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Abstract

The timing of self-initiated actions shows large variability even when they are executed in 

stable, well-learned sequences. Could this mix of reliability and stochasticity arise within the 

same neural circuit? We trained rats to perform a stereotyped sequence of self-initiated actions 

and recorded neural ensemble activity in secondary motor cortex (M2), which is known to 

reflect trial-by-trial action-timing fluctuations. Using hidden Markov models, we established a 

dictionary between activity patterns and actions. We then showed that metastable attractors, 

representing activity patterns with a reliable sequential structure and large transition timing 

variability, could be produced by reciprocally coupling a high-dimensional recurrent network and 

a low-dimensional feedforward one. Transitions between attractors relied on correlated variability 

in this mesoscale feedback loop, predicting a specific structure of low-dimensional correlations 

that were empirically verified in M2 recordings. Our results suggest a novel mesoscale network 

motif based on correlated variability supporting naturalistic animal behavior.

eTOC blurb

Self-initiated actions in freely moving rats can be predicted by specific ensemble activity 

patterns in the secondary motor cortex (M2). Variability in action timing can be explained by 
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metastable attractors in a network model of M2. Transitions between attractors are generated by 

low-dimensional correlated variability, empirically verified in M2.

1 Introduction

When interacting with a complex environment, animals generate naturalistic behavior in 

the form of self-initiated action sequences, originating from the interplay between external 

cues and the internal dynamics of the animal. Self-initiated behavior exhibits variability 

both in its temporal dimension (when to act) and in its spatial features (which actions 

to choose, in which order) (Berman et al. 2016, Wiltschko et al. 2015, Markowitz et al. 

2018). Large trial-to-trial variability has been observed in action timing, where transitions 

between consecutive actions are well described by a Poisson process (Killeen & Fetterman, 

1988). Recent studies in C. elegans (Linderman et al. 2019), Drosophila (Berman et al. 

2016) and rodents (Wiltschko et al. 2015, Markowitz et al. 2018) demonstrated that the 

spatiotemporal dynamics of self-initiated action sequences can be captured by state space 

models, based on an underlying Markov process. These analyses revealed a repertoire of 

behavioral motifs typically numbering in the hundreds, leading to a combinatorial explosion 

in the number of action sequences. Such a large behavioral landscape poses a formidable 

challenge for investigating the neural underpinnings of behavioral variability. A promising 

approach to tame the curse of dimensionality is to reduce the lexical variability in the 

behavioral repertoire, by using a task where the set of actions is rewarded when executed 

in a fixed order, yet retaining variability in action timing (Murakami et al. 2014, 2017), a 

hallmark of self-initiated behavior (Killeen & Fetterman, 1988).

Previous studies in rodents have identified the secondary motor cortex (M2) as part of 

a distributed network involved in motor planning, working memory (Li et al. 2016) and 

self-initiated tasks (Murakami et al. 2014, 2017). During delay periods in decision-making 

tasks, trial-averaged population activity in M2 displays clear features of attractor dynamics, 

with two discrete attractors encoding the animal’s upcoming choice (Inagaki et al. 2019). 

Are attractor dynamics in M2 confined to delay period activity? Here, we investigate the 

hypothesis that attractor dynamics can capture the activity of M2 neural circuits in a 

more naturalistic behavioral setting where a freely moving animal performs sequences of 

self-initiated behavior. In particular, we sought to uncover a correspondence between M2 

neural activity patterns and upcoming self-initiated actions.

Because self-initiated action sequences are characterized by large trial-to-trial temporal 

variability in transition timing, they cannot be directly aligned across trials without the use 

of time-warping methods, hampering the applicability of traditional trial-averaged measures 

of neural activity. A principled framework to tackle this issue is to model single-trial neural 

population dynamics using hidden Markov models (HMMs) (Rabiner, 1989). These state 

space models can identify hidden states from population activity patterns in single trials, 

and have been successfully deployed in a variety of tasks and species from C. elegans 

(Linderman et al. 2019) to rodents (Jones et al. 2007, Mazzucato et al. 2015, Maboudi 

et al. 2018, La Camera et al. 2019), primates (Gat & Tishby, 1993; Abeles et al. 1995, 

Ponce-Alvarez et al. 2012, Engel et al. 2016) and humans (Baldassano et al. 2017, Taghia et 
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al. 2018). Hidden Markov models segment single-trial population activity into sequences in 

an unsupervised manner by inferring hidden states from multi-neuron firing patterns. Within 

each pattern, neurons fire at an approximately constant firing rate for intervals typically 

lasting hundreds of milliseconds.

