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Pain is a primary driver of action. We often must voluntarily accept pain to gain
rewards. Conversely, we may sometimes forego potential rewards to avoid associated
pain. In this study, we investigated how the brain represents the decision value of future
pain. Participants (n = 57) performed an economic decision task, choosing to accept or
reject offers combining various amounts of pain and money presented visually. Func-
tional MRI (fMRI) was used to measure brain activity throughout the decision-making
process. Using multivariate pattern analyses, we identified a distributed neural represen-
tation predicting the intensity of the potential future pain in each decision and partici-
pants’ decisions to accept or avoid pain. This neural representation of the decision
value of future pain included negative weights located in areas related to the valuation
of rewards and positive weights in regions associated with saliency, negative affect,
executive control, and goal-directed action. We further compared this representation
to future monetary rewards, physical pain, and aversive pictures and found that the
representation of future pain overlaps with that of aversive pictures but is distinct
from experienced pain. Altogether, the findings of this study provide insights on the val-
uation processes of future pain and have broad potential implications for our under-
standing of disorders characterized by difficulties in balancing potential threats and
rewards.
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The value of pain for survival resonates far beyond immediate behavior; painful experi-
ences allow us to learn to predict and avoid future pain by ascribing an aversive value
to potentially painful actions (1). However, avoiding future pain often comes at the
cost of missed opportunities and foregone rewards, and excessive pain avoidance can
have disastrous effects on health and well-being (2). It is therefore crucial for organisms
to judiciously assess the right price to pay to avoid pain. To fulfill this function, the
brain must accurately represent the intensity of potential pain and assess its value for
comparison with competing goals (3). Thus, understanding how future pain is repre-
sented in the brain constitutes an essential missing piece of information linking pain
predictions (1, 4) to decisions about pain.
One possibility could be that the value of future pain is represented in the form of a

shared “common currency” exchangeable with other goods, such as money. Following that
hypothesis, we would predict that regions known to positively encode the value of expected
rewards, such as the ventral striatum [VS (5–8)] and orbitofrontal cortex [OFC (9, 10)],
should negatively encode the value of future pain. In other terms, future pain would be
predicted to have a signed value representation. It should be noted that this hypothesis is
compatible with reports of aversive–appetitive gradients in the VS and OFC (8, 11–13), in
which case opposite patterns of activation/deactivation in these regions would be expected
to track the value of future pain and competing rewards.
By contrast, future pain and rewards could also share an unsigned value representa-

tion, as suggested by the fact that cues signaling pain and rewards are both motivation-
ally salient. Indeed, the prospect of high levels of future pain or rewards may mark the
need for increased cognitive control over the decision process to prevent making poten-
tially important mistakes. Accumulating evidence now indicates that the anterior insula
(aINS) tracks stimulus saliency across a wide range of domains and shows a U-shaped
response to values, with an increased response to both relatively low and high values
(5, 14). Moreover, recent models of the dorsal anterior cingulate cortex (dACC) func-
tion propose that it plays an important role in compiling the expected value of control,
that is, how much control should be allocated to a given decision as a function of the
potential costs or benefits (15, 16). Finally, other regions densely connected with the
dACC, such as the dorsal striatum (DS) (7), could also serve in the implementation of
pain-related decisions. Indeed, the DS has been shown to contribute to goal-directed
action selection and initiation in both appetitive and aversive decision-making contexts
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(17–19), suggesting that it could also harbor an unsigned value
representation shared between pain and rewards.
A third possibility could be that the cerebral representation

of future pain is shared with that of immediately experienced
pain. Under that hypothesis, the main difference between
immediate and future pain would be the degree of urgency,
and we would therefore predict that future pain should be simply
represented as reduced activity in pain-processing regions (e.g.,
ACC, insula, and somatosensory cortices), as was observed for
anticipated, imagined, or recalled pain (20–23).
Finally, the decision to escape or confront future anticipated

pain could also recruit the brain’s defensive circuitry, including
limbic structures such as the amygdala and periaqueductal gray
[PAG (24, 25)]. From that perspective, the cerebral representa-
tion of future pain would be predicted to share important simi-
larities with that of negative valence (26).
In order to test these four hypotheses (hypothesis 1, signed

representation shared with rewards; hypothesis 2, unsigned repre-
sentation shared with rewards; hypothesis 3, shared representation
with experienced pain; and hypothesis 4, shared representation
with negative valence), we asked participants to accept or reject
offers combining various levels of physical pain and sums of
money (Fig. 1A). Importantly, we presented the amount of pain
and money involved in each decision in two distinct stages, allow-
ing us to separately consider the representation of the decision
value of future pain and money before their integration. This par-
ticular methodological consideration represents an important
innovation of the current study compared with previous studies
presenting pain and rewards simultaneously (27–30). The main
conclusion from these studies is that pain exerts a discounting effect
on the representation of rewards in the OFC and VS. By contrast,
the present study specifically assessed the cerebral representation of

pain value before it is compared to that of money when making
decisions to accept or reject future pain.

More specifically, to identify the cerebral representation of
future pain, we employed a multivariate approach to generate
whole-brain predictive patterns for future pain and monetary
outcomes and the immediate painful sensation produced by
electric shocks. We also leveraged open data from a previously
developed whole-brain predictive pattern of negative affect
(26). Using these multivariate brain patterns, we asked whether
the representation of future pain was similar to the representa-
tion of future monetary rewards, immediately experienced pain,
and aversive pictures. We found that a distributed pattern of
activity encodes the value of future pain—the pain value pat-
tern (PVP)—comprising both unsigned saliency and signed
valuation signals. This representation is partly related to the
representation of monetary reward and negative valence but
distinct from the representation of physical pain. Finally, we
trained a machine-learning algorithm to predict the decision to
accept or reject pain based in part on PVP pattern expression,
confirming that the PVP is functionally related to decisions
about pain.

Results

Behavioral Results. Fifty-seven participants (26 females, mean
age = 24.91 y, SD = 5.56; see Materials and Methods for
recruitment and exclusion details) took part in a functional
MRI (fMRI) task in which they were offered, at each trial, 1 of
10 amounts of money (0 to 10 $CAD) and 1 of 10 individually
calibrated levels of painful electrical shock (from pain threshold
to pain tolerance level). At each trial of the task (Fig. 1A), par-
ticipants first saw a screen presenting either the pain level or the

Fig. 1. Experimental task and behavioral results. (A) Schematic representation of an exemplar experimental trial. For each trial, participants first saw an
offer screen indicating the amount of money or pain involved in the next decision, followed by an interstimulus interval (ISI) and a decision screen indicating
a complementary amount of pain (or money). Participants could accept or reject the offer by pressing a key. If accepted, participants received both the pain
and the opportunity to gain the money at the end of the experiment. If rejected, participants received no pain and lost the chance to earn the money.
(B) The average proportion of offers accepted and (C) average response time as a function of pain and money levels offered. Matrices in B and C were
smoothed with a Gaussian kernel for display only.

