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Abstract

Many spatial analysis methods have been used to identify potential geographic clusters of disease 

in case-control studies. Low-rank kriging (LRK) models reduce the computational burden in 

generalized additive models by using a set of knot locations instead of the observed subject 

locations for estimating spatial risk. However, there is little guidance regarding selection of the 

number and location of the knots in case-control studies. We perform an extensive simulation 

study that compares a commonly-used method of knot selection in LRK models with two 

proposed methods and varies the number of knots. We find the commonly-used method is vastly 

outperformed by those that consider the locations of cases. We find that the Teitz and Bart 

heuristic allows the highest spatial sensitivity and power to detect zones of elevated risk, and 

recommend its use with a number of knots as close to the number of case locations as computation 

time will allow.
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Introduction:

It is of great public health interest to create statistical analysis methods that are able 

to identify geographic areas of excess disease risk and spur geographically-informed 

interventions and policies. Examples abound in the literature of the use of such models, 

investigating a wide range of diseases that includes colorectal, lung, and lip cancers (Vieira 

et al.; Archer et al.; Wakefield). One effective and long-standing approach to analyze the 

distribution of spatial risk for disease is the use of case-control studies. Data collected 

from such studies can allow researchers to compare the spatial distributions of cases 

and population-based controls while accounting for the demographic, environmental, and 

lifestyle factors that may be associated with higher risk of disease. Case-control studies have 
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been used to map the spatial distribution of disease risk and detect potential disease clusters 

of breast, bladder, and prostate cancers (Webster et al.; Jacquez et al.; Weichenthal et al.).

One advantage of case-control studies compared with ecological studies is they allow for 

precise detection of geographic areas of elevated risk. This can lessen the tendency to 

draw incorrect conclusions from areal disease mapping techniques, which are susceptible to 

unstable estimates based on low population counts and based on administrative boundaries 

that may be unrelated to public health (Openshaw; De Lepper set al.). A variety of methods 

have been developed to detect disease clusters with point-level data collected in case-control 

studies. One example is Kulldorff’s spatial scan statistic, which is implemented in the 

SaTScan software (Kulldorff). The scan statistic places circles of varying radii at each 

participant’s location and compares disease rates inside and outside of the circle with a 

likelihood ratio statistic. Another method is Jacquez’s focal Q-statistics (Jacquez et al.), 

which are designed to detect a cluster around a certain point, or focal source, counting 

the number of cases around the source among its k nearest neighbors. Finally, Besag and 

Newell’s test focuses on each case individually, testing whether its associated centroid 

defines the center of a cluster of a pre-specified size (Besag and Newell).

More comprehensive inference can be performed with spatial regression models, such 

as generalized additive models (GAMs) (Hastie and Tibshirani), which can adjust for 

covariates that may be associated with the outcome and provide estimates of uncertainty in 

quantities of interest, such as odds ratios. It is common in GAMs to use thin plate regression 

splines (S. N. Wood; S. Wood; David C. Wheeler et al.; David C Wheeler et al.) or lowess 

over spatial coordinates (Hastie and Hastie; Young et al.; Vieira et al.) to model the spatial 

variation in risk. GAMs have demonstrated better power to detect areas of elevated risk than 

Kulldorff’s scan statistic (Young et al.). In the Bayesian framework, it is straightforward to 

include spatial random effects with spatial correlation specified through prior distributions to 

model spatial risk. A common prior for spatial random effects is a zero-mean multivariate 

Gaussian, with a covariance matrix given by a parametric function of the distance between 

pairs of points and a parameter that controls the degree of spatial smoothing (Diggle et 

al.). The covariance matrix is of dimension equal to the sample size in the study. Though 

such an approach can accommodate models of increasing complexity, and can provide full 

posterior inference on any model parameter of interest, the Markov Chain Monte Carlo 

(MCMC) methods inherent in full Bayesian estimation require the inversion of this spatial 

covariance matrix at every iteration of the MCMC chain. Other approaches, such as spatial 

generalized linear mixed models for areal data, employ conditional autoregressive (CAR) 

random effects and work directly with the precision matrix, avoiding the need to invert 

the matrix at every iteration (Waller, Carlin, et al.). However, these models are typically 

used for count or continuous outcome variables collected over areal units, a spatial level 

that lacks the precision of residential point locations. The large size of modern case-control 

studies, combined with the requirement for regular matrix inversion, present a formidable 

computational challenge to fitting these models and suggest the need for methods that more 

efficiently enable model estimation.

