TABLE 1.
Summary and mechanism of Traditional Chinese medicines (TCM) used for bone regeneration and antiosteoporosis.
| TCM | Extract/compounds | Study type | Effect on bones | References |
|---|---|---|---|---|
| Psoralea corylifolia | Extract | In vivo | Increase bone calcification and hyperosteoidosis | Miura et al. (1996) |
| Gynochthodes officinalis | Extract | In vivo, In vitro | ↑Bone Mineral Density, ↑Bone Mineral Content, ↑serum P, Ca2+ | (Seo et al., 2005; Li et al., 2009; Li et al., 2014a) |
| Increases tibia ↑Bone Mineral Density, ↑osteoblasts, ↓osteoclast | ||||
| Eucommia ulmoides | Cortex extract | In vivo, In vitro | ↑Bone Mineral Density, ↑bone microarchitecture | |
| Curculigo orchioides | Extract | In vivo | ↑Bone Mineral Density | (Wong et al., 2007; Cao et al., 2008) |
| ↓bone fractures | ||||
| Cuscuta chinensis | Kaempferol | In vivo | ↑Bone Mineral Density, ↑Bone microarchitecture and biomechanical parameters | Li et al. (2013) |
| Epimedium brevicornum | Icariin flavonoids | In vivo, In vitro | ↑Bone Mineral Density, increases serum ALP, micro-architecture and biomechanical parameters | (Zhang et al., 2006; Liang et al., 2012) |
| Herba epimedii | Icarrin, icaritin | In vivo | improve osteoblast’sdifferentiation and proliferation | Vickers, (2017) |
| Fructus ligustrum lucidum | ligustroflavone, Specnuezhenide, salidroside | In vivo, In vitro | Activate osteoblast proliferation and bone development by runx2and BMP2 activation | (Wang et al., 2017b; Tang et al., 2018) |
| Rhizoma drynariae | Total flavonoids | In vivo | Augment osteoblast function through BMP2/Smad cascade | Chen et al. (2011) |
| Puerariae radix | Puerariae radixextract | In vivo | Increases osteoblast formation | Huh et al. (2006) |
| Ecliptae herba | Wedelolactone | In vivo, In vitro | Stimulate osteoblast differentiation and bone formation | (Lee et al., 2009; Liu et al., 2014a) |
| Astragalus membranaceus | Extract | In vivo | Stimulate fresh bone development on periodontal defects | Yang et al. (2016) |
| Acer nikoense Maxim | Acerogenin A | In vitro | ↑(BMP-2, BMP-7, BMP-4), Stimulate osteoblast | Kihara et al. (2011) |
| Caragana sinica Rhed | Kobophenol A | In vitro | ↓(NO-induced necrosis); regulate NF-κΒ, AP-1 and JNK signaling pathways, Augment osteoblast function | Lee et al. (2011a) |
| Picrorrhiza kurrooa Royle ex Benth | Apocynin | In vitro | ↓(IL-6, ROS and TNF-α) Stimulate osteoblast | Lee and Choi, (2011a) |
| Magnolia officinalis | Honokiol | In vitro | ↓(IL-6, TNF-α) | Choi, (2011) |
| ↑Bone Mineral Density | ||||
| Sambucus williamsii Hance | Vanillic acid | In vitro | ↑(MAPK (MEK/ERK) mediated signaling pathway, ↑Bone microarchitecture and biomechanical parameters | Xiao et al. (2014) |
| Salvia miltiorrhiza | Salvianolic acid B | In vitro | ↑ERK signaling pathway, ↑Bone Mineral Density, ↑Bone microarchitecture | Xu et al. (2014) |
| Radix Ophiopogon japonicas | Ophiopogonin D | In vitro | ↓ROS; the FoxO3a-β-catenin signaling pathway, ↑Bone Mineral Density | Huang et al. (2015) |
| Drynaria rhizome | Neoeriocitrin, Naringin | In vitro | ↑(Runx2, ALP) | Li et al. (2011) |
| ↑Bone Mineral Density, ↑Bone microarchitecture and biomechanical parameters | ||||
| Poncirus trifoliate | Poncirin | In vitro | ↓(C/EBP-β, PPAR-γ) Increase bone calcification and hyperosteoidosis | Yoon et al. (2011) |
| Helminthostachys zeylanica | Ugonin K | In vitro | ↑p38 MAPK- and ERK-mediated pathway, ↑Bone Mineral Density | Lee et al. (2011b) |
| Fruits and vegetables | Quercetin | In vitro | ↑(ALP, Osx, Runx2) Increase bone calcification and hyperosteoidosis | Srivastava et al. (2013) |
| Ginseng | Ginsenoside-Rb2 | In vitro | ↑(ALP) | Huang et al. (2014) |
| ↓(IL-6, ROS) | ||||
| ↑Bone Mineral Density, ↑Bone microarchitecture and biomechanical parameters | ||||
| Saussurea lappa | Costunolide | In vitro | ↑PI3K, JNK, PKC, ERK, p38 | Lee and Choi, (2011b) |
| ↑Bone Mineral Density, ↑Bone microarchitecture and biomechanical parameters | ||||
| The genus Rhamnus | Emodin | In vitro | ↑(BMP-2, PI3K, Akt and MAPK) pathways | Lee et al. (2008) |
| ↑Bone Mineral Density, ↑Bone microarchitecture | ||||
| Cnidium monnieri | Imperatorin | In vitro | ↑(bone nodule, BMP-2, phosphorylation of SMAD 1/5/8); ERK and p38 -dependent pathway | Tang et al. (2008) |
| ↑Bone Mineral Density, ↑Bone microarchitecture | ||||
| Sophora japonica | Genistein | In vitro | provoke ERα regulation via MAPK/NF-κB/AP-1 pathway | Liao et al. (2014) |
| ↑Bone Mineral Density | ||||
| Rhodiola rosea | Salidroside | In vitro | ↑(BMP-2, BMP-7, phosphorylation of ERK1/2and SMAD 1/5/8) ↑Bone Mineral Density | Chen et al. (2013) |
| Herba siegesbeckia | Kirenol | In vitro | ↑(BMP-2, β-catenin); BMP and Wnt/β-catenin pathways | Kim et al. (2014) |
| Bu-Shen-Tong-Luo Decoction | Combination of three ancient Chinese formulae | In vivo | ↓bone resorption and ↑angiogenesis | Yuan et al. (2018) |