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Abstract

For hazard identification and classification and labeling purposes, animal testing guidelines are 

required by law to evaluate developmental toxicity for new and existing chemical products. 

However, guideline developmental toxicity studies are costly, time-consuming, and require many 

laboratory animals. Computational modeling has emerged as a promising, animal-sparing, and 

cost-effective method for evaluating the developmental toxicity potential of chemicals, such as 

endocrine disruptors, without the use of animals. We aimed to develop a predictive and explainable 

computational model for developmental toxicants. To this end, a comprehensive dataset of 1,244 

chemicals with developmental toxicity classifications was curated from public repositories and 

literature sources. Data from 2,140 toxicological high throughput screening (HTS) assays were 

extracted from PubChem and the ToxCast program for this dataset and combined with information 

about 834 chemical fragments to group assays based on their chemical-mechanistic relationships. 

This effort revealed two assay clusters containing 83 and 76 assays, respectively, with high 

positive predictive rates for developmental toxicants identified with animal testing guidelines 

(PPV = 72.4% and 77.3% during cross-validation). These two assay clusters can be used as 

developmental toxicity models and were applied to predict new chemicals for external validation. 

This study provides a new strategy for constructing alternative chemical developmental toxicity 

evaluations that can be replicated for other toxicity modeling studies.
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Introduction

Traditional chemical toxicity evaluation methods rely on animal testing guidelines for 

hazard identification. These animal studies are required by law and are considered 

the gold standard for safety assessment testing. However, these studies are expensive, 

time-consuming, and require highly specialized study designs to detect developmental 

toxicants1,2. Furthermore, these methods raise ethical concerns because of the many 

laboratory animals required. The European Registration, Evaluation, Authorization, 

and Restriction of Chemicals (REACH) regulations have extensive developmental and 

reproductive toxicity (DART) testing requirements for industrial and consumer chemicals3,4. 

DART testing represented 90% of animal use and 70% of chemical toxicity testing costs 

associated with completing phase one of REACH3, with individual testing protocols 

sometimes requiring up to 3,200 animals per chemical4. One of the most well-known 

regulatory testing requirements for this purpose is the prenatal developmental toxicity study, 

described as the Organization for Economic Co-operation and Development (OECD) Test 

No. 4145 and the United States Environmental Protection Agency (US EPA) Office of 

Prevention, Pesticides, and Toxic Substances (OPPTS) test guideline 870.37006. Briefly, this 

protocol requires the administration of a test chemical to 4 groups of animals (e.g., at least 

20 pregnant rats or rabbits with litters per group) at three different concentrations from 

the time of implantation of the embryo in utero and continuing throughout pregnancy until 

one dayterm before the expected day of delivery. A comprehensive array of developmental 

endpoints is defined based on the testing results, fetal body weight, embryo-fetal survival, 

fetal morphology (external, visceral, skeletal), and endocrine endpoints, to determine No 

Observed Adverse Effect Levels (NOAELs) or Low Observed Adverse Effect Levels 

(LOAELs) values for maternal and developmental toxicity effects.

The complexity and cost of the associated animal testing guidelines for prenatal 

developmental toxicity have produced a critical need to develop alternative approaches based 

on non-animal models, such as computational models. However, most current computational 

toxicology models for developmental toxicity predictions were developed using Quantitative 

Structure-Activity Relationship (QSAR) modeling and other structure-based approaches. 

These approaches only incorporated structural and physicochemical information of known 

toxicants7–13. Unfortunately, for complex in vivo endpoints such as developmental toxicity, 

relying on structural and physicochemical information alone for modeling and evaluations 

can be error-prone14,15. For example, compounds with similar structures may exhibit 

dissimilar toxicities, a phenomenon called activity cliffs, and cause incorrect predictions 

for new compounds16,17. Furthermore, international guidance regarding the chemical risk 

assessments requires that the toxicity predictions of new compounds need to have identified 

toxicity mechanisms18–20.
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Over the past twenty years, advances in high-throughput screening (HTS) protocols 

and combinatorial chemistry revolutionized the environmental and health science data 

landscape21–23. Initiatives such as the US EPA’s Toxicity Forecaster (ToxCast) program, 

which screened approximately 1,800 chemicals in over 700 HTS assays, generated large 

amounts of biological data for mechanistic toxicity evaluations24,25. At the same time, a 

collaboration among the US EPA, National Center for Advancing Translational Sciences 

(NCATS), and the National Toxicology Program (NTP) launched a parallel initiative 

called Toxicity in the 21st Century (Tox21). The goal of Tox21 was to generate more 

detailed toxicity data, such as concentration-responses, for a larger chemical library using 

quantitative HTS protocols. The collaborative Tox21 initiative is ongoing, now including 

the Food and Drug Administration (FDA) and working toward a goal of testing about 

10,000 chemicals in about 70 HTS assays26–29. Public databases such as PubChem host 

much of this data, making it available for modeling studies30,31. Integrating biological 

data into computational toxicity evaluations has shown great promise in addressing the 

backlog of registered chemicals that have not undergone complete safety assessments32–40. 

However, these models only incorporated manually selected biological data covering a well-

known and narrow scope of possible mechanisms relevant to developmental toxicity38–41. 

Automatic data mining methods that can extract relevant public biological data offer a new 

strategy to shed light on unknown toxicity mechanisms that are not incorporated into the 

existing models23.