2 of 12 https://doi.org/10.1073/pnas.2119931119 pnas.org



monetary amount involved in this trial (pain or money offer).
Then, after an interstimulus interval, participants received the sec-
ond part of the offer and were asked to decide within 5 s using
two adjacent keys on a response box (decision phase). If they
accepted the offer, they received the shock after a jittered anticipa-
tion phase and a chance to obtain the monetary reward. On the
other hand, if they refused the offer, they did not receive the
shock and lost the opportunity to gain the money.
On average, participants accepted 52% of the offers (SD =

17%, range: 16 to 89%). Using a binomial generalized linear
mixed-model, we confirmed that their decision to accept or
reject each offer was influenced by both the amount of pain
(B = �0.57, SE = 0.04, P < 0.001) and money (B = 1.38,
SE = 0.06, P < 0.001; Fig. 1B). An interaction (B = �0.07,
SE = 0.01, P < 0.001) between pain and money level indicated
that pain level had a lower influence on decisions at higher lev-
els of money and vice versa. The presentation order of pain and
money levels did not influence choice behavior (B = 0.07,
SE = 0.09, P = 0.437). Response times to the offers were on
average 1,117 ms (SD = 281 ms, range: 635 to 1,712 ms), and
the effect of pain and money levels interacted with choice, indi-
cating that participants were slower to accept higher levels of
pain (B = 137.33, SE = 14.28, P < 0.001) and to reject higher
levels of money (B = �145.58, SE = 15.50, P < 0.001). Par-
ticipants were also faster to accept offers when the monetary
amount was presented first (presentation order × choice inter-
action: B = �561.46, SE= 139.76, P < 0.001). To assess the
influence of choice difficulty on behavior, we computed an index
of choice difficulty using the following equation: 10 � jmoney
level � pain levelj. A value of 10, therefore, represents the most
difficult choices in which levels of pain and money were of equal
rank, and a value of 1 indicates easy choices in which the level of
pain or money maximally exceeded the other level. Response
times were positively related to choice difficulty (B = 59.11, SE =
2.94, P < 0.001) with slower responses at the point of pain–
money equivalence, especially when both pain and money offers
were at their maximum levels (Fig. 1C). Detailed regression tables
for all models and additional figures for behavioral results as
a function of presentation order are shown in SI Appendix,
Supplementary Results, S1. Altogether, these results are in line with
previous investigations using a similar task (31) and indicate that
the aversive value of the pain stimulation led participants to refuse
opportunities to gain significant amounts of money and that the
similarity between pain and money offers and their high values
increased decision times.

Multivariate Pattern Predicting the Decision Value of Future
Pain. We used brain activity during the pain offer phase of the
task (Fig. 1A), during which the level of potential future pain
was processed in isolation, to develop a multivariate model
capable of predicting the pain offer level (PVP). We trained a
least absolute shrinkage and selection operator principal compo-
nent regression (LASSO-PCR) algorithm to predict the intensity
of the pain in the offers using the whole-brain parametric maps
for each level and each participant as input features. The resulting
pattern of voxel weights was considered as the PVP. We assessed
the performance of each pattern in predicting the level of hypo-
thetical future pain or money with 10-fold cross-validation in
which the same LASSO-PCR was iteratively trained on the images
from ∼90% of participants and tested on the images of the
remaining 10% of participants (Materials and Methods).
The analysis indicated that across all participants and images,

the PVP was able to predict the pain offer level (cross-validated
r = 0.44, root mean squared error [RMSE] = 2.60 on a

10 point scale, R2 = 0.18) with a prediction accuracy signifi-
cantly above chance accuracy (permutation test: P < 0.001).
The slope between the actual and predicted values for each par-
ticipant and the distribution of the related correlations are
shown in Fig. 2A. Visual inspection of the average pattern simi-
larity for each level of future pain (Fig. 2B) indicated that the
PVP did not discriminate between very low levels of pain offers
but could discriminate between higher levels. We confirmed the
capacity of the pattern to discriminate between low, medium,
and high levels of pain using single interval classification tests
between levels 1 and 5, 1 and 10, and 5 and 10 (Fig. 2C), which
indicated significantly above chance discrimination for all binary
choices (binomial tests, all P < 0.05 Bonferonni corrected for the
three tests). We further tested the PVP predictive performance in
an independent open dataset [n = 28; openneuro.org/datasets/
ds001814 (32)], which used a similar design, with the difference
that the future pain involved in each decision was cued with a
gauge indicating one of three levels of risk of receiving a shock.
We calculated the cosine similarity between the PVP weights and
the parametric maps of each participant, trial, and risk level. As
shown in Fig. 2C, the PVP similarity was significantly related to
the risk of pain involved in the decisions (B = 0.07, SE= 0.03,
P = 0.02), suggesting that the PVP could track the decision value
of future pain levels in both our dataset and in independent data.
It could be the case, however, that the PVP mainly tracks the
level of the offer without having a direct impact on decision. For
instance, someone who does not value pain at all (always chooses
money) could still represent pain levels. To address this issue, we
additionally show that the PVP similarity is related to individual
differences in pain valuation and to participant-specific estimates
of pain value based on computational modeling of choice behav-
ior (SI Appendix, Supplementary Results, S2 and S3). By directly
relating PVP similarity to subject-specific estimates of the influ-
ence of pain value on choice behavior, these results provide addi-
tional evidence for the idea that the PVP tracks the subjective
value of pain and not simply input to the decision process.

To identify which voxels made the most stable contribution
to the PVP, we used a bootstrap resampling procedure to con-
struct 10,000 bootstrap samples of the same size as the original
dataset. We trained the LASSO-PCR algorithms in each of
these samples, and we used the resulting bootstrap distribution
for each voxel weight to threshold the pattern maps using the
false discovery rate procedure [FDR (33)] with a threshold of
q < 0.05, two-tailed. Note that the patterns were thresholded
for display and interpretation only and that the full pattern was
used in all analyses.