Low-rank kriging (LRK) represents an effort to retain all the inferential benefits of a GAM 

while reducing the number of computations necessary in model fitting (Nychka et al.). LRK 
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models simplify the representation of the spatial process into a lower dimension. This is 

accomplished using a vector of knots, which are points in space where the spatial random 

effects are estimated, and are of a dimension much less than the sample size, such that 

the spatial covariance matrix can be inverted. The LRK model has been used in the cancer 

literature to model prostate cancer risk (Nychka et al.; Gelfand et al.; French and Wand). 

When fitting LRK models, however, one must choose the number of knots, as well as 

their placement over the study region. This is akin to specifying how closely the knots 

approximate the full spatial process, as well as how the knots geographically represent study 

participant locations. LRK models have shown sensitivity to the selection of the number and 

position of knots (Kim et al.), and with few knots, the estimation of spatial dependence and 

parameters becomes more variable (Ruppert et al.).

Some studies have analyzed the effects of varying the number and location of knots in 

low-rank kriging models, though most have focused on modeling a continuous outcome 

variable with point-referenced data. For example, Kim et al. demonstrate a rapid decrease 

in the mean square error of prediction of observations generated on a Gaussian random 

field for the first several knots added, with little marginal benefit as the number of knots 

continued to increase beyond 35 to 40 (Kim et al.). Banerjee et al. find that more knots are 

often required in Gaussian predictive process modeling of a continuous outcome variable 

to preserve information about the spatial pattern, and particularly when spatial dependence 

occurs over a fine scale (Banerjee et al.). However, there has been little guidance given 

with respect to knot selection in case-control data. In such studies, the outcome variable is 

binary, not continuous, and the point locations are random variables that represent a spatial 

point process, as opposed to the point-referenced data which is more common with kriging 

models, that has fixed locations and random outcomes of a continuous outcome variable. 

Thus, the use of a low-rank kriging model for case-control data realized from a point process 

can allow the smoothing of spatial risk over the study region that is derived from a random 

sample of locations of cases and controls. The need is to consider the nature of study 

participant locations in the knot selection process.

A common method of knot placement in spatial analyses has been the space-filling coverage 

design algorithm (Johnson et al.), which has been implemented as an R function named 

“cover.design”. This algorithm was developed from the notions of “mini-max” and “maxi-

min” distance sets, which are statistical designs – places to observe the variable of interest. 

The method was motivated by point-referenced data on a continuous outcome variable (a 

Gaussian process) and designed to predict responses at unmeasured locations. The design 

minimizes a geometric space-filling criterion and has been implemented widely (Wang and 

Ranalli; Roy and Stewart; Calder; Kim et al.; Crainiceanu et al.). But these objectives are 

not as relevant in a case-control study, in which the outcome variable is binary and locations 

arise from a marked point process. The discrepancy in the types of spatial design here may 

suggest that different methods are warranted to choose knots in LRK models of case-control 

data.

As alternatives to the space-filling algorithm, which effectively ignores the mark in the 

marked point process of case-control studies, we propose the use of two other methods that 

incorporate the mark. As the LRK model represents locations in space, the knots should be 
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chosen in a principled way to represent the underlying spatial distribution of disease risk 

in the study region and to allow the identification of areas of significantly elevated risk. 

Because the prediction variance in kriging is greater with increasing distance between the 

predicted points and the data, there is potential for greater prediction error in regions that 

are far from sampled points (Zimmerman et al.). To avoid missing areas of elevated risk, we 

focus on the case locations in the proposed knot selection methods.

