map the input data to theoretical common space 

features. In still other cases, “late integration” might be the best approach, whereby each 

modality is used to infer a model, such as a gene regulatory network, and then the inferred 

models are combined appropriately (e.g., using CiteFuse41). Each of these approaches 

have pros and cons depending on the modalities being integrated and other conditions 

of measurement (e.g., batch effects). Earlier integration might help increase the power of 

ultimate downstream analysis (e.g., the identification of cell clusters) by both increasing 

the size of the dataset and by bringing together (possibly) complementary information. Late 

integration can help the application of modality-specific models and methods to handle 

heterogeneous noise, and enable the individual inferences (e.g., clusters from each modality) 

to be combined to obtain a more robust inference.

Data types and cell composition compatibility

Although desirable to integrate information from all relevant sources, datasets that are to be 

integrated can be vastly distinct. At a simple level, gene expression profiles in scRNA-seq 

data are continuous variables whereas chromatin accessibility measurements are usually 

binarized to indicator variables88 (also known as dummy variables). This integration of 

distinct datasets requires a consistent way to match metric variables with nominal variables, 

which can have both technical and conceptual challenges89.

At a more complex level, traits such as cell morphology, while having a metric 

representation, are difficult to statistically characterize in a meaningful manner. The 

emergence of machine learning methods has led to the development of approaches to 

integrate morphology and expression data. Fascinating insights from these studies suggest 

that cell morphology might predict gene expression90, but the functional connections of 

such relationships are still unclear. Another more common but important challenge is 

that subtypes of cells that are recovered and measured with high-throughput single cell 

methods can be very different for different measurement modalities. For example, immune 

cell populations are usually over-represented in scRNA-seq datasets, likely as a result of 

recovery bias, whereas snRNA-seq methodologies demonstrate bias in their recovery of 

different subpopulations91. Such differences in cell subtype distribution can complicate data 

matching, especially for nearest neighbor-based methods.

Computing millions of data points

With the development of combinatorial indexing technologies92 and sample multiplexing 

strategies93, datasets are now available at 106 scale4,5. Efficient computing over such big 
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data matrices requires different strategies to those used for smaller datasets. We note 

that just to compute pairwise relationships for a dataset of size 106, ~1012 computations 

need to be considered. This scale of computing is prohibitive, resulting in the use 

of less intensive heuristic methods. In fact, even just laying out a million points for 

data visualization becomes a heavy computational burden and prevents researchers from 

exploring different views due to the wait time involved. Future integrative analyses of 

single cell data will require concerted efforts in algorithm development with incorporation 

of novel stochastic indexing strategies, streaming of algorithms, and careful heuristics, 

along with the development of carefully tuned high-performance codes. Some areas of 

computational biology such as phylogenetics and protein folding have long been acutely 

limited by computational speed, and advanced algorithmics have been an inherent part of 

those fields. We suspect single cell biology will soon demand similar levels of algorithm 

sophistication and high performance software engineering.

Modality Mapping

As discussed earlier, the integration of unmatched measurements is often achieved by 

mapping the values of one modality to the values of another — a key example is the 

conversion of chromatin states to gene expression values. However, such conversions 

assume an over-simplified model between different modalities, mostly due to a lack 

of knowledge of whole-genome gene regulatory logic. As previously reported29, the 

temporal dynamics of the open chromatin states of a cell are not at the same phase as 

its corresponding RNA expression; rather, gene expression lags behind the opening of 

its proximal chromatin. Thus, accurate mapping between the modalities requires both a 

precise knowledge of the mechanisms connecting the measured molecules and the temporal 

dynamics of the mechanisms. Similar consideration would apply when mapping between the 

transcriptome and the proteome or, a more complicated scenario, the connection between 

molecular and morphological states.