As shown in Fig. 2E, the PVP was characterized by a distrib-
uted pattern of weights with positive weights mainly located
in the left primary somatosensory and motor cortices, the dACC,
the PAG, the DS and the precuneus and negative weights in the
bilateral VS, the bilateral mid/lateral OFC, right paracentral lob-
ule, and the bilateral superior temporal sulcus. To further charac-
terize the nature of the PVP, we assessed the distribution of the
unthresholded pattern weights across large-scale cortical (34) and
striatal (35) resting-state networks by calculating the Pearson cor-
relation between each network relative to the other networks and
the PVP weights. As shown in Fig. 2F, at the cortical level, the
PVP was positively associated with the ventral attention and
default mode networks at the cortical level and showed a negative
association with the limbic and somatomotor networks. Given
the importance of the striatum weights in the PVP, we per-
formed the same analysis performed within the striatal networks
and observed an apparent dissociation between the ventral and
dorsomedial striatum, with a positive relationship between the
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pattern and striatal regions primarily connected to the executive
network and a negative relationship between the pattern and striatal
regions related principally to the limbic network. In SI Appendix,
Supplementary Results, S4, we show that the whole-brain PVP was
better than any particular subregion in predicting pain level, there-
fore confirming the distributed nature of the neural representation
of the decision value of future pain.

Multivariate Pattern Predicting Monetary Value and Shock
Intensity. To test the hypothesis that the cerebral representa-
tion of future pain value shares characteristics with the pattern
of brain activity associated with monetary rewards and immedi-
ately experienced pain, we used the same approach to devel-
oped two additional patterns to predict the level of monetary
offers in the money offer phase of the task (money value pat-
tern [MVP]) and the intensity of the delivered electrical shocks
in the shock phase (shock intensity pattern [SIP]).
For the money offers, the MVP showed a good performance

in predicting the amount of money involved (Fig. 3A; cross-
validated r = 0.56, RMSE = 2.38, R2 = 0.31, P < 0.001 per-
mutation test). There was a linear relationship between the
MVP similarity score and each level of money offer (Fig. 3B),
and these pattern similarity values could be used to significantly
distinguish between different levels of money offers using single
interval classification tests (Fig. 3C; binomial tests P < 0.05,

Bonferonni corrected for the three tests). The MVP was mainly
characterized by a large cluster of positive weights covering the
striatal region (Fig. 3D). Additional small positive clusters were
located in the bilateral thalamus, right precuneus, right superior
frontal gyrus, and bilateral primary somatosensory cortex, and
small negative clusters were located in the right midinsula, the
lingual gyrus, and the right supplementary motor area. How-
ever, these additional clusters did not meaningfully contribute
to the prediction of the money level over the striatal clusters (SI
Appendix, Supplementary Results, S4).

For the shock intensity, the SIP was highly accurate in pre-
dicting the intensity of the shocks received (Fig. 3 E and F; r =
0.70, R2 = 0.48, RMSE= 1.96, P < 0.001 permutation test)
and could accurately discern between shocks of various intensi-
ties (Fig. 3G). The SIP response to shock intensities was similar
to other well-established patterns reflecting pain experience: the
neurological pain signature [NPS (36)] and the stimulus-
intensity independent pain signature [SIIPS (37)] (SI Appendix,
Supplementary Results, S5). The weight map thresholded at
q < 0.05 FDR corrected (Fig. 3H) indicated that the SIP was
highly distributed across the brain but mainly characterized by
large positive clusters in the bilateral aINS, the cerebellum, the
PAG, and sensorimotor areas and negative clusters in the bilat-
eral caudate nucleus, precuneus, and the dorsolateral prefrontal
cortex.

Fig. 2. Validation and performance of the multivariate pattern predicting pain offer levels and its spatial distribution. (A) Relationship between the actual
and predicted pain offer level for each participant (shown in different shades of blue) and the corresponding distribution of the Pearson correlation
between actual and predicted levels for each participant. (B) Average z-scored pattern similarity between the multivariate pattern and the parametric maps
corresponding to each pain offer level. (C) Binary classification accuracy for different combinations of pain offer levels using the pain pattern similarity. The
black dashed horizontal line shows the chance accuracy level. (D) Average z-scored pattern similarity between the multivariate pattern and the parametric
maps corresponding to the level of pain risk in an independent dataset. (E) Multivariate pattern predicting the pain offer level thresholded at FDR q < 0.05
using a bootstrap distribution built from 10,000 samples drawn with replacement. The color bar shows the regression weights z-scored using the bootstrap
distribution. Note that the multivariate patterns were thresholded for display and interpretation only. All error bars show the SEM. The full unthresholded
weight map is available at https://neurovault.org/collections/10410. (F) Correlation between the pattern weights and resting-state (Left) cortical and (Right)
striatal networks.
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Cross-Prediction of Pain and Monetary Values. We first
assessed the separate modifiability of the PVP and MVP by
testing their capacity to predict the other kind of offer (MVP
predicting pain offer levels and PVP predicting money offer
levels). As shown in Fig. 4A, the MVP similarity did not dis-
criminate between the different levels of pain offered, suggest-
ing that MVP is different from pattern associated with future
pain. However, the PVP similarity with the different levels of
money offers showed a U-shaped relationship indicating that
the PVP negatively tracked monetary offers in the lower range
and positively tracked monetary offers in the higher range (Fig.
4B). Accordingly, single interval classification indicated that the
PVP similarity could discriminate between low and average
money levels (P < 0.001, binomial test, Bonferonni corrected
for the three tests) and high and average money levels (P <
0.001) but not between the two extreme levels (P = 0.9).
Since whole-brain analyses revealed a partial overlap between

the representation of pain and money values, we sought to iden-
tify which brain regions harbored signed and unsigned shared
value representations. To this end, we used the searchlight tech-
nique (38) to perform cross-validated predictions of the pain and
money levels in 6-mm spheres centered around each voxel. We
report the results corrected at P < 0.05, corrected for the family-
wise error rate (FWE). As shown in Fig. 4C, significant positive
cross-prediction values were found in the DS and in a large frontal
cluster covering the ACC, dACC, dorsomedial prefrontal cortex
(DMPFC) and extending to the supplementary motor area, indi-
cating that these regions harbor a shared unsigned value represen-
tation between future pain and money. By contrast, negative
cross-prediction was observed only in a few voxels in the vicinity
of left VS, indicating that this region encodes a shared value repre-
sentation between pain and money. Further visual inspection of
the unthresholded weight distribution of the two patterns in the
striatum (Fig. 4 D and E) indicates that the PVP and MVP show
a similar pattern of positive weights in the DS but that the signed

weights in the PVP were in the most ventral section of the VS
and showed little overlap with the MVP weights in the more dor-
sal part of the VS.

Cross-Prediction of Pain Value and Physical Pain. To test the
hypothesis that the cerebral representation of future pain value
shares characteristics with the pattern of brain activity associated
with immediately experienced pain, we examined PVP pattern
expression in response to the intensity of painful electric shocks.
We found no clear relationship between the PVP and experienced
pain (Fig. 5A) or anticipated pain (SI Appendix, Supplementary
Results, S6). Similarly, the signature trained on physical pain inten-
sity showed no clear association with changes in pain offers (Fig.
5B). Moreover, the same was found for the NPS and the SIIPS
(SI Appendix, Supplementary Results, S5), confirming that hypo-
thetical and actual pain are separately modifiable. However, the
analysis of local patterns using a searchlight analysis indicated that
cross-prediction between pain values and physical pain intensity
was possible in an OFC region bordering the aINS, while the
bilateral DS showed negative cross-prediction (Fig. 5C), suggesting
a common role for these regions in processing hypothetical and
actual pain.