The first alternative is a simple modification of the space-filling algorithm in that it only 

operates on the spatial locations of cases. In this way, the algorithm will seek to efficiently 

fill space with respect to the case locations, and may better represent the spatial distribution 

of risk. The second alternative is Teitz and Bart’s location-allocation heuristic (Teitz and 

Bart), which has been used extensively in operations research problems to minimize distance 

between facilities and clients. Considering the knot locations to be the facilities and the 

clients to be the cases, this heuristic will seek to minimize the distance from cases to their 

closest knot location. As both of these alternatives are more aligned with the design of 

case-control studies, they may be more appropriate for analyzing such data.

To evaluate the hypothesis that the space-filling algorithm is suboptimal for knot selection 

in case-control studies, we evaluated its performance, along with our two proposed methods, 

in a simulation study. We accomplish this via an extensive series of simulation studies 

using many simulated populations distributed over a study region. The simulated populations 

vary in their risk of disease depending on their proximity to a zone of elevated risk. 

We compare spatial sensitivity, specificity, and spatial power between the different knot 

selection algorithms across a variety of scenarios and across a varying number of knots.

Methods:

Model Specification

We used a Bayesian LRK model to model the probability of being a case using a 

Bernoulli distribution for each subject. Specifically, for subject i, the probability of 

disease is distributed as Yi ~ Bernoulli(pi), where we modeled the log-odds of pi as 

log
pi

1 − pi
= β0 + ∑m = 1

nk ψmC si − κm /ρ . Here, κ1, …, κnκ  are the nκ knot locations that 

are a lower-dimensional representation of the locations of cases and controls and are chosen 

by some knot selection algorithm. The residential location for subject i is denoted by 

si, and the spatial correlation parameter is denoted by ρ. The term ψm is a spatially 

structured random effect, and the function C(·) is a member of the Matern family of 

covariance functions. Fixing parameters of the Matern family to values of m = 1 and ν 

= 3/2, the covariance function is given by 1 + d
ρ e− d

ρ  Thus, while the model incorporated 

each subject’s residential location to estimate their spatial risk, it expressed the residential 

location indirectly, in terms of its model-specified covariance from the set of nκ knot 

locations.

For priors in the Bayesian LRK model, the regression intercept had vague Normal priors 

β0 ~ N(0, τ = 10−3), where τ denotes the precision, which is the reciprocal of the variance. 
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The random effects ψm received a multivariate normal prior ψ ~ MVN(0, τRΩ−1), where the 

precision matrix is given by Ω = [C[∥κm − κm′∥/ρ]], for 1 ≤ m, m′ ≤ nκ, and τR = 1
σR

2  and σR 

~ Unif(1, 10). The spatial correlation parameter, ρ, received a uniform prior on (0, 30).

Knot Selection

The specified model depends on a set of knots for estimating the spatial risk. We used three 

different methods to perform knot selection for the LRK model. The first method is the 

space-filling coverage design function, which has been described briefly above. The function 

seeks to minimize a geometric space-filling criterion. A random initial configuration of 

design points is chosen. For design points in set D and candidate points in set C, the criterion 

is given by M(D, C) = ∑ci ∈ C ∑di ∈ D r ci, di
p q/p 1/q

, where p is a parameter that affects 

how the distance from a point to a set of design points is calculated, q is a parameter that 

affects how distance from all points not in the design to those that are is averaged, and r(ci, 

di) denotes a distance measure between these points. Default values of −20 and 20 for the 

p and q parameters, respectively, were used. The algorithm is guaranteed to converge but 

has exhibited sensitivity to the initial set of design points. So, we used three independent 

initial configurations and retained the solution that gave the smallest final coverage criterion. 

We used this method as a baseline for comparison due to its popularity in spatial analyses. 

The next two methods consist of our proposed approaches for knot selection in the low-rank 

kriging model.

The second method was a modification of the space-filling algorithm that only considered 

case locations, and not control locations. This minimizes the space-filling criterion over the 

case locations and better represents the spatial population distribution of cases, which may in 

turn better uncover areas that give rise to the processes that induce the population to become 

cases.