This study aimed to address the above limitations of the existing computational approaches 

for evaluating developmental toxicity using a data-driven read-across approach by 

combining chemical information and biological data (Figure 1). To this end, a large dataset 

for developmental toxicity was collected from public databases and literature sources. An 

automated data mining web tool was then used to extract biological data from PubChem 

for all of the chemicals in this dataset42. Additional biological data generated as part of 

the ToxCast initiative for these chemicals were collected from the US EPA’s CompTox 

Chemistry Dashboard43. Then, the collected PubChem and ToxCast assays were clustered 

based on their biological mechanisms using a recently developed method that incorporates 

the structural features of the chemicals in the developmental toxicity dataset33. This process 

revealed chemical in vitro-in vivo relationships used to reveal suites of assays representing 

developmental toxicity mechanisms. The assays with extra chemical information can be 

used as models to screen new compounds to prioritize potential toxicants.

Methods

In Vivo Prenatal Developmental Toxicity Database

Chemicals with prenatal developmental toxicity data were collected from public database 

resources44–46 and individual datasets in the literature7. The definition of developmental 

toxicant was limited to adverse effects selective to the developing embryo or fetus after 

pregnant animal exposure. Therefore, non-toxicants in this study were limited to chemicals 

showing no adverse effects in the developing embryo or fetus in prenatal testing or only 

showing non-selective embryo-fetal effects (i.e., secondary effects from toxicity in the 

pregnant test animal).
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The European Chemical Hazards Agency (ECHA) and Toxicity Reference Database 

(ToxRefDB)44,45 datasets consisted of 529 and 156 chemicals, respectively, with 

experimental data generated by test protocols similar to OECD 4145/OPPTS 870.37006. 

These datasets contained NOAEL values associated with prenatal developmental toxicity 

testing of chemicals administered to preclinical mammalian species (e.g., dogs, monkeys, 

rabbits, and rodents) orally or by inhalation. First, results marked as unreliable or 

unacceptable by ECHA or the EPA were removed from the datasets. Then, the NOAEL 

values were converted to developmentally toxic and nontoxic classifications. Chemicals with 

oral NOAEL values below the OECD 414/OPPTS 870.3700 limit dose of 1,000 mg/kg/day 

and inhalation NOAEL values below the OPPTS 798.4350 limit dose of 5,100 mg/m3 were 

classified as developmentally toxic. Because this study focuses on identifying selective 

prenatal developmental toxicants, chemicals were classified as developmentally toxic only 

if they had lower developmental NOAEL values than pregnant test animal NOAEL values 

derived from the same prenatal study. In some cases, chemicals had study results available 

in more than one species. Where the presence of developmental effects varied across species 

for a chemical, the chemical was conservatively considered toxic if it exhibited selective 

prenatal developmental toxicity in at least one species.

The Proctor & Gamble7 dataset consisted of 637 compounds with primarily mammalian 

data. Chemicals were classified into five categories: D (developmental toxicity in the 

absence of maternal toxicity), D(MT) (developmental toxicity only in the presence of 

maternal toxicity), DTer (teratogenicity in the absence of maternal toxicity), DTer(MT) 

(teratogenicity in the presence of maternal toxicity), and No Evidence (no developmental 

toxicity observed)7. These categories were derived using similar criteria to those used to 

classify the ECHA and ToxRefDB chemicals (i.e., chemicals classified as D(MT) and 

DTer(MT) showed developmental or teratogenic NOAEL below the pregnant test animal 

NOAEL). Therefore, chemicals with the D and DTer classifications were considered 

developmentally toxic, and those with all other categories were considered nontoxic, 

consistent with this study’s selective developmental toxicity focus.

Chemical structure information was collected for the chemicals from each dataset using 

PubChem’s identifier exchange service47 using their CAS number, European Community 

(EC) number, common name, or Distributed Structure-Searchable Toxicity (DSSTox) 

identifiers as input48. The CASE Ultra v1.8.0.0 DataKurator tool curated the individual 

datasets by standardizing their chemical structures. Salts were treated as their corresponding 

organic acids. Positively charged nitrogen atoms were neutralized by subtracting hydrogens, 

and all negatively charged atoms were neutralized by adding hydrogens. After these curation 

steps, the datasets were merged. In some cases, chemicals with duplicate curated structures 

showed conflicting designations across the component datasets, and the most conservative 

designation (i.e., developmentally toxic) was kept. The fully compiled in-house prenatal 

developmental toxicity database was used as the training set in this study and contained 

1,244 unique chemicals, of which 660 were active, and 584 were inactive (Supplementary 

Table 1).
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In Vitro Data Collection and Bioassay Clustering

A bioprofile was generated for the chemicals in the developmental toxicity database using 

public in vitro bioassay hit calls. PubChem bioassay hit calls were automatically collected 

for these chemicals using our in-house Chemical In Vitro-In Vivo Profiling tool (http://

ciipro.rutgers.edu/)37,42. ToxCast hit calls were retrieved from the EPA ToxCast/Tox21 

summary files for invitroDBv3.243,49. Bioassays with at least five active responses among 

the training set chemicals were retained for the final bioprofile to reduce the chances of 

overfitting due to limited data33.

These assays were then clustered into mechanistically related groups using statistically 

significant relationships among active results and the presence of specific chemical 

fragments using a recently published workflow33. First, Saagar fingerprints were generated 

for all training set chemicals50. The Saagar fingerprints consist of binary vectors denoting 

the presence or absence of approximately 1,000 chemical fragments for chemical toxicity 

studies50. Next, each substructure was compared pairwise with each bioassay using Fisher’s 

exact test to determine the statistical significance of the fragment’s presence in a chemical 

with its activity in the bioassay. The Fisher’s exact test’s outcome is a p-value, which 

indicates the probability of a chemical fragment-in vitro bioassay response relationship 

existing by random chance. The relationship between the existence of a chemical fragment 

in an assay dataset and these chemicals’ active responses was considered statistically 

significant if its corresponding p-value was less than 0.05 (i.e., a random-chance probability 

of less than 5%). Compounds showing active results in mechanistically related bioassays are 

likely to have the same key chemical fragments. Therefore, the bioassays can be clustered 

based on their statistically significant relationships to chemical fragments.