Cross-Prediction of Pain Value and Negative Affect. To test
the possibility that the PVP reflects a nonspecific response to aver-
sive visual stimuli, we additionally used an independent open
dataset to assess the similarity of the pattern with brain responses
to different levels of aversive pictures rated by the participants on
a scale of 1 to 5, with 1 being neutral and 5 highly aversive [n =
182 (26)]. As shown in Fig. 6A, we found that the PVP could dis-
criminate between neutral and aversive pictures (1 vs. 5, P <
0.001; 1 vs. 3, P < 0.001) but not between different levels of
unpleasant pictures (3 vs. 5, P = 0.9). Additionally, a multivariate
pattern trained on these data, the picture induced negative emo-
tion signature (PINES) (26), responded to high levels of pain

Fig. 3. Validation and performance of the multivariate pattern predicting (A–D) money offer levels (MVP) and (E–H) shock intensity (SIP) and their spatial dis-
tribution. A and E show the relationship between the actual and predicted money offer level or shock intensity for each participant (shown in different
shades of green or orange) and the corresponding distribution of the Pearson correlation between actual and predicted levels for each participant. B and F
show the average pattern similarity between the multivariate pattern and the parametric maps corresponding to each money offer level or shock intensity.
C and G show binary classification accuracy for different pairs of money offer levels using the MVP similarity and the combinations of pairs of shock intensity
using the SIP similarity. The black dashed horizontal line shows the chance accuracy level. D and H show multivariate patterns predicting the money offer
level and the shock intensity thresholded at FDR q < 0.05 using a bootstrap distribution built from 10,000 samples drawn with replacement. The color bars
show the regression weights z-scored using the bootstrap distribution. Note that the multivariate patterns were thresholded for display and interpretation
only. The full unthresholded weight maps are available at https://neurovault.org/collections/10410.
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offers (Fig. 6B) and could accordingly discriminate between high
and low pain offers (1 vs. 10, P = 0.009) and high and medium
pain offers (5 vs. 10, P = 0.03) but not between low and medium
offers (1 vs. 5, P = 1). A cross-prediction searchlight between the
pain offers and the emotional ratings indicated that shared pat-
terns between the two experiences were present in the bilateral
aINS, the dACC/DMPFC, and the PAG. Altogether, these results
show that the PVP is sensitive to emotional arousal and can dis-
tinguish between neutral and aversive pictures but does not share
the same fine-grained patterns as the PINES allowing the discrimi-
nation between different aversive pictures of different intensities.

Predicting Participants’ Choices. Finally, to demonstrate that
the PVP was functionally related to the decision to accept or
reject the offers, we predicted participants’ choices based on
PVP and MVP expression during the decision period. To this
end, we estimated the pattern expression of the PVP and MVP
for each single-trial parametric map of the decision phase for
each participant. As shown in Fig. 7 A–C the average PVP and
MVP expressions during the offer phase tracked the pain and
money level, respectively, and their differences closely resemble
the decision heat map presented in Fig. 1B. We then used these
two pattern expression values as features in a linear support vec-
tor machine classifier to predict participants’ choices within
a 10-fold cross-validation procedure. To avoid using the same
data to train the predictive pattern and predict choices, we per-
formed our analyses within the same cross-validation loop used
to train the patterns, meaning that in each cross-validation
fold, the binary classifier was tested in a subset of participants
not used to train the pattern or the classifier. The classifier
trained on the PVP and MVP similarity was able to predict
participants’ choices with a cross-validated balanced accuracy of
0.67 (P < 0.001, binomial test; Fig. 7D). We also confirmed
that the presentation order of the pain and money values did
not influence the classification of the decision as similar accura-
cies were obtained independently of the order of presentation
(SI Appendix, Supplementary Results, S7). As expected, the MVP
was weighted positively and predicted acceptance of the offer,
while the PVP similarity was weighted negatively in the classifier

and predicted rejection. To test whether the signature trained at
the group level could also make accurate predictions within partic-
ipants, we applied the same procedure within participants within
a 10-fold cross-validation performed loop across trials. The classi-
fier was similarly accurate when trained and tested within partici-
pants Fig. 7E), with an average accuracy of 0.68 [SD = 0.10,
range: 0.47 to 0.88, one-sample t test against chance accuracy:
t(56) = 11.06, P < 001]. Finally, we examined the relative impor-
tance of the PVP and MVP to the decision process by assessing
their unique and combined predictive accuracies. Results revealed
that the MVP had a higher predictive accuracy [0.61, SD = 0.10,
range: 0.47 to 0.87, t(56) = 7.78, P < 0.001] than pain [0.56,
SD = 0.08, range: 0.47 to 0.8, t(56) = 5.48, P < 0.001] but that
their combination outperformed the use of the MVP alone [MVP
vs. both patterns, t(56) = 4.82, P < 0.001], suggesting that the
PVP contributes unique information not found in the MVP. The
same analyses performed using the SIP pattern similarity indicated
that the pattern predicting shock intensity could not predict
participant’s choices (balanced accuracy = 0.50, P = 0.46).
We also performed the same analyses using the univariate maps
of the effect sizes for the parametric effect of pain and money
level, which indicated that the univariate map of the effect of
pain level could not discriminate between choices across partici-
pants (balanced accuracy = 0.49, P = 0.06) but the univariate
map of the effect of money level could predict choices but with a
lower accuracy than the multivariate money pattern (balanced
accuracy = 0.60, P < 0.001).

Discussion

The capacity to make judicious decisions about future potential
pain is crucial for our survival and well-being. In this study, par-
ticipants were asked to accept or reject painful electric shocks in
exchange for monetary rewards. Importantly, pain and money
offers were presented sequentially so as to allow assessing the cere-
bral representation of pain separately from that of rewards. More
specifically, we developed a multivariate fMRI signature, the
PVP, that tracked future anticipated pain levels and predicted the
decision to accept or reject pain. The PVP was characterized by