The third method was that of Teitz and Bart, which is an interchange heuristic that was 

designed to estimate the vertex median of a weighted graph (Teitz and Bart). The problem 

sought to choose the locations of destinations to balance the weighted demands of sources, 

where the amount of demand carried from source to destination was allowed either to vary, 

or to be constant as a special case. The latter aligned with our problem, where all cases 

carried an equal amount of demand. and controls carried zero demand. Teitz and Bart’s 

method was motivated as a better-performing and less variable alternative to the partition 

method of Maranzana (Maranzana), which successively found single-vertex medians of 

partitions of vertices to address the p-median problem. Here, the term median refers to a 

point that minimizes the summed distances to points in the sample, and p refers to the 

dimension of the median. Maranzana’s method began by finding single-vertex medians of 

p random subsets of demand points, where all points in the set of demand points were 

considered in the calculation ofthe same median. The method then reassigned demand points 

to different subsets, updated the location of the medians, and repeated until convergence 

(Maranzana). The Teitz and Bart heuristic begins with some initial configuration of knots 

and defines an objective function as the total distance from demand points (for our use, case 

locations) to facilities (knot locations). It moves the knots iteratively to candidate locations 
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if doing so decreases value of the objective function. The process continues until no further 

interchange improves the distance criterion. This algorithm has been popular in operations 

research, particularly in producing an optimal set of facility locations with respect to the 

locations of clients (Owen and Daskin). We chose to use this algorithm because it was 

designed for an analogous problem – minimizing the distance from clients to facilities. As 

the spatial predictions of areas close in distance to the knots in the LRK model are more 

accurate than those areas farther in distance, we accomplish a similar goal by considering 

the cases to be the clients and the knots to be the facilities.

Simulation Study Design

Data-generating process.—We implemented a variety of scenarios to compare the 

performance of knot selection methods in the LRK model. The first factor that we varied 

in our simulations was the distribution of the population. We generated case and control 

locations over a study region, defined to be the tri-state area in New England (Maine, 

New Hampshire, and Vermont) for concreteness, to be either uniform or heterogeneous. 

Uniform density distributions were generated through a homogeneous Poisson point process, 

with intensity parameter λ = 0.0025, defined over the study region. Heterogeneous density 

distributions were generated by layering two additional Poisson point processes above the 

initial one, each with intensity parameter λ = 0.006, in coastal southern Maine and near 

the capital region (Augusta) in Maine. We considered heterogeneous distributions since they 

better resemble existing ones, as populations tend to cluster in certain areas, with other areas 

having low population density.

We assumed the residential location for each participant to be etiologically relevant for 

disease risk. This is reasonable when the disease under study has suspected environmental 

risk factors and when the population is residentially stable (i.e. not highly mobile). For this 

simulation study, for simplicity, we did not consider disease latency or allow for population 

mobility. In each scenario, we generated a zone of elevated risk for disease over the study 

region, varying the location for different scenarios. In different scenarios, participants living 

in the zone of elevated risk had odds ratios of being a case of 1.5, 2.0, and 2.5 relative 

to those who did not live in the zone. We also considered different locations for the zone. 

For the uniform density distribution scenarios, we placed the zone in southern Maine. 

For the heterogeneously-distributed populations, we placed the zone in southern Maine as 

well (Heterogeneous-Standard), which had a higher population density than other areas 

in the study region, and also in northern Maine, which had a lower population density 

(Heterogeneous-LPD). Using the odds ratios and locations of residences with respect to the 

zone, we randomly generated case-control status from a Bernoulli distribution with baseline 

probability of being a case p = 0.1 for those who did not live in the zone of elevated risk. 

For each scenario, we simulated D = 50 datasets using the data-generating process and fit 

models to the dataset using each of the three knot selection methods. A summary of the 

different scenarios is given in Table 1, which also lists the mean, minimum, and maximum 

proportion of cases in the generated study samples. We simulated case and control locations 

from populations with a low proportion of cases, and with a relatively small number of cases 

living in the zone of elevated risk, in order to reflect situations where the disease under study 

is rare, and detection of areas of elevated risk related to the disease is more challenging. Our 
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choices led to the creation of simulated samples with case-control ratios of approximately 

1:10. Such ratios accord with case-control studies with the resources to include a large 

number of controls. This setting could occur when case prevalence is relatively low in the 

general population. The cases are selected under the implicit assumption that all cases are 

observed. This assumption is reasonable when the disease outcome in question is severe 

and disease registries exist with mandatory reporting, such as with cancers. The controls 

are selected under the implicit assumption that they represent the spatial distribution of 

the at-risk population. If the Bayesian LRK models can detect zones of elevated risk with 

adequate sensitivity when the disease under study is rare, and there are not many disease 

cases in the true zone, then they will be likely to exhibit more than adequate performance 

in situations with stronger spatial signal. Maps of the different scenarios, showing the cases, 

controls, and zone of elevated risk, are given in Figure 1 for illustrative purposes.