Biological Read-Across to Determine Developmental Toxicity Potential

Each mechanistically related cluster of bioassays was used to perform read-across to assess 

the chemical developmental toxicity using a biosimilarity search (Figure 1). Biosimilarity 

refers to the similarity between patterns of results in a battery of bioassays, such that 

chemicals showing similar patterns have higher biosimilarity42,51. A frequent challenge 

associated with using HTS screening data for toxicity evaluations is the bias toward inactive 

results, which is confounded by the relatively lower importance of inactive responses than 

active responses22,23. Therefore, a biosimilarity search assigns a lower weight to inactive 

responses to minimize the impact of this bias (Equation 1)42. In this equation, Aa and Ba 

represent the active responses in two bioassays within the same cluster, and Ai and Bi 

represent their inactive responses. In addition, the parameter w, which equals the ratio of 

active to inactive responses present among the bioassays in each cluster, lessens the impact 

of the bias usually present toward inactive responses.

biosimilarity(A, B) = |Aa ∩ Ba | + |Ai ∩ Bi | × w
|Aa ∩ Ba | + |Ai ∩ Bi | × w + |Aa ∩ Bi | + |Ai ∩ Ba |   (1)

However, missing data are common when profiling target compounds against public 

data22,23. Therefore, a high biosimilarity value does not always ensure a confident 

prediction. For example, the value may have been generated by comparing two chemicals 
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with only one shared active bioassay response among many inactive and missing results. 

For this reason, an additional confidence parameter was calculated for each read-across 

prediction, representing the richness of assay data used to make the prediction and, 

therefore, indicates the prediction reliability (Equation 2).

confidence(A, B) = |Aa ∩ Ba | + |Ai ∩ Bi | × w + |Aa ∩ Bi | + |Ai ∩ Ba| (2)

Five-fold cross-validation was performed for each bioassay cluster to assess its ability to 

predict developmental toxicity potentials for new compounds. First, the target chemicals 

(i.e., the compounds in the developmental toxicity modeling set) tested in at least one 

bioassay within a cluster were randomly divided into five equally sized groups. Then, in 

each of five iterations, each chemical in one group was compared to the compounds of 

the other four groups, and its developmental toxicity was predicted by its most biosimilar 

neighbor. This procedure optimized the minimum biosimilarity between two compounds 

and associated confidence for each cluster using an exhaustive grid-search algorithm 

implemented in scikit-learn v0.24.152. Briefly, read-across predictions were made using each 

combination of parameters to identify the best-performing conditions, which were retained 

and then used to predict external compounds. When multiple bioassays within the same 

cluster contained at least ten mutual responses across the represented chemicals and had a 

Pearson correlation coefficient greater than 0.9, one was selected at random and retained 

for read-across predictions. The others were removed to reduce inflation of biosimilarity 

values by bioassays that may be represented more than once in the dataset (e.g., a bioassay 

deposited into PubChem twice with slightly different interpretations).

The predictions resulting from the cross-validation procedure were statistically evaluated 

using various universal parameters, including specificity (Equation 3), sensitivity (Equation 

4), Correct Classification Ratio (CCR, Equation 5), and positive predictive value (PPV, 

Equation 6). The number of true positives (TP) represents correctly predicted prenatal 

developmental toxicants in each equation. The number of false positives (FP) represents 

nontoxic chemicals incorrectly predicted as prenatal developmental toxicants. The number 

of true negatives (TN) represents correctly predicted nontoxic chemicals. The number of 

false negatives (FN) represents prenatal developmental toxicants incorrectly predicted as 

nontoxic. Because toxic predictions are more meaningful than nontoxic predictions, only the 

PPV was used during each cluster’s read-across parameter optimization.

sensitivity =   TP
TP + FN (3)

specificity = TN
TN + FP (4)

CCR = sensitivity + specificity
2 (5)
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PPV = TP
TP + FP (6)

Quantitative Structure-Activity Relationship Modeling to Fill Data Gaps

Read-across predictions are only reliable if their associated confidence value is above a 

minimum threshold. Therefore, chemicals with substantial amounts of missing bioassay data 

cannot be predicted without filling these gaps. This data gap filling was accomplished 

using QSAR modeling, similar to previous studies33,41. First, all the chemicals tested 

in a given bioassay were retrieved along with their structural information and activities. 

This information was collected by querying the PUG-REST web service47 for PubChem 

bioassays or invitroDBv3.243,49 for ToxCast bioassays. After removing inconclusive results, 

each bioassay’s dataset was balanced by randomly removing inactive chemicals until 

reaching an equal number of active and inactive chemicals. For large bioassay datasets, 

the number of chemicals used for QSAR model development was limited to 10,000 to save 

computational time.

Four machine-learning algorithms were then used to develop the QSAR models for 

each assay in the target clusters: Bernoulli naïve Bayes (BNB), k-nearest neighbors 

(kNN), random forest (RF), and support vector machines (SVM). Each algorithm was 

implemented using the Python machine-learning library scikit-learn v0.19.0 (http://scikit-

learn.org/)52 using the RDKit v2019.09.1.0 (http://rdkit.org/) implementation of Functional 

Connectivity FingerPrints (FCFPs) using a bond radius of 353. Finally, the models’ 

predictive performances were evaluated using the CCR from a five-fold cross-validation 

procedure (Equation 6).

Each of the four algorithms’ hyperparameters was previously described in detail54, along 

with the procedure used to optimize them during model training53,54. BNB models “naively” 

assume that the presence or absence of each FCFP descriptor is independent of all others to 

calculate the probability that a chemical will be active in a particular bioassay by applying 

Bayes’ Theorem55,56. kNN models predict a new chemical’s activity by a majority vote 

of its k most similar training set chemicals57. RF models build decision trees based on 

randomly selected FCFP descriptors and average their outputs to predict new chemicals’ 

activities58. Finally, SVM models optimize a set of thresholds for each descriptor used in 

model development that best distinguishes between active and inactive training chemicals59.