Fig. 4. Cross-prediction of pain and monetary offers. Pattern similarity and discrimination accuracy between different levels for the (A) MVP applied to
each level of the pain offers and (B) the PVP applied to each level of the money offers. (C) Results for the whole-brain cross-prediction searchlight analysis in
which a principal component regression was trained on pain or money offers and tested on the other modality (P < 0.05, FWE corrected using a bootstrap
distribution built from 5,000 samples drawn with replacement). Unthresholded striatum z-scored weights for the (D) PVP and the (E) MVP.
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a distributed pattern of voxel weights across several different
regions. It included negative weights located in areas related to
the valuation of rewards [VS and OFC (3, 5–10)] and positive
weights in regions associated with saliency [aINS (5, 14)], execu-
tive control [dACC (15, 16)], and goal-directed action [DS and
PAG (17–19, 39)]. The diversity of regions associated with the
PVP may be reflective of the multidimensional nature of pain
and is in line with previous brain imaging studies showing that
perceived pain is associated with brain activity distributed over
several brain regions (40). By contrast, the multivariate signature
for monetary outcomes, the MVP, was predominantly composed
of positive voxel weights in the VS and DS (SI Appendix,
Supplementary Results, S4).
When trying to assess the separate modifiability (41) of the

PVP and MVP, we found an asymmetry between the cross-
predictive properties of the two predictive patterns. While the
MVP could be dissociated from future pain, the PVP presented
a U-shaped relationship with the value of monetary outcomes,
with an increased pattern similarity to both extremely high and
low monetary offers. This intriguing feature of the PVP can be
explained by the fact that the PVP comprises a mixture of posi-
tive and negative voxel weights, while the brain’s response to
monetary rewards appears to be mainly characterized by a
graded striatal response flipping from negative to positive close
to the average level of monetary offers (level 5; Fig. 3B). Thus,
the higher PVP response to low (e.g., level 1) and high (e.g.,
level 10) monetary values could be driven by a positive match
between the graded negative-to-positive striatal response to mon-
etary outcomes and the PVP’s negative and positive weights,
respectively. The fact that positive and negative voxel weights do
not systematically cancel each other out to produce a straight
line suggests that the negative and positive PVP weights tracking
money level may lose their sensitivity above and below the

average monetary offer. This would cause the PVP to positively
track the absolute deviation of monetary offers from the average
offer, with negative PVP weights driving higher similarity scores
for below-average monetary offers and positive weights driving
higher similarity scores for above-average monetary offers.

A searchlight examination of the local similarities between
pain and money patterns revealed the presence of unsigned
value signals in the DS and dACC (Figs. 2E, 3D, and 4C).
Thus, the observation of increased activity as a function of
higher pain or money levels in the DS and dACC could reflect
the role of these regions in action selection and action monitor-
ing (15–17). In addition, we found some evidence for a signed
value representation in the left VS that was positively associated
with money and negatively associated with pain. The reversed
sign was clearly observable when comparing the PVP and MVP
patterns within the striatum (Fig. 4), although the region nega-
tively associated with pain was slightly more ventral to the one
positively associated with money. This relatively small spatial
shift may be consistent with the presence of an aversive–
appetitive gradient in the VS (11, 13) and with the remaining
uncertainty in the literature regarding the role of the VS in the
representation of the negative value of aversive stimuli (3, 6).
Still, the searchlight procedure confirmed the presence of a
small, but statistically significant, cluster of voxels showing neg-
ative cross-prediction values between pain and money. This
confirms the presence of a signed value representation in the
VS, which could serve to compare pain with money for the
type of decision participants were asked to make.

Therefore, there appears to be a substantial portion of the
cerebral representation of future pain that is shared with that of
monetary rewards. Moreover, part of this shared representation
seems to be signed (hypothesis 1 above), as observed in the VS,
and part of this shared representation appears to be unsigned

Fig. 5. Cross-prediction of pain offers and physical pain. Pattern similarity and discrimination accuracy between different levels for the (A) PVP applied to
each level of the shock intensities and (B) the SIP applied to each level of the pain offers. (C) The whole-brain cross-prediction searchlight analysis in which a
principal component regression was trained on pain offers or shock intensities and tested on the other modality (P < 0.05, FWE corrected using a bootstrap
distribution built from 5,000 samples drawn with replacement).
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(hypothesis 2 above), such as in the DS and dACC. In addi-
tion, these findings may also have important consequences for
our understanding of the cerebral representation of rewards, in
that they confirm that VS and DS activations to monetary
rewards may represent signed and unsigned value representa-
tions, respectively. This had been previously suggested by prior
studies comparing monetary gains and losses (3), but the inter-
pretation of these findings was complicated by uncertainty
regarding how monetary gains and losses are framed in an exper-
imental context. Therefore, comparing monetary rewards with
pain provides even more convincing evidence that the VS and
DS harbor signed and unsigned value representations, respec-
tively, to monetary rewards.
Interestingly, whole-brain predictive patterns for future and

immediate pain were found to be separately modifiable from
one another, indicating that future pain may not be represented
in the same fashion as immediate pain. Indeed, the PVP did
not respond to variations in the intensity of nociceptive stimu-
lations, and the SIP developed to predict pain intensity in the
present dataset, as well as two additional well-established pain
signatures [NPS (36) and SIIPS (37)], did not respond to varia-
tions in the value of future pain. While these results contrast
with prior studies showing a considerable overlap between the
anticipation and immediate experience of pain in the ACC and
insula (21, 23), they are consistent with previous findings show-
ing that the multivariate representation of physical pain was
insensitive to the anticipation of pain or other aversive experiences
(26, 36). One explanation for the lack of correspondence between
the whole-brain patterns of activity associated with future and
immediate pain is that they may drastically differ along some
of their most important components. For instance, the PVP is
almost completely devoid of activity in the somatosensory corti-
ces. Finally, another reason for the lack of correspondence could

be that even in regions where there seems to be an overlap, like
in the ACC, for instance, there may still be important differences
in the fine-grained pattern of activity associated with immediate
and future pain.

The searchlight analysis conducted on immediate vs. future
pain revealed that the only regions showing significant cross-
prediction were the DS and bilateral aINS extending into the
OFC. The negative cross-prediction in the DS was character-
ized by positive weights for future pain and negative weights
for immediate pain. Given the known role of the DS in action
selection (17), this inverse relationship may reflect the fact that
participants had to make decisions about future pain but then
passively experienced painful electric shocks as a function of
their decision. This would suggest that the significant cross-
prediction observed in the DS may reflect task design rather
than the immediately experienced vs. hypothetical nature of the
pain stimulus. By contrast, the positive cross-prediction in the
bilateral aINS and OFC was associated with positive weights for
both immediate and future pain and therefore truly seems to rep-
resent a region of shared representation between immediate and
future pain. Indeed, brain imaging studies have frequently shown
that this region is activated by pain (42). Moreover, the same
region was associated with relative pain level in a previous study
examining the decision value of pain (30). Based on the more
general role of this structure in the processing of different types
of punishers (43), it can be inferred that activity in this region
reflects the general aversiveness of immediate and future pain.
Thus, the shared representation between immediate and future
pain in this region seems to reflect the shared unpleasantness
between the two experiences, rather than a shared representation
of pain’s sensory dimension (hypotheses 3 and 4 above).