Previous work showed that the activity patterns, revealed by hidden Markov models, can 

be interpreted as metastable attractors, arising from recurrent dynamics in local cortical 

circuits (Miller & Katz 2010, Mazzucato et al. 2015). Metastable attractors are produced 

in biologically plausible network models (Deco & Hugues 2012, Litwin-Kumar & Doiron 

2012) and have been used to elucidate features of sensory processing (Miller & Katz 

2010, Mazzucato et al. 2015), working memory (Amit & Brunel, 1997) and expectation 

(Mazzucato et al. 2019), and to explain state-dependent modulations of neural variability 

(Deco & Hugues 2012, Litwin-Kumar & Doiron 2012, Mazzucato et al. 2016). However, 

while previous models are capable of generating sequential activity (Sompolinsky & Kanter 

1986, Kleinfeld 1986, Miller & Katz 2010; Pereira & Brunel 2020), they are hindered 

by a fundamental trade-off between sequence reproducibility and trial-to-trial temporal 

variability. Namely, they can endogenously generate either reliable sequences without 

temporal variability (Sompolinsky & Kanter 1986, Kleinfeld 1986, Pereira & Brunel 2020) 

or, instead, sequences with large temporal variability but unreliable order (Litwin-Kumar 

& Doiron 2012; Mazzucato et al. 2015, Treves 2005). Thus, existing models are incapable 

of generating reproducible sequences of metastable attractors, characterized by large trial-to-

trial variability in attractor dwell times.

Here, we addressed these issues in a waiting task (Murakami et al. 2014, 2017) in which 

freely moving rats performed many repetitions of a sequence of self-initiated actions leading 

to a water reward. The identity and order of actions in the sequence was fixed by the 

task reward contingencies (i.e., producing out-of-sequence actions yielded no rewards), 

yet action timing retained large trial-to-trial variability (Murakami et al. 2014, 2017). We 

found that M2 population activity during the task could be well modeled by an HMM that 

established a dictionary between self-initiated actions and neural patterns. To explain the 

neural mechanism generating reproducible yet temporally variable sequences of patterns, 

we propose that transitions between attractors are driven by low-dimensional correlated 

variability. This can be produced by reciprocally connecting a high dimensional recurrent 

network and a low-dimensional feedforward network. Attractors in the high-dimensional 

network represent the neural patterns inferred from M2 population activity. Previous 

experiments showed that recurrent circuits between cortical areas like M2 and subcortical 

areas such as thalamus (Guo et al. 2018, 2017) and basal ganglia nuclei (Hélie et al. 

2015, Desmurget & Turner 2010, Nakajima et al. 2019) are necessary to sustain attractor 

dynamics and produce motor sequences, and we suggest that cortical-subcortical circuits 

might correspond to our high- and low-dimensional network interaction. This mechanistic 

model predicts a specific structure of noise correlations (to be low-dimensional and aligned 

between consecutive states in the sequence of neural activations), which we confirmed in the 

empirical data. While previous work showed that low-dimensional (differential) correlations 

in sensory cortex may be detrimental for accurately encoding external stimuli (Moreno-Bote 

et al. 2014), our results demonstrate that, surprisingly, they are essential for a motor circuit 

to produce stable yet temporally variable self-initiated action sequences.
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2 Results

2.1 Ensemble activity in M2 unfolds through reliable pattern sequences

To elucidate the circuit mechanism underlying self-initiated actions we trained animals on 

a waiting task. In the waiting task, freely moving rats were trained to perform a sequence 

of self-initiated actions to obtain a water reward. Animals engaged in the trial by inserting 

their snout into a wait port, where, after a 400 ms delay, a first auditory tone signaled the 

beginning of the waiting epoch. Two alternative options were made available: i) waiting 

for a second tone, delivered at random times, then move to the Reward port to collect a 

large water amount (henceforth referred to as “patient” trials); or ii) terminating the trial 

at any moment before the second tone, then move to a reward port to collect a small 

amount of water (henceforth referred to as “impatient” trials). In either case, rewards were 

collected by withdrawing the snout from the wait port and poking into the reward port; thus, 

patient and impatient trials shared the same action sequence (Fig. 1a). The intervals between 

consecutive actions show large trial-to-trial variability with right-skewed distributions (Fig. 

1b and Fig. S1a), suggestive of a potential stochastic mechanism underlying their action 

timing (Killeen & Fetterman 1988).

To uncover the neural correlates of self-initiated actions, we recorded ensemble spike trains 

from the secondary motor cortex (M2, from N = 6 – 20 neurons per session, 9.9 ± 3.6 on 

average across 33 recorded sessions) of rats engaged in the waiting task (Murakami et al. 