The predictions generated by each of the four algorithms for a single chemical were 

averaged to form a consensus prediction. Consensus predictions are robust because they 

leverage the strengths of various algorithms and have shown advantages for predicting new 

compounds in previous studies53,60–63. A chemical similarity-based applicability domain 

was also implemented by only reporting predictions for chemicals with a minimum of 40% 

similarity using FCFPs across their three nearest neighbors among the QSAR model training 

set for a particular assay. However, the consensus predictions showed poor predictive 

performance despite these precautions in rare cases (i.e., CCR < 0.6). In these cases, missing 

data were not populated with QSAR predictions.
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Results

Prenatal Developmental Toxicity Database Overview

The prenatal developmental toxicity database used in this study consisted of data generated 

by regulatory animal test guidelines (i.e., OECD 414/OPPTS 870.3700) or guideline-like 

protocols compiled from the literature7 and public databases44. Because the sources had 

different data types (e.g., study-derived NOAELs versus data sorted into categories), original 

data were harmonized into two groups for model development. In the final database, 

chemicals labeled as toxic were selective embryo-fetal toxicants associated with adverse 

effects on developing embryos and fetuses. Chemicals labeled as nontoxic showed no 

adverse developmental effects or only showed adverse effects in the presence of pregnant 

animal toxicity. Among the three data sources, 68 chemicals existed more than once. 

Twenty-six (38.2%) of these chemicals had conflicting toxicity classifications across the 

data sources. In these circumstances, the most conservative classification was retained, 

such that any chemical with at least one result indicating toxicity was considered toxic in 

the database. The final database contained 1,244 unique chemicals, of which 660 (53.1%) 

were toxic, and 584 (46.9%) were nontoxic (Supplementary Table 1). Principal Component 

Analysis (PCA) was implemented using 206 descriptors available within the Molecular 

Operating Environment (MOE) software v2018.01 to visualize the chemical space covered 

by the final database. The top three principal components explain 54.5% of the total variance 

of the final database and show a sufficiently large and diverse chemical space, aside from 

several outliers from both classes (Supplementary Figure 1).

Profiling and Assay Clustering

The public in vitro bioassay data for the target chemicals in the training set were extracted 

from PubChem30,31 and the EPA ToxCast/Tox21 summary files for invitroDBv3.243,49. The 

resulting in vitro bioprofile used for clustering contained 2,140 bioassays, of which 1,590 

(74.3%) were from PubChem and 550 (25.7%) were from invitroDBv3.2 (Figure 2). In total, 

this bioprofile contained 41,570 active results (1.8%), 325,900 inactive results (13.9%), 

and 1,967,270 inconclusive results or untested chemical-bioassay pairs (84.3%) for 1,091 

training chemicals (Figure 2). This profiling result was then used to cluster mechanistically 

related bioassays based on the presence of specific chemical fragments. To this end, the 

presence or absence of 834 Saagar fragments was identified for each chemical.

Among the 2,140 bioassays and 834 fragments, 61,928 statistically significant chemical-

in vitro relationships were identified (p < 0.05) (Supplementary Figure 2). Next, 

mechanistically related bioassays were clustered by calculating the Jaccard distance between 

all pairs of bioassays using their profiles of existing significant chemical fragments. 

Bioassay pairs with a Jaccard similarity of at least 25% were used for clustering. After 

applying this minimum similarity threshold, 1,091 bioassays (51.0%) were considered to 

have “unique” mechanisms (i.e., < 25% similarity to all other individual bioassays) for the 

training set compounds and therefore excluded from further modeling. Therefore, 1,049 

bioassays with presumed mechanistic connections to other bioassays remained available for 

the clustering analysis.
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A network graph was generated to show the bioassay clusters (Figure 3). Each node 

represented one of the remaining 1,049 bioassays. Each edge connected two bioassays and 

had a length inversely representing the Jaccard similarity between the two bioassays (i.e., 

shorter edges indicate higher similarity). This network graph was then clustered using the 

Louvain modularity algorithm64 with resolution 0.35 and visualized using the Force Atlas 

algorithm65 with default parameters, as implemented in Gephi v0.9.2 (https://gephi.org/) 

(Figure 3). This process resulted in 68 clusters (Supplementary Table 2). Among the 

resulting clusters, 37 contained mixtures of bioassays from the PubChem and ToxCast 

databases. In Figure 3, each bioassay is represented by colored circles, and edges represent 

potential mechanistic relationships (i.e., bioassay pairs with > 25% similarity).

Read-Across Model Selection

Each of the 68 clusters depicted in Figure 3 was evaluated for their ability to predict 

prenatal developmental toxicity. First, 47 clusters containing less than five bioassays were 

removed to ensure the predictions could be biologically interpretable (Supplementary Table 

2). Next, the remaining 21 clusters were evaluated to predict prenatal developmental toxicity 

using biological read-across studies. Each read-across study was evaluated using a five-fold 

cross-validation procedure.66 The minimum biosimilarity and confidence required to make 

read-across predictions were optimized during cross-validation. Then, the optimized PPV for 

each cluster was recorded, resulting in PPV values ranging from 51.4% to 100.0% (Equation 

7, Figure 4A). Among the 21 clusters, 9 showed high predictive performance for prenatal 

developmental toxicity (PPV > 70%). Then, four of these nine clusters with confidence 

values equal to one were removed to reduce the effect of missing data on the resulting 

model reliability (Figure 4B). The read-across cross-validation results showed that three of 

the remaining five clusters had high sensitivity (Equation 4, ranging from 83.3% to 100.0%), 

low specificity (Equation 5, 0% for all three clusters), and low CCR (Equation 6, ranging 

from 41.7% to 50.0%) (Supplementary Table 3). These results indicated that the chemicals 

that had enough results in these clusters’ included in vitro assays for performing read-across 

were disproportionally in vivo developmental toxicants, limiting the model’s ability to 

optimize read-across parameters to predict nontoxic results properly. After excluding these 

three clusters, two potentially viable bioassay cluster models remained candidates to predict 

prenatal developmental toxicity.