This conclusion seems to be confirmed by the presence of
positive cross-predictions between future pain and unpleasant

Fig. 6. Cross-prediction of pain offers and intensity of aversive pictures. Pattern similarity and discrimination accuracy between different levels for the
(A) PVP applied to each level of affective ratings and (B) the PINES applied to each level of the pain offers. (C) The whole-brain cross-prediction searchlight
analysis in which a principal component regression was trained on pain offers or shock intensities and tested on the other modality (P < 0.05, FWE corrected
using a bootstrap distribution built from 5,000 samples drawn with replacement).
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pictures in a similar bilateral aINS cluster located slightly more
caudally from the one exhibiting a shared representation
between future and immediate pain (Fig. 6C). Altogether, this
suggests that the aINS may harbor a representation of the nega-
tive affect shared between aversive pictures and immediate and
future pain. The fact that there were no significant cross-
predictions with monetary rewards in the aINS may help rule
out the possibility that this aINS region would encode general
arousal, although we should note that it is difficult to conclude
from the absence of an effect with money. Still, this interpreta-
tion is consistent with previous studies on economic decision-
making showing that the aINS is particularly sensitive to the
prospect of monetary losses (3).
Moreover, the ACC and PAG also presented significant

cross-predictions between future pain and aversive pictures
(Fig. 6C). The PAG plays an important role in coordinating
defensive behavior (25) and learning about threats (4) and
could therefore be associated with activation of avoidance cir-
cuits in response to aversive pictures or threat of pain. By con-
trast, the ACC seems to have a more general role to play in
processing saliency and the need for cognitive control (15, 16),
and it was shown here to harbor shared representations between
future pain and rewards, immediate pain, and aversive pictures
(44). At the whole-brain level, this prevented dissociating the
PVP from the previously developed PINES (26), suggesting
that the cerebral representation of future pain shares important
similarities with that of negative emotions.
This finding is consistent with a recent model of value-based

decision-making proposing that the decision process begins
with a representation of the affective state associated with the
different features of the decision at hand, such as basic approach
or withdrawal tendencies, and that there are at least two affective

systems which activity precede and predict choices (3, 45). The
observed association between the PVP and the PINES seems to
indicate that an important portion of the cerebral representation
of future pain may be shared with that of negative affective
valence (hypothesis 4 above). The fact that many of the regions
showing shared representation between future pain and negative
emotions, such as the PAG or aINS, do not track monetary
rewards seems to support the notion that approach and avoidance
tendencies may be distinctly represented when making decisions
about pain and rewards.

Finally, one last question pertains to the use of electric shocks
to induce pain. While the cerebral representation of pain induced
by electric shocks appears to be broadly similar to that induced
by thermal stimuli (46), it seems that electrical pain is perceived
as more unpleasant than thermal pain for the same levels of sub-
jective pain intensity (47). Given that the choice to reject pain
may mostly depend on its degree of unpleasantness, it is possible
that anticipating future electric shocks may have been associated
with a stronger negative affect, and more rejections, than if we
had employed thermal stimuli. Still, the calibration procedure did
not ask participants to distinguish pain sensation vs. affect, and
therefore, participants’ ratings represented a combination of both.
Consequently, it is very likely that the same calibration procedure
with thermal pain would be associated with only small differences
in the ratio between pain sensation and affect.

In summary, the present study identified a pattern of brain
activity, the PVP, that is predictive of the level of pain one
would have to pay in order to obtain rewards and of the deci-
sion to accept or reject pain. We assessed the cerebral represen-
tation of pain-predictive cues in a decision-making context (but
see ref. 30) and therefore provide an important missing piece of
information linking pain predictions to decisions about pain.

Fig. 7. Prediction of participants’ choices using pain and money offer patterns. (A–C) Pattern expression during the decision phase of the pain (A) and
money patterns (B) developed in the first part of the offers as well as their difference (C). Matrices were smoothed with a Gaussian kernel for display only.
(D) Decision surface of the SVM classifier trained on the pattern expression of the pain and money patterns during the decision. (E) Classification accuracies
of SVM classifiers predicting participants’ decisions based on the expression of the pain and money patterns or the combination of both. Boxes show the
quartiles of the dataset, while the whiskers extend to show the range of the distribution. The diamonds show the mean accuracy across all trials, and the
raincloud plots show the distribution of accuracies across participants. Error bars show the 95% confidence interval.
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This predictive pattern was found to be partly dissociable from
that of monetary rewards. However, a signed shared value rep-
resentation between pain and rewards was found in the VS,
and unsigned shared value representations were found in the
DS and ACC. Moreover, we found that the value of future
pain did not share representation with immediately experienced
pain but shared resemblance with the representation of negative
emotions. Altogether, the present findings significantly contrib-
ute to further our understanding of the cerebral mechanisms
responsible for making decisions about future potential pain,
which could have potentially important implications for our
understanding of disorders characterized by excessive or insuffi-
cient harm avoidance.

Materials and Methods

Participants. Sixty-six healthy adults took part in this experiment. Due to tech-
nical issues or excessive movement in the scanner, the data from six participants
could not be used. Three further participants were excluded from further analy-
ses since they either accepted or rejected almost all offers (>90%). The final sam-
ple included 57 participants (31 identified as men and 26 as women, mean age
= 24.91 y, SD = 5.56). All procedures were approved by the ethics committee
of the Centre de Recherche de l’Institut Universitaire de G�eriatrie de Montr�eal
(project no. CER VN 16-17-12), where the study was performed. Participants pro-
vided written informed consent at the start of the experimental session and
received a fixed honorarium for their participation in addition to their gains dur-
ing the decision task (Decision Task).

Electrical Stimulation. Electrical stimulations were administered using a Grass
S48 square pulse generator (Grass Instruments) and Digitimer DS7A constant
current stimulator (Digitimer) via two Ag/Cl radiotranslucent electrodes (1 cm2

with a distance of 2 cm between electrodes), positioned at the level of the sural
nerve on the participants’ left ankle. Prior to placing the electrodes, the partici-
pants’ skin was cleaned using alcohol swabs, and any hair was removed using a
single-use razor. Electrical shocks lasted ∼30 ms and consisted in a series of ten
1-ms pulses.

Participants’ pain tolerance levels were selected using a classical staircase
method in which the intensity started at 1 mA and was gradually increased in
steps of 2 mA. After each stimulation, participants rated their pain using a visual
analog scale (VAS) with the labels “no pain” and “extremely painful.” The stimu-
lation intensity was increased until the participants reported not being able to
tolerate the next stimulus, and the last intensity delivered was set as the pain
tolerance level. The intensity corresponding to each participant’s pain tolerance
level was divided by 10 to determine 10 evenly distributed shock intensities
between the pain detection and tolerance thresholds. The participants then
received 32 stimulations presented in a randomized order and rated the intensity
of the pain perceived on the VAS. With these ratings, we used a cross-validation
procedure to determine the function that best describes the participant’s pain sen-
sitivity. The selected model allowed the extrapolation of 10 shock intensities corre-
sponding to 10 levels of pain ranging from 10 to 100% of the pain tolerance
level. On average, participants’ tolerance level (maximum stimulation) corre-
sponded to a stimulation of 25.6 mA (SD = 12.11, range: 9 to 57 mA).