Interpretability and Validation

Most data integration methods avoid detailed causal modeling. At the extreme end are 

purely data-driven machine learning methods, such as autoencoders (Box 1). For example, 

one autoencoder-based multiomics data integration method94 has been trained to create a 

common latent space for many different modalities. Powerful computational tools such as 

this can indeed integrate multiple data types, automatically and regardless of the difficulties 

of comprehensive causal modeling. In a sense, machine learning methods completely avoid 

the careful modeling of mechanisms and instead apply a generically complex model to a 

very large reference dataset to produce a well-performing model with unknown parts. Thus, 

interpreting the details of a machine learning method in terms of biological correspondents 

is difficult. More importantly, training of complex machine learning models typically 

requires very large volumes of data. On the positive side, developments in high-throughput 

multiomics technologies promises the availability of such training data. On the negative side, 

for the models to be generalizable we need more than just replicate numbers but also large 

amounts of data across varying conditions, such as from different cell and tissue types. Until 

a mechanistic model of a cell with sufficient precision to enable integration of data under 

a causal model is available, both the utility and validation of any integration method must 
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be evaluated in terms of their application; for example, by the recovery of the identities of 

biologically plausible cell types.

Conclusions and future directions

Integration of single cell multiomics data has been implemented in many real data 

analyses, revealing new biological insights. For example, multiomics integration has 

identified the presence of a pro-inflammatory, “failed repair proximal tubule cell” state 

in apparently healthy human kidneys13,95; it also facilitated the prioritization of GWAS loci 

through the identification of methylation and gene expression changes that are likely to 

mediate development of diabetic kidney disease96, and has helped identify mechanisms of 

myofibroblast activation in CKD8.

Ideally, the process of generating data integration models and evaluating the models 

should itself shed light on mechanisms of biological processes such as gene regulation. 

For example, cell identity is traditionally defined by the abundance of specific RNAs or 

proteins, but integration of these data with other omics datasets could effectively broaden the 

definition of cell types to other chemical–physical modalities of the cell. In addition, novel 

relationship across data modalities can be studied with multiomics data integration. For 

instance, correlating DNA methylation with gene expression in cis might reveal differential 

functional impact of methylation of different DNA elements (promoters or gene body). 

However, regardless of their utility in the modelling of biological processes, data integration 

often yields more or better resolved inferences than analyses of single datasets alone. 

For example, the addition of scATAC-seq to scRNA-seq data better distinguishes different 

segments of proximal tubules in the kidney36 than does scRNA-seq data alone. Integrated 

data analyses can also identify underappreciated relationships that might lead to additional 

applications, such as drug target discovery or better causal SNP inference.

Currently available computational methods have generally followed the development of 

the measurements themselves. The number of available methods that attempt to integrate 

unmatched data far outweighs the number of methods that attempt to integrate matched 

data simply because multiomic measurements have only become widely available in the 

past 2 years. Methods for integrating cell morphologies97, perturbations98, spatial micro-

environment99,52, and subcellular measurements100 (e.g., of organelles), are sparse, as are 

the corresponding data. However, we expect that methods to integrate these data will rapidly 

follow the availability of such data. In addition, most current computational methods are 

built to integrate two modalities; however, with the development of experimental methods 

that jointly profile three or more modalities, more flexible computational algorithms will be 

required.

Amongst the computational tools that lag behind the analytic methods are methods for 

visualization of complex multimodal data that interactively connect between different views 

and ancillary information. Some of the barriers to the development of these tools are the 

speed and capacity of the computers themselves. Approaches to enable the interactive 

visualization of extremely large volumes of data in the single cell field is non-trivial and may 

eventually require dedicated hardware.
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As discussed above, one ideal way to integrate data is in terms of a causal model between 

the quantitative data and the underlying molecular processes, such as cell differentiation, 

physiology, and homeostasis. Conversely, we would hope that multimodal data, by 

providing measurements from multiple aspects of the biology of an organism could aid 

the development of such causal models. The era of multiomic single cell biology at the scale 

of millions of cells is just starting and we have no doubt that the data, analytical methods, 

and inferred models will advance our understanding of the kidney by leaps and bounds in 

years to come.
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Glossary

Assay for Transposase-Accessible Chromatin using sequencing
(ATAC-seq). A technique that profiles the accessibility of DNA elements based on the 

principle that the Tn5 transposase can insert a transposon only at accessible parts of the 

chromosome. The insertion location is identified through DNA sequencing.

Cis-regulatory elements
DNA elements proximal to a gene that are required for controlling gene expression. Such 

elements usually include promoters and enhancers, and often contain transcription factor 

binding sites.

Features and feature space
In machine learning, measured variables are often called features and the set of features 

comprise a feature space.

Molecule recovery efficiency
Single cell assays capture molecules, such as mRNAs or transposon-interrupted DNA 

fragments, and amplifies them for readout. Different protocols recover a given pool of 

molecules with different efficiencies e.g. a single podocyte might have 300,000 mRNA 

molecules and an RNA-seq protocol with a 10% recovery efficiency would recover ~30,000 

of these.