Model Fitting.—We fitted a Bayesian LRK model to each simulated dataset, choosing knot 

locations with each specified knot selection method and varying the number of knots used. 

We began with nκ = 35 knots, and then increased the number of knots to 70 and 105 for the 

best-performing models to examine the effect of number of knots on model performance.

We fit models in a Bayesian framework using Markov Chain Monte Carlo (MCMC) 

methods. For model estimation, we used Just Another Gibbs Sampler (JAGS) in R, using 

a burn-in period for 40,000 iterations and retaining 10,000 iterations for sampling from 

the joint posterior distribution (Plummer and others). We assessed convergence of model 

parameters using the Gelman-Rubin statistic, where a parameter was considered to have 

converged if its statistic was less than 1.2 (Gelman and Rubin). Using the posterior 

samples of ψ, and the covariance function, we predicted the spatial odds of disease to 

an approximately 6 kilometer by 6 kilometer grid covering the extent of the study region and 

assessed the significance of disease risk at each grid cell by determining whether its 95% 

credible interval excluded the null value of one.

Model Evaluation.—We compared model performance in several ways. The first metric 

is spatial sensitivity. Denoting the set of grid cells that are in the zone of elevated risk as 

S, the spatial sensitivity of a model for dataset d is given by send = 1
|S| ∑si ∈ S I siL > 1 , 

where siL denotes the lower bound of the credible interval for grid cell si, and I(·) is an 

indicator function. The second metric is spatial specificity. Defining the set of grid cells 

that are not in the zone of elevated risk as NS, the specificity of a model for dataset d is 

given by specd = 1
|NS| ∑nsi ∈ NS 1 − I nsiL > 1 . The spatial sensitivity and specificity will 

be averaged over the D datasets.

Finally, spatial power is calculated according to a sensitivity threshold of zero. Dataset d will 

be considered to have identified the zone of elevated risk if any of the grid cells defined to be 

of significantly elevated risk were identified as such. The spatial power is then calculated as 

P = 1
D ∑d = 1

D I send > 0 .
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Evaluation of the Number of Knots.—In addition to the above simulation study, we 

evaluated the performance of the Teitz and Bart algorithm with the LRK model over a large 

and continuous range of knots for one dataset. The motivation for this was to determine if 

the objective function from the Teitz and Bart algorithm could be useful for selecting the 

number of knots to use in the LRK model. The study sample was one realization from a 

heterogeneous distribution, with the zone located in an area of higher population density, 

and with an odds ratio of 2.5 for participants living in the zone. For each number of knots in 

a sequence from 3 to 105 by 2, we fit LRK models using the Teitz and Bart method for knot 

selection. We recorded the final objective function value of the Teitz and Bart algorithm as 

well as the deviance, spatial sensitivity, and specificity from the resulting model fit.

Results:

A summary of the generated populations across all scenarios is shown in Table 1. This table 

also shows the mean, minimum, and maximum proportion of cases in each scenario. Though 

the proportion of cases increases with the odds ratio for each combination of population 

distribution and zone location, overall case proportions do not vary greatly across scenarios. 

This is attributable to the baseline probability of case membership and odds ratios in the 

zone used being relatively low, and relatively few people living in the zone of elevated 

risk. Therefore, while the distribution of cases and controls inside the zone varied, the 

overall distribution of these quantities changed little over the entire population. Additionally, 

a summary table of model performance is given in Table 2, showing model sensitivity, 

specificity, and power across the simulation scenarios, knot selection methods, and number 

of knots.

Sensitivity.