Decision Task. Participants were told that they would take part in a task in
which they would need to accept or reject offers combining various levels of
pain and money (verbatim instructions are reported in SI Appendix,
Supplementary Methods). Participants were made aware that rejecting the offer
would allow them to avoid the pain and prevent them from gaining the money,
while accepting the offer would result in the immediate delivery of the pain and
the chance to earn the money. They performed 100 trials of the decision task
spread across 5 runs of 20 trials. These 100 trials fully sampled the 10 × 10
matrix of possible offers (e.g., Fig. 1B) and were presented in one of four pseu-
dorandomized orders. Specifically, the 100 trials were split in 5 blocks of 20 tri-
als. In each block, the lower half of the monetary rewards was randomly paired
to a pain level, amounting to 10 trials. For the 10 remaining trials, the upper
half of the monetary rewards was paired to the pain levels such as each pain
level had an overall average compensation of 5$/block and appeared first and

second in each block. Pain levels corresponded to 10 values ranging from 10 to
100% of each participant’s tolerance threshold evenly spaced on the estimated
sensitivity curve, while money levels were fixed at 0, 1.11, 2.22, 3.33, 4.44,
5.56, 6.67, 7.78, 8.89, and 10 $CAD. At each trial of the task (Fig. 1A), partici-
pants first saw a fixation cross indicating the start of the trial for 3, 4, 5, 6, or 7 s
followed by a screen presenting either the pain level or the monetary amount
involved in this trial for 2 s. After another fixation cross, participants received the
second part of the offer and were asked to make a decision within 5 s using two
adjacent keys on a response box. After selecting to accept or reject the offer, par-
ticipants received a confirmation of their decision for 2 s, followed by either a wait-
ing period until the next trial if they refused the offer or an anticipation period of 3
to 7s followed by the electrical shock and a wait period if they accepted the offer.
After the task, the program randomly selected 10 trials, and the money earned in
these trials was added to the participants’ honorarium. The task was presented
using the E-prime 2.0 software (Psychology Software Tools Inc.).

fMRI Data Acquisition. MR data were acquired using a 3-Tesla Siemens Prisma
Fit MRI scanner.

T1-weighted segmented k-space, spoiled, and magnetization prepared gradi-
ent recalled and inversion recovery structural MRI data were collected using a
multiecho MPRAGE sequence (176 slices; repetition time [TR] = 2,200 ms; echo
time [TE] = 1.87, 4.11, 6.35, and 8.59 ms; flip angle [FA] = 8°; field of view,
field of view [FOV] = 256 × 256 mm; matrix size = 256 × 256; voxel size = 1
× 1 × 1 mm). The root mean square average of the four echo times was used in
all analyses.

A spoiled gradient recalled field map (phase encoding: anterior to posterior;
51 slices; TR = 540 ms; TE = 4.92 and 7.38 ms; FA = 60°; FOV = 192 ×
192 mm; matrix size = 64 × 64; voxel size = 3 × 3 × 3 mm) was acquired
and used to correct for field inhomogeneity during the fMRI acquisition.

Five runs of segmented k-space echo planar single-echo fMRI data were
collected (51 slices in interleaved ascending order; TR = 832 ms; TE = 20 ms;
FA = 58°; FOV = 192 × 192 mm; matrix size = 64 × 64; voxel size = 3 ×
3 × 3 mm; MB factor = 3; in-plane acceleration factor = 2). Each run was
7:05 min in length, during which 510 functional volumes were acquired.
Dicoms were converted to NIfTI-1 format. This section was (in part) generated
automatically using PyBIDS [0.10.2 (48)].

Analyses.
Behavioral analyses. Participants’ choices were scored as 1 if they accepted the
offer and 0 if they rejected it. A binomial generalized linear mixed model was
used to predict decisions with the level of pain (1 to 10) and the level of money
(1 to 10) as fixed effects and participants as a random effect allowing for random
intercepts. Response times were calculated as the time elapsed between the
onset of the second part of the offer. Trials for which the response time was
below 200 ms or for which no response was recorded during the response
screen (maximum 5,000 ms) were removed from the analyses (0.3% of trials).
The effects of pain and money level on response times were tested using a linear
mixed model with pain and money levels as fixed effects and participants as the
random effect allowing for random intercepts. The effect of decision on response
time was tested in a model with decision, pain level, and money level as fixed
effects and participant as the random effect allowing for random intercepts.
Choice difficulty was computed as 10 � jmoney level � pain levelj; a value of
10 therefore represents the most difficult choices in which levels of pain and
money were equal, and a value of 1 indicates easy choices in which the level of
pain or money maximally exceeded the other level. Choice difficulty was entered
as the fixed effect in a linear mixed model predicting response times at each trial
with participants as the random effect allowing for random intercepts. The signif-
icance of all fixed effects was tested using likelihood ratio tests comparing mod-
els with and without the effect of interest.
fMRI preprocessing. We preprocessed raw fMRI and anatomical MRI data using
fMRIPrep 20.1.1 standardized pipeline (49). We normalized all data to the 2 × 2 ×
2 mm International Consortium for Brain Mapping 152 Nonlinear Asymmetrical
template version 2009c, RRID: SCR_008796; TemplateFlow ID: MNI152NLin2009-
cAsym), and additional spatial smoothing was applied to the blood-oxygen-level-
dependent (BOLD) data using a 6-mm full width at half maximum Gaussian kernel.
See SI Appendix, Supplementary Methods, for the full description of the preprocess-
ing operations performed by fMRIPrep.
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First-level general linear models for BOLD data. We first created general
linear models (GLMs) at the participant level using the nilearn GLM module to
estimate the BOLD response to various task events. For all models, the signal
was scaled to the mean value in the time axis, and the event regressors were
generated using a boxcar function equal to the event duration (for visual stimuli)
or a delta function (for shocks) convolved with a canonical hemodynamic
response function. The design matrix was filtered using a high-pass filter with a
cutoff of 128 s, and autocorrelation was modeled using an autoregressive AR(1)
model. The five BOLD runs were concatenated, and a constant regressor was
added to model each run’s mean. All first-level models presented in this manu-
script included nuisance regressors modeling nonneural sources: 24 movement-
related regressors comprising the six estimated head movement parameters
(x, y, z, roll, pitch, and yaw), their first temporal derivatives, their squares, their
squared derivatives, and the first five components of the anatomical CompCor
extracted using the CompCor method (50) implemented in fMRIprep. The
interstimulus periods were used as the unmodeled baseline in all models (ISIs
in Fig. 1A).