The first model was Cluster 17, which had a higher predictive performance during 

cross-validation (PPV = 77.3%). This cluster contained 83 bioassays, of which 82 were 

collected from the PubChem database, and one was collected from the ToxCast database 

(Supplementary Table 2). The included bioassays collected from PubChem were deposited 

by Tox21 (48 bioassays, 55.4%), the National Center for Advancing Translational Sciences 

(NCATS) (29 bioassays, 39.8%), the Broad Institute (1 bioassay, 1.2%), New Mexico 

Molecular Libraries Screening Center (1 bioassay, 1.2%), Southern Research Institute (1 

bioassay, 1.2%), the Scripps Research Institute Molecular Screening Center (1 bioassay, 

1.2%), and the Vanderbilt High-Throughput Screening Facility (1 bioassay, 1.2%). Of 

these bioassays, 45 (54.2%) measured cell viability or cytotoxicity as counter screens 

for functional bioassays or drug repurposing screens (i.e., to treat various cancers67,68 

or inhibit the growth of infectious bacteria69 or parasites70). Four additional bioassays 
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were drug screens to identify chemicals that blocked cell entry of viruses, including 

those causing hemorrhagic fevers71 (i.e., Ebola, Lassa virus, and Marburg virus) and 

respiratory syndromes72 (i.e., the Middle East and severe acute respiratory syndrome-related 

coronaviruses). In addition, one bioassay identified chemicals that could inhibit antifungal 

efflux pumps73. The remaining 30 bioassays were functional and associated with protein 

targets, such as nuclear receptors, cytochrome P450 enzymes, G-protein coupled receptors, 

and transcription factors (Table 1).

Cluster 41, which contained 76 bioassays, also emerged as a potential model for prenatal 

developmental toxicity predictions, showing a PPV of 71.7% during cross-validation. These 

76 bioassays were collected from both the ToxCast (55 bioassays, 72.4%) and PubChem 

(21 bioassays, 27.6%) databases (Supplementary Table 2). Unlike Cluster 17, only a low 

percentage of these bioassays measured cell viability or cytotoxicity (9 bioassays, 11.8%). 

Additional bioassays from the ToxCast and Tox21 programs measured mitochondrial 

membrane potential disruptions74,75 (three bioassays, 3.9%), microtubule stability74 (two 

bioassays, 2.6%), and cytochrome P450 metabolism (eight bioassays, 10.5%). One further 

bioassay was an in vivo zebrafish assay developed as an alternative to mammalian tests to 

identify chemicals that induce embryonic death and structural anomalies76. The remaining 

52 bioassays in Cluster 41 were functional, associated with protein targets, such as 

transcription factors, metalloproteinases, transmembrane receptors, and chemokines (Table 

2).

External Validation by Predicting Test Chemicals

External validation with new chemicals is necessary to prove the utility of the selected 

models. To this end, Clusters 17 and 41 were used to predict the toxicity of chemicals 

outside of the training set77. Of the full in vivo developmental toxicity database 

compiled for this study, only 1,090 chemicals had bioassay data for the model training 

procedure. Therefore, the remaining 154 chemicals were used as an external validation 

set, with bioassay results populated by QSAR model predictions, consistent with previous 

computational toxicology studies32,33,41,53. Each QSAR model was first evaluated for its 

predictive performance before filling data gaps using their CCR (Equation 6). The QSAR 

models used to fill data gaps for these 154 chemicals had an average CCR of 68.4% 

(Supplementary Figure 3). Although this reliance on QSAR predictions adds uncertainty to 

the resulting predictions, this procedure mimics the model’s future use to fast screen new 

and untested chemicals early in the discovery and development process.

When using the cross-validation optimized confidence value for predictions (Equation 3), 

the Cluster 17 (confidence = 16) and 41 (confidence = 26) models showed high predictive 

performance for developmentally toxic chemicals in the external validation set (PPV = 

100%) (Figure 5). Both clusters 17 and 41 were identified as potentially viable models 

for predicting developmental toxicity due partly to their high optimized confidence values 

compared to other clusters, which minimized the effects of missing data on the cluster 

selection process. Understandably, this low tolerance for missing data combined with the 

stringent applicability domain used for QSAR predictions proved to limit predictions of 

new and untested chemicals, resulting in low coverage of the overall dataset (4.5% and 

Ciallella et al. Page 10

Environ Sci Technol. Author manuscript; available in PMC 2023 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.9% for Clusters 17 and 41, respectively) and low predictive performance for nontoxic 

chemicals (Figure 5). This issue can, in some cases, be resolved by testing new chemicals 

in the relevant bioassays rather than relying on QSAR predictions. However, especially 

early in the discovery and development process, this solution is not always viable (e.g., 

when chemicals are not yet synthesized). In this circumstance, a potential solution is to 

increase the tolerance for missing data by lowering the confidence value required to report 

a prediction. High confidence values can limit the number of nontoxic predictions made 

since nontoxic chemicals often have a high proportion of inactive responses in the relevant 

bioassays.