Joint snRNA-seq and snATAC-seq
scRNA-seq attempts to recover RNA from the whole cell whereas snRNA-seq only isolates 

the nuclear fraction of the RNA; the two transcriptomes are related but different. Multiomics 

methods involving ATAC-seq and RNA-seq typically isolate the nucleus first resulting in 

snRNA-seq and snATAC-seq.

Sequential fluorescence in situ hybridization (seqFISH)
A technique that measures mRNA quantity through sequential fluorescent probes that have 

combinatorially encoded information for each targeted mRNA. For example, sequential 

signal from a spot of probe A then B might encode gene X while probe A then C might 

encode gene Y.
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Read depth
Given a genomic region, say transcribed region, a quantity that measures, the number of 

times that sequencing reads cover that region. The region of interest may be a base pair or an 

entire transcribed region.

Canonical correlation analysis
A multi-variate statistical technique that computes correlation between two sets of variables, 

say X and Y. Canonical correlation analysis finds the linear combination of X and linear 

combination of Y that maximizes correlation.

Nonnegative Matrix factorization
A group of algorithms that decompose one matrix into a product of two (or more) matrices 

such that the elements in each matrix is nonnegative. Typically, each matrix has a model 

interpretation; e.g., a data matrix factorizes the matrix into one representing latent space 

features and another representing latent space features to cells.

Factorize (explained above with NNMF)

Metagene
A metagene is some (mathematical) function of a group of genes (e.g., linear combination), 

often relating some shared properties. For example, methods like NNMF compute matrices 

as the product between a gene-by-metagene matrix and a metagene-by-cell matrix.

Dimension reduction
A data transformation method that reduce the number of dimensions in the original feature 

space to a lower-dimensional (usually much lower than the original one) space while 

certain properties (e.g., the distance measures between observations) of the original data 

are preserved.

Pseudotime
In contrast to real time, pseudotime represents computationally inferred temporal stages of a 

collection of cells.

Principal Component Analysis
A common dimension reduction method that aims to project the original data to a fixed 

smaller dimension while minimizing the squared error during data reduction. Equivalently, 

this can be viewed as maximizing the variance in the projected data.

Embedding
In mathematics, embedding is a map from one set X to another set Y, where some 

characteristic of X is preserved. In single cell studies, the term embedding has been used for 

methods that “place” cells in a new feature space, possibly of lower dimension, such that 

notions of cell-to-cell distances are approximately preserved.

Ambient RNA
In droplet-based single cell RNA-seq approach, the measured mRNA molecules could be 

contaminated by mRNAs from other cells present in the suspension, say due to ruptured 

cells. These contaminating mRNAs are termed ambient RNA.
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Multiplets
During high-throughput single cell (or single nuclei) isolation in droplets or similar vessels, 

two or more cells may be captured together creating a mixture of molecules. Computational 

methods have been developed to detect and remove such unwanted observations from the 

dataset.

High-performance codes
In programing there are many different ways to achieve the same computation. Some 

algorithms are inherently faster than others. For the same algorithm, programs can also 

be written differently to speed up the execution by careful use of hardware resources. 

High-performance codes try to use the fastest algorithms and fine tune the programs for 

optimal speed.

Dropouts
In single cell biology, dropout is usually referred to as the transcripts that are present in the 

cell but not captured during sequencing.
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Box 1: Computational terminology

Model:

The term “model” is fairly generic. Here, we use the term ‘model’ in two different 

senses. In the first use, a model is a set of quantitative causal descriptions of biological 

processes, often abstracted to a simple form. An example would be a differential 

equation that describes RNA levels as a function of the rates of transcription, export 

and degradation. A second use of the term ‘model’ is to describe statistical models 

that relate measurements to each other; e.g., a “linear model” that relates latent space 

variables to observed variables as a linear mathematical function. This class of models 

might include more biology motivated models such as a gene activity model that posits 

a statistical relationship between the number of cis open chromatin regions and levels of 

gene expression.