In the main first-level model of interest, we focused on the effect of the pain
and money offers. To this end, we entered regressors for each level of pain or
money offered separately for offers in which the pain level was presented first
and offers in which the money level was presented first (20 regressors per partic-
ipant). We also added regressors for the second part of the offers, the key press/
feedback, the shock anticipation screen, and the shock delivery. In all multivari-
ate patterns analyses, we used the beta values maps of the regressors of interest
scaled by variance to downweight noisy voxels [t values (51)]. We used two addi-
tional models with the same structure to model the different levels of anticipated
and the intensity of delivered shocks.

To model brain activity during the decision phase, we created two separate
GLMs with regressors for the onset of each pain offer level and/or money offer level
in the decisions. To predict decisions, we modeled each trial by entering the onset
of each decision event as an independent regressor (100 regressors per partici-
pant) with a duration corresponding to the duration of the event. Additional regres-
sors of no interest in this model included the onsets for the pain/money offer, the
key press/feedback, the shock anticipation screen, and the shock delivery.
Univariate analyses. For the sake of completeness, we considered the univari-
ate effects of the pain and money levels offered, the shock intensity, and the
anticipation phase. For each effect (pain level, money level, anticipated intensity,
and shock intensity) and participant, we performed a mass univariate regression
between the beta maps from the first-level GLM and the predicted levels. The
resulting beta coefficients were entered into a group-level two-tailed one-sample
t test against 0 at the second level. The resulting t-value maps were thresholded
using a threshold of P < 0.05, FWE corrected. We report these results in addi-
tion to a comparison between the univariate maps and the multivariate patterns
in SI Appendix, Supplementary Results, S8.
Multivariate pattern analysis. To develop multivariate patterns predicting pain
and money levels as well as shock intensity, we used the whole-brain parametric
maps calculated for each participant and each of the 10 levels of pain and 10
levels of money. Using scikit-learn, we trained separate LASSO-PCR algorithms to
predict the level of pain (1 to 10) and money (1 to 10) and assessed their perfor-
mance using a 10-fold cross-validation with participants as the grouping factor.
The LASSO alpha hyperparameter was fixed at 1.0, and we retained all PCA com-
ponents (scikit-learn default values; 52). In the cross-validation procedure, the
participants were split in 10 sets, and the algorithm was trained on ∼90% of the
participants and tested on the remaining participants; the procedure was
repeated 10 times so that each set was used as the test set. The training data
were standardized within each cross-validation loop, and the same scaling was
applied on the test data. We report the Pearson correlation coefficient (r)
between the actual and predicted values, the coefficient of determination (R2 as
calculated in scikit-learn), and the root mean squared error between actual and
predicted levels as measures of performance for the predictions. We used a simi-
lar procedure to perform predictions in 6-mm spherical searchlights or in each of
the 486 parcels of the Cognitive and Affective Neuroscience lab (CANlab) com-
bined atlas (SI Appendix, Supplementary Results, S4; github.com/canlab/Neuro-
imaging_Pattern_Masks) with the exception that we did not use a penalized
regression when predicting within each searchlight/parcel to avoid the impossi-
bility of interpreting results when all coefficients are shrunk to zero in noninfor-
mative searchlights/parcels. Instead, we used a principal component regression

while retaining components explaining 80% of the variance of the signal when
performing predictions in searchlights/parcels.

To calculate the pattern similarity between the pain/money patterns and the
parametric maps of each participant and phases of the task, we calculated the
cosine similarity between the weights of the full patterns and the parametric val-
ues of each map. In this procedure, we always respected the cross-validation
splits used to develop the patterns, so that pattern similarity was always calcu-
lated on images that were not used in the training of the pattern. Using this pat-
tern similarity, we assessed the capacity of each pattern to discriminate between
various levels of pain and money (1 vs. 10, 1 vs. 5, and 5 vs. 10) with receiver
operating characteristic curves and single-interval classification and tested the
significance of the accuracy using binomial tests. When classes were unbalanced,
we report the balanced accuracy measure as calculated in scikit-learn. We used
the same approach to apply the patterns to the open datasets, but in these cases
we used the weights averaged across all cross-validation folds (52).

To assess which voxels made stable contributions to each pattern, we used a
bootstrap resampling procedure in which 10,000 bootstrap samples of the same
size as the original dataset were created by randomly sampling observations
from the original dataset with replacement. We then applied the whole-brain
LASSO-PCR in each of these samples and used the distribution of value at each
voxel to calculate a z score and a P value. Using these P values, we thresholded
the maps at q < 0.05, FDR corrected, two-tailed for display and interpretation
only. All analyses were performed using the full weight maps. For searchlight
analyses, we used the same procedure but used 5,000 bootstrap samples to
limit the computational demands, and we report the FWE corrected results at
P < 0.05 for inference.

To confirm that the predictions were above chance and that the cross-
validation procedure was unbiased, we performed the cross-validated predictions
in 5,000 samples with permuted labels. Specifically, for each cross-validation
fold, we permuted the labels within participants, trained the algorithm on the
permuted labels, and tested it on the original labels. We used the formula
(C + 1)/(N permutations + 1) to calculate the permutation P values using the
Pearson’s correlation coefficient between actual and predicted outcomes, where
C is the number of permutations whose correlation coefficient was higher than
or equal to the true correlation coefficient.

To predict participants’ choices, in the decision phase we applied the multi-
variate patterns obtained in each cross-validation fold of the LASSO-PCR and
applied it to the single trial data of the decision phase of the left out participants.
We removed trials with variance inflation factors higher than 2 in the single-trial
GLM and for which the response time was lower than 200 ms or for which no
response was recorded (0.33% of trials). We used each trial pattern similarity
values as input features in a linear SVM classifier (C parameter = 1) to predict
the binary outcome of each trial (accept or reject) using the same 10-fold cross-
validation split used to develop the patterns, and we report the balanced accu-
racy as the measure of classification performance. We also performed the same
analysis within each participant by performing the same 10-fold cross-validated
classification within each participant’s 100 trials.

Data Availability. The raw data cannot be openly shared due to local legal restric-
tions, but all raw, Brain Imaging Data Structure (BIDS)-formatted data necessary to
reproduce all analyses will be shared on request. Thresholded and unthresholded
patterns, custom code, and a containerized version of the open source software have
been deposited in Neurovault, GitHub, and Dockerhub, respectively (https://
neurovault.org/collections/10410/, https://github.com/mpcoll/coll_painvalue_2021,
and https://hub.docker.com/r/mpcoll2/coll_painvalue_2021).
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