For this reason, lowering the confidence value required to report read-across predictions 

increased both the coverage of the new chemicals and the balance of correctly predicted 

toxic and nontoxic chemicals. For example, using a confidence value of 6 instead of 

16 for Cluster 17 model predictions showed high predictive performance for toxic and 

nontoxic chemicals (PPV = 100%, specificity = 100%) (Figure 5A). Similarly, using a 

confidence value of 16 instead of 26 for Cluster 41 model predictions improves the balance 

of predictive performance between toxicants and non-toxicants by retaining acceptable 

predictive performance for toxic chemicals (PPV = 66.7%) and increasing the cluster’s 

predictive performance for nontoxic chemicals (specificity = 50%) (Figure 5B). Further, 

using these adjusted confidence values increases the coverage more than two-fold for each 

cluster.

By lowering the similarity threshold required to report individual QSAR assay results to fill 

missing data before read-across, the coverage of predicting new chemicals further increased. 

Figures 5C and 5D show the results of varying confidence values with a lower similarity 

threshold (i.e., 30% instead of 40% similarity to three nearest tested neighbors required to 

report an assay result for a specific chemical). For example, using a confidence value of 11 

for Cluster 17 predictions yields a high predictive performance for toxic chemicals (PPV 

= 93%), improved predictive performance for nontoxic chemicals (specificity = 50%), and 

improved coverage of 14.9%. Similarly, a confidence value of 21 for Cluster 41 predictions 

yields acceptable predictive performances for both toxic and nontoxic chemicals (PPV = 

71.4%, specificity = 75.0%) and improved coverage of 19.5%.

Discussion

Implementing computational approaches can reduce the need for time-consuming, cost-

inefficient, and often ethically undesirable animal tests and is particularly attractive for 

endpoints such as prenatal developmental toxicity where highly specialized animal study 

designs are necessary. Although previous computational approaches to evaluating new 

chemicals for prenatal developmental toxicity have shown promise, they have been limited 

in biological interpretability by only incorporating chemical structural information7–13,78,79 

or focusing on limited and specific well-understood biological mechanisms38–41. Here, we 

presented a prenatal developmental toxicity database of over 1,200 chemicals spanning 

various use categories that underwent mammalian prenatal tests similar to the OECD 414/

OPPTS 870.3700 protocols. Then, chemical structural information and biological data were 

integrated into a workflow that allowed for increased biological interpretability of the 
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resulting predictions (Figure 1). As a result, clusters of bioassays were formed based on 

chemical-in vitro relationships, and two bioassay clusters, 17 and 41, were identified as 

models for predicting prenatal developmental toxicity.

These clusters contained several bioassays that align with plausible mechanisms of 

prenatal developmental toxicity (Tables 1 and 2). For example, the transforming growth 

factor beta (TGFβ)/SMAD pathway is well-known for its importance in embryonic 

development80. Bioassays identifying agonists and antagonists of this pathway included 

in Clusters 41 and 17, respectively, were, therefore, previously identified as relevant to 

predicting prenatal developmental toxicity [ToxCast Assay Endpoint Identifier (AEID) 66 

and PubChem Assay Identifier (AID) 1347032]81. Similarly, endocrine disruption by drugs 

or environmental chemicals is a well-established mechanism of developmental toxicity82. 

Bioassays measuring endocrine disruption by binding to hormone receptors (e.g., nuclear 

estrogen, androgen, progesterone, and thyroid-stimulating hormone receptors) were present 

in both clusters.

Besides these well-known developmental toxicity mechanisms, some less established but 

potentially relevant targets were captured by this study. For example, one Cluster 17 

bioassay measured natriuretic polypeptide receptor B (NPR-B) antagonism (PubChem AID 

1347050)83 (Table 1). In previous studies, loss-of-function mutations in human NPR-B’s 

precursor gene were associated with impaired skeletal growth, suggesting that disrupting 

this receptor’s function may interfere with skeletal development84. An additional Cluster 

17 bioassay was associated with hepatocyte nuclear factor 6 (HNF6)’s precursor gene 

ONECUT1 [ToxCast Assay Endpoint Identifier (AEID) 83]85,86. HNF6 was identified in 

previous studies as a regulator of liver87 and pancreatic88 development. Finally, in Cluster 

41, several bioassays associated with various chemokines associated with immune response 

and inflammation were represented, along with matrix metallopeptidase 1 (MMP1) (Table 

2). These targets were recently included in a proposed embryonic vascular disruption 

adverse outcome pathway (AOP) with endocrine disruption targets and TGFβ89.

Interestingly, both clusters also contained assays measuring the activity of cytochrome P450 

enzymes. Although the contributions of these enzymes to developmental toxicity are not 

fully understood, previous studies showed that cytochrome P450 enzyme expressions varied 

by developmental stages and modulated fetal exposures to toxicants such as carcinogens, 

drugs, and alcohol90,91. Further, aromatase (cytochrome P450 19A1), a target of assays 

present in both clusters, plays a key role in hormone regulation by converting androgens to 

estrogens92.

This study highlighted the benefits and opportunities of using the publicly available 

biological data for computational toxicity predictions to resolve common issues in classic 

modeling studies (e.g., QSAR) for complex toxicity endpoints. Both well-established and 

putative prenatal developmental toxicity mechanisms were incorporated in the developed 

models, including endocrine disruption and embryonic blood vessel development. By 

relying on relevant biological data, this workflow provides users with an increased 

capacity to mechanistically interpret predictions, as required by international regulatory 

guidelines such as those by the OECD18,93. Further, using biological data combined with 
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chemical structural information reduced the frequency of activity cliffs in previous studies 

by incorporating information about chemicals’ interactions with biomolecules into the 

prediction process14,34,51.