Machine learning:

Machine Learning (ML) is a family of computational models that tries to associate a set 

of input features to a set of output features. Typically, output features are discrete labels 

such as “proximal tubule cells” or “podocytes”. ML methods separate into “supervised” 

methods and “unsupervised” methods. In supervised methods, some observations of 

“true” label assignment is known; e.g., input features might be gene expressions and 

true cell-type labels are available for some cells. Such ground-truth data are called 

“training data”. ML methods try to tune (learn) various mathematical functions to find 

the association between input features and the training data’s known output features. 

In unsupervised methods, training data is not available input features are available only 

for some observations. The typical goal of unsupervised methods is classify the input 

observations into groups (e.g., clusters) to reveal their grouping patterns.

Neural Networks and Deep Learning:

A Neural Network (NN), sometimes called Artificial Neural Network (ANN) to 

distinguish from biological brains, is a subset of machine learning methodologies t 

motivated by the modelling of a biological brain. The basic idea is to associate input 

features to output features using a set of mathematical functions called “nodes”. A node 

generates output values as a function of all the input values. Thus, a node emulates 

the metaphor of a neuron integrating all the synaptic input to an axonal output firing. 

Multiple nodes can be applied to the input features, each of which generates values, 

resulting in a set of values that can be treated as input features to another set of nodes. 

Each set of nodes used in this manner is called a “layer.” The complexity of the ANN 

can depend on the number of nodes in each layer, the number of layers, the input-output 

relationships between nodes, and the type of mathematical function in each node. Deep 

Learning (DL) is a non-technical term to refer to the development of methods that have 

very large number of nodes and layers.

Regularization:

Many statistical models can be complicated and overfit the data. For example, in 

the popular tSNE data visualization method, each data point has its own scale of 
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distance, which can make pairwise relationships arbitrary. A common technique to 

prevent overfitting is to add some additional constraint, for example, a penalty for 

high model complexity, to prevent the model from being degenerate. For example, 

with tSNE a constraint called “perplexity” is introduced that constrains the observed 

data relationship to a certain pairwise distribution. The class of techniques to constrain 

the model complexity is called regularization. Regularization methods typically have a 

tunable parameter that controls how much regularization constraint is applied.

Manifold:

In mathematics, a manifold is a smooth topological space that locally resembles 

Euclidean space (i.e., space where distances between points can be defined as square 

root of sum of coordinate differences). In single cell studies, the term “manifold” refers 

to the idea that ensembles of the cells may lie in a lower dimension of the measurement 

space, which may have non-linear characteristics such as curvature and local folds.

Kernel functions:

A kernel function is a mathematical function that can be used to generalize the notion of 

distance between two objects (points). For example, the standard Euclidean distance (see 

Manifold) can be derived from a particular kernel function, the “dot product”. In machine 

learning, different kinds of kernel functions are used to change the pairwise relationship 

of objects, in a sense changing the geometric configuration of objects.

Loss function:

In machine learning, loss functions are functions that need to be optimized to obtain 

the desired performance given the data and model. For example, in the least squares’ 

regression model, the loss function is the sum of the squared error; and in Lasso 

regression, the loss function is the sum of squared error with regularization of regression 

coefficients. The design of loss function is key to a successful machine learning model.

Encoder-Decoder:

A commonly used architecture in machine learning where a neural net is constructed with 

a set of nodes that map the input to a middle layer (encoder) and another set of nodes, 

usually the inverse of the encoder architecture, that maps the middle layer to an output 

(decoder). The middle layer typically is simpler than the input, for example, with lower 

dimensions, and tends to encapsulate an abstract characteristic of the input dataset. The 

decoder then attempts to map this abstracted representation back to some observable data. 

In an autoencoder, the decoder tries recapitulate the input data. If successful, the middle 

layer is thought to represent the essential characteristics of the input data.
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Key Points:

• With the development of single cell multiomics techniques, tools and models 

for data integration are critically important

• Integration problems in single cell biology can be divided into those 

associated with the integration of matched and unmatched data

• Strategies for integrating matched data include joint latent space inference, 

consensus of individual inferences, and biological causal modeling

• Strategies for integrating unmatched data include annotated group matching, 

matching with common features, and aligning spaces

• Visualization methods for integrated multi-modal single cell data are still 

underdeveloped

• Future challenges include accounting for specific noise related to each 

modality, overcoming the need for computing efficiency, and developing 

biologically interpretable integration strategies.
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Figure 1. Frameworks for the integration of single cell multiomics data
Computational methods enable the integration of measured attributes (that is, features) 

obtained using multiomics approaches (for example, transcriptome and protein data) from 

single cells. These methods can be classified into four broad categories.