A plot of model sensitivities is shown in Figure 2. There is a general trend of increasing 

sensitivity with respect to odds ratio in a given scenario, increasing with the spatial signal 

in the zone of elevated risk. For all scenarios, the space-filling algorithm on the cases 

demonstrated an improvement over the standard space-filling algorithm, but the Teitz and 

Bart method decidedly outperformed them both, doubling to tripling the sensitivity of 

the space-filling algorithm on the cases. The commonly-used space-filling method had a 

sensitivity close to zero in all scenarios, never detecting more than five percent of the zone 

of elevated risk on average.

Using 70 knots chosen with the Teitz and Bart method demonstrated a further improvement 

in sensitivity over all scenarios. On average, this number of knots and method detected 

more than half of the grid cells in the zone of risk for the uniform population distribution 

and the heterogeneous distribution with the zone in an area of higher population density. 

It approached detecting half of the grid cells for the heterogeneous population and zone in 

an area of lower population density. The lower sensitivity values in this scenario reflect a 

low number of cases living in the area of elevated risk, but the general pattern in sensitivity 

between knot selection methods remained. Notably, methods that placed knots with respect 

to case locations decidedly outperformed the space-filling algorithm, which had a sensitivity 

close to zero.
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Specificity.

A plot of model specificities is shown in Figure 3. A different and simpler pattern emerges 

when evaluating model specificity. In particular, the source of most of the variation in 

specificity appears to be the knot selection method used, and not the simulation scenario. 

The space-filling algorithm and its counterpart on the cases had high specificities, but this 

owed to the fact that they generally did not find many regions to have non-null risk in the 

first place, as demonstrated in Figure 2. The Teitz and Bart methods had lower specificities, 

but they were near approximately 0.75, and doubling the number of knots to the Teitz and 

Bart algorithm from 35 to 70 did not markedly decrease the specificity of the models.

Power.

A plot of model power is shown in Figure 4 and illustrates the sharp contrast in performance 

between the space-filling algorithm and other methods. While any of the other methods 

detected some part of the zone almost all the time in every condition, having empirical 

power values very close to 1, the space-filling algorithm barely did so, with power between 

0 and 0.1 depending on the scenario. Put another way, this method failed to detect the zone 

of elevated risk for disease in nearly all of the simulation conditions, but any of the other 

methods that placed knots with respect to case locations correctly identified at least one grid 

cell inthe zone in nearly all of the conditions.

Comparison of the number of knots.

Results from the analysis of varying the number of knots used for Teitz and Bart knot 

selection are shown in Figure 5. Each metric improved as knots were added, until 

approximately the number of cases in the generated population (57) was reached. After 

this point, most metrics either did not improve or did so by a nominal amount, and for 

the highest numbers of knots, spatial sensitivity actually slightly decreased. For these 

high numbers of knots, candidate knot locations in the algorithm moved towards case 

locations quickly, leaving many of the remaining knots unchanged from their random initial 

configuration, which may have been in areas that did not provide value in model estimation. 

This suggests that placing knots very close to as many case locations as possible leads 

to improved model performance, but beyond this, false regions of elevated risk may be 

detected, and there is less value in increasing the number of knots.

Discussion:

In this study, we evaluated the adequacy of the commonly-used method of knot selection, the 

space-filling algorithm, in LRK models of disease risk for case-control data. Because this 

method was motivated for use with point-referenced data, predicting a continuous outcome 

variable, its performance in case-control studies had not been established. Through an 

extensive simulation study, generating many realizations of cases and control locations over 

a study region varying in population distribution and location of a zone of elevated spatial 

risk for disease, we found substantial evidence that the space-filling algorithm is suboptimal 

for case-control studies. It had extremely low sensitivity to detect zones of elevated risk and, 

correspondingly, very low power to detect any part of such zones. This has considerable 

implications for its use in future analyses of case-control data. Given such low power, the 
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use of this method in such analyses likely prohibits the finding of significant disease clusters 

when they exist.