The predictions for external validation set chemicals, especially developmentally toxic ones, 

could be explained by looking at their nearest biological neighbors in the training set (Figure 

6). For example, one developmentally toxic external validation set chemical was 2,2’,4,4’,5-

pentachlorodiphenyl ether (CAS 60123–64-0). Chlorodiphenyl ethers are generated as 

byproducts during the manufacture of chlorinated phenols such as fungicides and wood 

preservatives94. Based on the Cluster 17 bioassays, this chemical was correctly predicted as 

toxic based on its most biologically similar nearest neighbor (confidence = 16), as identified 

by comparing their bioassay responses using the biosimilarity metric (Equation 2). This 

neighbor was tributyltetradecylphosphonium chloride (CAS 81741–28-8), a developmentally 

toxic training chemical used as a biocide in hydraulic fracking (Figure 6A)95. The high 

biosimilarity between these two chemicals was influenced mostly by their shared active 

responses in 11 viability/cytotoxicity assays and five functional assays. The functional 

assays represented four targets: the jun proto-oncogene, thyroid-stimulating hormone 

receptor, pregnane X receptor (NR1I2), and Small Mothers Against Decapentaplegic 

(SMAD) family member 1 (Table 1). Similarly, one example among Cluster 41’s toxic 

external validation predictions was 2,4-difluoro-1-(4-nitrophenoxy)benzene (CAS 28280–

37-7). In the training set, based on the Cluster 41 assays, this chemical’s biological 

nearest neighbor was prochloraz (CAS 67747–09-5), a developmentally toxic fungicide 

(Figure 6B). These two chemicals shared active responses in 40 assays. Of these assays, 

five were viability/cytotoxicity assays. Two additional assays measured disruption of 

the mitochondrial membrane potential in vitro74,75 and embryonic death and structural 

anomalies in vivo using zebrafish [ToxCast assay endpoint identifier (AEID) 1507]76. The 

remainder were functional assays representing protein targets, including endocrine targets, 

cytochrome P450 enzymes, the aryl hydrocarbon receptor, and chemokines (Table 2).

The computational workflow described here automatically identified bioassay data relevant 

to prenatal developmental toxicity from public databases and created a new strategy for 

predicting untested chemicals early in the discovery and development procedure or existing 

chemicals with limited safety data. Although the read-across models developed were 

insufficient to encompass all possible prenatal developmental toxicity mechanisms, this 

study highlighted the benefits and opportunities of using the publicly available biological 

data for computational toxicity predictions. Both well-established and putative prenatal 

developmental toxicity mechanisms were incorporated in the developed models, including 

endocrine disruption and embryonic blood vessel development. In addition, the adaptability 

built into the workflow paves the way for the easy incorporation of new bioassays as they 

are submitted to public database resources in future studies and applied to other complex 

toxicity endpoints.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis:

A computational approach can quickly and cost-efficiently identify potential prenatal 

developmental toxicants based on biological data to reduce, refine, and eventually replace 

animal testing.
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Figure 1: 
Overview of the workflow used in this study. The data-driven workflow employed in this 

study consists of four main stages: generation of chemical fingerprints and retrieval of in 

vitro bioassay data for each compound in the training set, implementation of QSAR models 

to fill data gaps, clustering PubChem and ToxCast assays based on correlations between 

chemical fragments and bioactivity, and identification of potential developmental toxicants 

by mechanism-driven read-across. Orange cells in the bioprofile with a value of 1 represent 

active results, gray cells with a value of 0 represent inconclusive/missing results, and blue 

cells with a value of −1 represent inactive results.
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Figure 2: 
Bioprofile of 1,091 in vivo developmental toxicity database chemicals (y-axis) used for 

training across 2,140 PubChem and ToxCast bioassays (x-axis). Active results are shown as 

red squares, inactive results are shown as blue squares, and inconclusive results and untested 

chemical-bioassay pairs are shown as gray squares.
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Figure 3: 
Cluster map of in vitro PubChem and Toxicity Forecaster (ToxCast) assays based on 

correlations between chemical fragments and assay activities. The Louvain modularity 

algorithm identified 68 clusters, each represented by a different color, as outlined in 

Supplementary Table 2. Each colored circle represents one bioassay such that circles of 

the same color belong to the same cluster. Each edge inversely correlates to the similarity 

between the connected assays, with longer edges representing lower similarity.
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Figure 4: 
Cross-validation (A) positive predictive values (PPVs) for individual clusters containing 

at least five bioassays and (B) optimized confidence values for individual clusters with 

acceptable PPVs, as shown in (A). In both panels, the numbers along the x-axis represent 

cluster numbers as identified within the cluster map in Figure 3. The solid lines represent the 

thresholds used for cluster selection (PPV = 70% and confidence = 1).
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Figure 5. 
Clusters 17 and 41 models’ predictive performances, as shown by external validations. A 

and B show the performance of clusters 17 and 41, respectively, using activities from QSAR 

for chemicals whose three nearest neighbors in an assay showed at least 40% similarity. 

Panels C and D show the performance of clusters 17 and 41, respectively, using activities 

from QSAR for chemicals whose three nearest tested neighbors in an assay showed at least 

30% similarity. The solid blue line in each graph represents the percent coverage of the 

external validation set containing 154 chemicals. The dashed orange lines represent the 

positive predictive values, or the fraction of predicted active chemicals predicted correctly, at 

varying confidence levels. The green dotted curves represent the specificity, or the fraction 

of correctly predicted in vivo inactive chemicals, at varying confidence levels.
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Figure 6. 
Sample toxic external validation predictions from the cluster models. Predictions are 

shown for 2,2’,4,4’,5-pentachlorodiphenyl ether (CAS 60123–64-0) based on its biological 

nearest neighbor within the training set chemicals tested in Cluster 17 bioassays, 

tributyltetradecylphosphonium chloride (CAS 81741–28-8), and for 2,4-difluoro-1-(4-

nitrophenoxy)benzene (CAS 28280–37-7) based on its biological nearest neighbor within 

the training set chemicals tested in Cluster 41 bioassays, prochloraz (CAS 67747–09-5). A 

subset of the complete profile is shown in both panels, which includes the most influential 

bioassays on the resulting toxic prediction (i.e., those containing at least one active response 

between the validation chemical and its biological nearest neighbor). The columns in each 

profile represent assay identifiers from PubChem (prefixed with “P”) and ToxCast (prefixed 

with “T”), as listed in Tables 1 and 2. Active results are shown as red rectangles, inactive 

results are shown as blue rectangles, and untested chemical-bioassay pairs are shown as gray 

rectangles. Thick bold boxes surround shared active responses.
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Table 1.