(a) Integration based on quantitative causal models. For example, the rates of RNA 

synthesis, splicing, translation and degradation might be modelled by differential equations 

and single cell multiomics data (for example, gene and protein expression data) can be used 
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to estimate parameters (p) in the model. After obtaining the parameters, current and future 

cell states can be inferred.

(b) Statistical modeling between features. A statistical function is used to associate data in 

one modality to another modality, such that the two sets of features (again, for example, 

gene or protein expression data) can be harmonized into one modality for downstream 

analyses. Such models can be calibrated from reference datasets or potentially fit to the 

dataset of interest.

(c) Latent space modeling. Data from different modalities are assumed to be generated 

from a common latent space, and integrated based on the assumption that specific mapping 

functions are able to map the common latent space onto different modalities. The latent 

space can be viewed as an integrated low dimensional embedding of the multiomics or 

multi-modal data and the mapping functions can be regarded as a model of the abstract 

latent space to real observations.

(d) Consensus of individual inferences (late integration). Analyses (such as clustering or 

dimension reduction) are performed for each individual data modality after which the results 

are combined to obtain common consensus outputs or complementary evidence.
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Figure 2. Considerations for choosing an integration method for single cell multiomics analysis.
Various data integration methods can be used depending on the nature of the data and 

whether they are matched (different modalities were profiled from the same cell) or 

unmatched (different modalities were profiled from different cells). For unmatched data, 

analyses can be performed with matched clusters if manual annotations of cell types are 

available, for example, if we are only interested in the cell-type level relationship between 

open chromatin and DNA metholation, we can perform clustering and cell type annotation 

for each modality, and integrate at the level of cell type. If manual annotations are not 

available or a higher resolution of integration is needed, two different strategies are available 

depending on whether feature conversion is possible. For data with a common feature set or 

converted features (e.g., open chromatin to gene activity), tools developed for matching with 

converted features can be used. For data without common features or feature conversion, 

integration by aligning common spaces can be applied.
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Figure 3. Desired properties and functionalities of visualization tools for single cell
Visualization of multiomics data requires additional functionalities given the complex data 

structure, for example, the ability to switch the view between different modalities. Some 

other desirable features include:

a) Multiple layers of data visualization based on data obtained for different modalities 

with mapping between each layer. Ideally, the mapping between each observation and their 

spatial location can also be displayed as another layer of information.

b) The addition of knowledge-based visualizations that incorporate down-stream analyses or 

prior knowledge.

c) Multi-scale views with multiple resolutions to assist the dissection of very large datasets.

d) Integration of prior knowledge such as ontology and anatomy with multiomics data to 

help anchor biological knowledge to the data

e) Tools that enable on-the-fly or dynamic visualization of data to enable more flexible data 

visualization
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Table 1.

Methods for matched data analysis

Tool Data 
type

Model Additional notes Documentation Ref

BREM-SC T+P Early integration, 
probabilistic 
modeling

This method models the observed data by multinomial 
distributions and assumes data from both modalities to be 
generated in a cluster-specific manner

https://github.com/
tarot0410/BREMSC

35

scAI T+C Early integration, 
latent space 
modeling

scAI iteratively updates a regularized matrix factorization 
model to obtain an optimal common cell loading matrix 
across two modalities

https://github.com/
sqjin/scAI

36

MOFA+ T+C Early integration, 
latent space 
modeling

MOFA and MOFA+ were built upon the framework of 
group Factor Analysis but extend the model to enable 
integration of different data types (count vs binary)

https://github.com/
bioFAM/MOFA2

38

totalVI T+P Early integration, 
latent space 
modeling

This method uses a variational autoencoder framework 
built upon scVI. In this method, the protein measurements 
are modelled with a negative binomial mixture 
distribution to account for background reads

https://github.com/
YosefLab/scvi-tools

39

CiteFuse T+P Late integration, 
latent space 
modeling

The similarity measurement for protein data is based on 
proportionality coefficient, and similarity measurement 
for RNA data is constructed with Pearson’s correlation

https://github.com/
SydneyBioX/CiteFuse

42

Seurat 4.0 T+P Late integration, 
latent space 
modeling

Compute a weighted average cell affinity matrix from 
modality-specific affinity matrices. The weights are 
computed to reflect the predictive information within a 
cell’s local neighborhood defined within each modality.

https://github.com/
satijalab/seurat

40

T, transcriptome; C, chromatin accessibility; P, proteome.
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Table 2.