In contrast, use of either of the two proposed methods that considered case location in 

choosing knot locations provided a significant boost to spatial sensitivity and power. These 

methods, which included the simple modification to the space-filling algorithm of only 

considering case locations, and the Teitz and Bart heuristic, detected approximately half 

or more of the defined zone of elevated risk as such, which entailed finding a significant 

disease cluster that would warrant further follow-up in analyses of real data. Given the 

relative rarity of cases in our simulations, as well as the small odds ratios of case 

membership for those living in the zone of elevated risk, the performance of the LRK 

models with these methods is encouraging. For disease processes with a stronger spatial 

signal, results would likely improve further. The lowest-performing group of scenarios 

occurred when the cases and controls were generated from a heterogeneous population 

distribution, and the zone was located in a region of lower population density. This illustrates 

the challenges of finding significant disease clusters in low-density areas. Such difficulty of 

geographically varying power over a heterogeneous population distribution has been noted 

before (Waller, Hill, et al.), largely due to small local sample sizes to detect increases 

in spatial risk. The Teitz and Bart heuristic was the best-performing method of those 

considered, suggesting that the operations research problem of minimizing distance from 

clients to their closest facilities is analogous to that of accurately estimating spatial risk 

where it is more likely to exist by placing knot locations as close as possible to the spatial 

distribution of cases in the study. Thus, we recommend its use in analyses of case-control 

data, when LRK models are used and knot locations must be selected.

Model performance generally improved as the number of knots used in the LRK model 

increased, as evidenced by the overall simulation results as well as the analysis of 

varying the number of knots on one generated population. Once the number of knots was 

approximately equal to the number of cases in the study sample, however, performance did 

not increase. This suggests that, as computation time allows, one should choose a number 

of knots as close as possible to the number of case locations, but greater than the number of 

cases is not needed. This is distinct from other guidance regarding the number of knots, such 

as the 35 to 40 knots recommended to predict responses over a Gaussian random field (Kim 

et al.).

To our knowledge, this is the first study that analyzes knot selection in low-rank kriging 

models of case-control data. Our results demonstrate that, when using the low-rank kriging 

model, the knot selection method used should reflect the study design. The space-filling 

method has been used in several studies of point-referenced data modeling continuous 

outcome variables, including simulations over a grid (Kim et al.), measurements of mercury 

in estuarine environments (Wang and Ranalli), and measurements of lead in soil surrounding 

a river basin (Lee and Toscas). The fixed sample locations in these studies allowed the 

use of a spatially representative subset of the sample points. However, when the study 

design is different, specifically a marked point process here, the nature of the points differs 

with respect to case status. Thus, the space-filling algorithm, which treats all locations 

equally, should not be used. Rather, a method that considers the case status in choosing 
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knot locations, such as either of our two proposed methods, should be used. These methods 

demonstrated an ability to detect zones of elevated risk underlying case status that the 

space-filling algorithm could not.

Three other important factors in the analysis of case-control data are covariates, disease 

latency, and the selection of cases and controls. First, if covariates are known or suspected 

to be associated with the outcome, they should be included in the spatial regression model. 

We did not focus on covariates in this study, instead assuming that the only factor associated 

with case membership was geographic proximity to a zone of elevated risk. Future research 

can investigate the effect of spatially structured and/or unstructured covariates on the 

performance of these models to detect disease clusters. Second, latency is relevant in 

case-control studies when individuals were exposed to processes that heighten risk for 

disease years before their inclusion in the study. In such cases, residential location at study 

entry may be a poor proxy for locations of high-intensity disease exposure, if populations 

are mobile and participants have moved locations between their exposure and the study 

entry. In future work, we will evaluate the ability of spatial models to estimate cumulative 

spatial risk that incorporate participants’ residential histories, not just their locations at one 

timepoint. Finally, our simulation study operated under the assumptions that all cases in 

the study region were observed and used in modeling, and that controls represented the 

at-risk population. Future research could investigate the effects on the accuracy of spatial 

risk estimates of differential probabilities of case reporting, as well as of the selection of 

controls in the sample that do not perfectly represent the spatial distribution of the at-risk 

population.
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Highlights:

• Proposed two new approaches for knot selection in low-rank kriging models.

• Compared three knot selection approaches for low-rank kriging models.

• The commonly-used space-filling algorithm is suboptimal for case-control 

studies.