Cluster 17 bioassay targets

Target PubChem AIDs ToxCast AEIDs
References suggesting 

relevance to 
developmental toxicity

Muscarinic acetylcholine receptor M1 (CHRM1) 628, 943, 944, 588852 - 96 

Cytochrome P450 2D6 (CYP2D6) 891, 1851, 1645840 90,91,97

Caspase 3, apoptosis-related cysteine peptidase (CASP3) 1346980, 1347034 - 98,99

Cytochrome P450 3A4 (CYP3A4) 1851, 1645841 - 90,91

Thyroid-stimulating hormone receptor (TSHR) 1259385, 1259395 - 100 

Atrial natriuretic peptide receptor 3 precursor (NPR2) 1347050 - 84 

Chromobox protein homolog 1 (CBX1) 488953 - 101 

Cytochrome P450 (CYP) 1A2, 2C9, 2C19 1851 - 90,91

Cytochrome P450 19A1 (CYP19A1, aromatase) 743083 - 92 

D(1A) dopamine receptor (DRD1) 488983 - 97,102

D(2) dopamine receptor isoform long (DRD2) 485344 - 102,103

Estrogen receptor beta (ERβ) 1259378 - 97,104

FAD-linked sulfhydryl oxidase ALR (GFER) 485317 - 105 

Firefly luciferase 1224835 - -

Heat shock transcription factor 1 (HSF1) 743228 - 106 

Jun proto-oncogene (JUN) 1159528 - 97,107–109

Nuclear receptor subfamily 1, group I, member 2 (NR1I2) 1346977 - 97,110

One cut homeobox 1 (ONECUT1) - 83 87,88

Peroxisome proliferator-activated receptor delta (PPARD) 743215 - 111 

Potassium voltage-gated channel subfamily H member 2 isoform d 
(KCNH2)

588834 - 112,113

SMAD family member 1 (SMAD1) 1347032 - 80 

Tyrosyl-DNA phosphodiesterase 1 (TDP1) 686979 - -
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Table 2

Cluster 41 bioassay targets

Target PubChem AIDs ToxCast AEIDs
References suggesting 

relevance to 
developmental toxicity

Androgen receptor (AR) 588516, 743042, 
1259243 1856 114,115

Nuclear receptor subfamily 1, group I, member 2 (NR1I2) 720659, 1346982, 
1347033 103 97,110

Aryl hydrocarbon receptor (AHR) 743085, 743122 63 114,116,117

Nuclear receptor subfamily 1, group I, member 3 (NR1I3) 1224839, 1224892 101 118,119

Estrogen receptor alpha (ERα) 743080, 1259244 - 97,104

Major histocompatibility complex, class II, DR alpha (HLA-DRA) - 147, 185 97,110

Progesterone receptor (PGR) 1346795, 1347031 - 104 

Acetylcholinesterase 1347395 - 120 

cAMP responsive element binding protein 3 (CREB3) - 69 97,117

CCAAT/enhancer binding protein (C/EBP), beta (CEBPB) - 67 117 

CD69 molecule - 303 97 

Chemokine (C-C motif) ligand 2 (CCL2) - 173 97,110,117

Chemokine (C-X-C motif) ligand 10 (CXCL10) - 241 117 

Chemokine (C-X-C motif) ligand 8 (CXCL8) - 307 110 

Colony stimulating factor 1 (macrophage) (CSF1) - 243 121 

Cytochrome P450 19A1 (CYP19A1, aromatase) 743139 - 92 

Estrogen-related nuclear receptor alpha (ERRα) 1259401 - 122 

FBJ murine osteosarcoma viral oncogene homolog (FOS) - 64 123 

Forkhead box O3 (FOXO3) - 1426 -

Matrix metallopeptidase 1 (interstitial collagenase) (MMP1) - 248 -

Nuclear factor erythroid 2-related factor 2 isoform 1 (NFE2L2) 651741 97 97,117,124

Nuclear factor I/A (NFIA) - 95 125 

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 
(NFKB1) - 94 -

Nuclear respiratory factor 1 (NRF1) - 1460 124 

Peroxisome proliferator-activated receptor delta (PPARD) - 102 126 

Peroxisome proliferator-activated receptor gamma (PPARG) - 134 127 

POU class 2 homeobox 1 (POU2F1) - 98 97 

Prostaglandin E receptor 2 (subtype EP2) (PTGER2) - 289 110 

RAR-related orphan receptor B (RORB) - 104 97 

Retinoic acid receptor, alpha (RARA) - 136 110 

Retinoic acid receptor, beta (RARB) - 71 110 

Selectin E (SELE) - 305 128 

SMAD family member 1 (SMAD1) - 66 80 

Sterol regulatory element binding transcription factor 1 (SREBF1) - 107 -
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Target PubChem AIDs ToxCast AEIDs
References suggesting 

relevance to 
developmental toxicity

Thrombomodulin (THBD) - 162 129 

Upstream transcription factor 1 (USF1) - 72 -

Vitamin D (1,25-dihydroxyvitamin D3) receptor (VDR) - 113 97 

X-box binding protein 1 (XBP1) - 114 130 
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