Methods for unmatched data analysis

Strategy Tool Data 
type

Feature 
matching

Algorithm Additional notes Documentation Ref

Group 
matching

Stereoscope T+ST R Deconvolution This method assumes negative 
binomial distributions of genes, 
and tolerates differential gene 
capture efficiencies between 
two technologies

https://github.com/
almaan/stereoscope

53

MAESTRO T+C R CCA+MNN This method implement ChIP-
seq data-based TF enrichment 
score calculators to define core 
TFs in each cell type cluster.

https://github.com/
liulab-dfci/MAESTRO

49

Comon 
features

STvEA MI+ET R MNN This method also provides a 
framework to transfer cell type 
annotations from one modality 
to the other modality

https://github.com/
CamaraLab/STvEA

54

Clonealign T+D R Variational 
Bayes

This method assumes 
correlation between DNA copy 
number and gene expression 
within the same region

https://github.com/
kieranrcampbell/
clonealign

56

Seurat 3.0 T+C R CCA +SNN This method identifies anchor 
cells between datasets based on 
shared nearest neighbors across 
modality. These anchor cells 
serve as a bridge for matching

https://github.com/
satijalab/seurat

57

LIGER T+M, 
T+C

R iNMF The relative contribution of 
dataset-specific factors and 
shared factors is determined 
by a hyperparameter λ, which 
can be used to fine-tune the 
integration results

https://github.com/
welch-lab/liger

58

Aligning 
spaces

MAGAN MI+T R GAN This method identifies cell-to-
cell correspondence by adding 
a loss function defined by 
similarity of cell matching. 
Such loss function requires 
at least some shared features 
between two datasets

https://github.com/
KrishnaswamyLab/
MAGAN

60

MATCHER T+C NR Manifold 
alignment

This method assumes 1D 
structure (pseudotime) with pre-
specified direction

https://github.com/
jw156605/MATCHER

61

MMD-MA T+M NR MMD In addition to the MMD loss, 
the loss function also has a 
distortion loss and a penalty 
to ensure dimensionality and 
orthogonality of each projection

https://bitbucket.org/
noblelab/
2019_mmd_wabi/src/
master/

62

UnionCom T+M NR GUMA The algorithm generalizes 
the GUMA method to 
achieve soft matching between 
datasets, enabling matching 
with different number of cells

https://github.com/
caokai1073/
UnionCom

63

SCOT T+C NR GWOT This is a late integration 
method where similarity matrix 
is constructed by each modality 
separately, then, probabilistic 
transportation between datasets 
is achieved GWOT.

https://github.com/
rsinghlab/SCOT

64

T, transcriptome; ST, spatial transcriptome; MI, multiplexed immunohistochemistry; ET, simultaneous epitope and transcriptome; D, DNA; M, 
methylome; C, chromatin accessibility; P, proteome; TF, transcription factors

R, required; NR, not required
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CCA, canonical component analysis; iNMF, integrative non-negative matrix factorization; GWOT, Gromov-Wasserstein optimal transport; MMD, 
maximum mean discrepancy; GUMA, generalized unsupervised manifold alignment; SOM, self organizing maps; MMN, mutual nearest neighbors; 
GAN, generative adversarial networks; SNN, shared nearest neighbors

Nat Rev Nephrol. Author manuscript; available in PMC 2022 June 13.


	Abstract
	Introduction
	Overview of single cell data integration
	Quantitative causal modelling
	Statistical modelling
	Latent space modelling
	Late integration

	Integrating jointly profiled multiomics data
	Naïve approaches
	Latent space approaches
	Late integration approaches

	Integrating independent multimodal data
	Matching by annotated cell groups
	Matching with shared feature sets
	Integration of unmatched data by latent models

	Visualization of multiomics data
	Unbiased visualization
	Knowledge-driven visualization
	Future directions for data visualization

	Challenges for single cell multimodal data integration
	Accounting for data characteristics
	Data types and cell composition compatibility
	Computing millions of data points
	Modality Mapping
	Interpretability and Validation

	Conclusions and future directions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.