• Proposed methods increase the sensitivity and power to detect regions of risk.

• It is advised to use a number of knots approaching the number of cases in the 

study.
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Figure 1. 
Illustrations of various simulation scenarios. From left to right, uniform population 

distribution, heterogeneous population distribution with zone in area of standard population 

density, heterogeneous population distribution with zone in area of lower population density. 

Cases and controls given by black and white circles, respectively.
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Figure 2: 
Sensitivity of LRK models with different knot selection methods and numbers of knots. 

OR = Odds Ratio, LPD = Low Population Density, CD = cover.design(), CD Cases = 

cover.design() on case locations, T-B = Teitz and Bart.
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Figure 3: 
Specificity of LRK models with different knot selection methods and numbers of knots. 

OR = Odds Ratio, LPD = Low Population Density, CD = cover.design(), CD Cases = 

cover.design() on case locations, T-B = Teitz and Bart.
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Figure 4: 
Power of LRK models with different knot selection methods and numbers of knots. 

OR = Odds Ratio, LPD = Low Population Density, CD = cover.design(), CD Cases = 

cover.design() on case locations, T-B = Teitz and Bart.
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Figure 5. 
Varying the number of knots in one simulated population using the Teitz and Bart method of 

knot selection. Vertical line indicates the number of cases in the population.
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Table 1.

Summary of simulation scenarios and average, minimum, and maximum proportion of cases across the 

simulated population samples.

Population OR Location Mean Min Max

Uniform

1.5

Standard

0.102 0.072 0.134

2.0 0.105 0.076 0.142

2.5 0.107 0.078 0.142

Heterogeneous

1.5 0.103 0.072 0.132

2.0 0.106 0.074 0.137

2.5 0.110 0.084 0.139

1.5

LPD

0.102 0.075 0.128

2.0 0.103 0.075 0.130

2.5 0.104 0.076 0.132

OR = Odds Ratio.
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Table 2.

Simulation results comparing different knot selection techniques and numbers of knots.

Metric Data Generation Knot Selection and Number of Knots

Population Distribution OR in Zone Location of Zone CD-35 CD Cases-35 T-B-35 T-B-70 T-B-105

Sensitivity

Uniform

1.5

Standard

0.011 0.112 0.377 0.538 0.408

2.0 0.014 0.124 0.467 0.608 0.459

2.5 0.032 0.131 0.495 0.665 0.507

Heterogeneous

1.5 0.000 0.118 0.372 0.576 0.398

2.0 0.001 0.132 0.422 0.643 0.466

2.5 0.014 0.149 0.455 0.726 0.447

1.5

LPD

0.000 0.083 0.287 0.334 0.337

2.0 0.000 0.093 0.312 0.383 0.306

2.5 0.000 0.104 0.341 0.434 0.331

Specificity

Uniform

1.5

Standard

0.999 0.921 0.731 0.636 0.689

2.0 0.999 0.922 0.722 0.634 0.683

2.5 0.998 0.924 0.722 0.630 0.693

Heterogeneous

1.5 1.000 0.926 0.745 0.673 0.760

2.0 1.000 0.928 0.756 0.671 0.743

2.5 0.999 0.930 0.770 0.669 0.790

1.5

LPD

1.000 0.923 0.735 0.660 0.756

2.0 1.000 0.924 0.734 0.659 0.770

2.5 0.999 0.925 0.742 0.657 0.750

Power

Uniform

1.5

Standard

0.020 1.000 0.960 1.000 1.000

2.0 0.060 1.000 0.980 1.000 0.980

2.5 0.100 1.000 0.980 1.000 1.000

Heterogeneous

1.5 0.000 1.000 1.000 1.000 0.920

2.0 0.020 1.000 1.000 1.000 0.960

2.5 0.080 1.000 1.000 1.000 0.940

1.5

LPD

0.000 0.980 0.940 1.000 0.880

2.0 0.000 0.980 0.940 1.000 0.840

2.5 0.000 1.000 0.960 1.000 0.880

OR = Odds Ratio, LPD = Low Population Density, CD = cover.design(), CD Cases = cover.design() on case locations, T-B = Teitz and Bart.
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