2014, 2017). We found that single-trial ensemble neural activity in M2 consistently unfolded 

through reliable sequences of hidden or latent neural patterns, inferred via a hidden Markov 

model (HMM, see Fig. 1c and Fig. S2). This latent variable model posits that ensemble 

activity in a given time bin is determined (and emitted) by one of a few unobservable latent 

activity patterns, represented by a vector of ensemble firing rates (depicted column-wise 

in the “emission matrix”). In the next time bin, the ensemble may either dwell in the 

current pattern or transition to a different pattern, with probabilities given by rows of the 

“transition matrix.” Stochastic transitions between patterns occur at random times according 

to an underlying Markov chain (i.e., transitions solely depend on the current pattern), and 

neurons discharge as Poisson processes with pattern-dependent firing rates. The number of 

patterns in each session was selected via an unsupervised cross-validation procedure (10.2 

± 0.6 across 33 sessions, which ranged from 6 to 22 patterns, Fig. S2a; see Methods) and 

did not depend on ensemble size (Fig. S2b). The identity and order of inferred patterns 

were remarkably consistent within each session even across patient and impatient trials. 

Fig. 1d shows five example raster plots where the sequence of states unfolds through the 

trial while Fig. 1e shows the sequence of states in all the trials of the same session (Fig. 

S3). The average pattern dwell time was 0.52 ± 0.13 s (mean ± sd across all sessions, 

dwell time was defined as intervals where the HMM posterior probability was above 80%, 

see Methods and Fig. 1f; median and interquartile dwell time was 0.42(0.36, 0.49)), in 

agreement with previous findings in other cortical areas (Mazzucato et al. 2015). Transition 

intervals between consecutive states lasted 0.14 ± 0.06 s, thus significantly shorter than 

state durations. Such long dwell times, which are greater than typical single neuron time 

constants, suggest that the observed patterns may be an emergent property of the collective 

circuit dynamics within M2 and reciprocally connected brain regions. Crucially, even though 
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the identity and order of patterns within a sequence were highly consistent across trials, 

pattern dwell times showed large-trial to trial variability, characterized by right-skewed 

distributions (Fig. 1f–Fig. S2c, coefficient of variability CV= 0.76 ± 0.10 and skewness 1.60 

± 0.46). This temporal heterogeneity suggests that a stochastic mechanism may contribute to 

driving transitions between consecutive patterns within a sequence.

2.2 Robustness of pattern inference

We performed a series of control analyses aimed at testing the robustness of our 

pattern sequence model. We first examined how much single-cell autocorrelation and 

pairwise correlations contributed to the pattern sequence detection. To do so, first we 

performed a cross-validation analysis comparing the data to two surrogate datasets (Fig. 

2a) (Maboudi et al. 2018). In the “circular-shuffled” surrogate dataset, we circularly shifted 

bins for each neuron within a trial (i.e., row-wise), thus destroying pairwise correlations 

but preserving single-cell autocorrelations. In the “swap-shuffled” surrogate dataset, we 

randomly permuted population activity across bins within a trial (i.e., column–wise), thus 

preserving instantaneous pairwise correlations but destroying autocorrelations. We found 

that the cross-validated likelihood of held-out trials for an HMM trained on the real dataset 

was significantly larger compared to an HMM trained on surrogate datasets (Figs. S2f 

to S2h, empirical vs. circular shuffled: p = 6.5×10−7; vs. swap shuffled: p = 5.4×10−7, 

signed-rank test). When we destroyed autocorrelations, the model entirely failed to detect 

pattern transitions, leaving only one pattern (Fig. 2b to 2c, p = 5.4×10−7). When destroying 

pairwise correlations, the model still detected multiple patterns whose number was in the 

same range as the model trained on the empirical data (Fig. 2c, p = 0.19). However, pattern 

detection was significantly less confident than in empirical data (Fig. 2b, Fig. 2c, p = 

3.2×10−6); moreover, inferred pattern sequences were significantly sparser and more similar 

across trials in the data compared to the surrogate datasets (Fig. 2c, p = 2.7 × 10−6, Fig. S2d 

and Fig. S4). We concluded that single-cell autocorrelations, but not pairwise correlations, 

played an important role in extracting pattern sequences. Moreover, pattern sequences were 

not driven by the most active neuron in the ensemble but they are a robust collective 

property of the whole ensemble dynamics (comparison of HMM fits to the empirical data 

with surrogate datasets obtained by removing neurons with the highest activity revealed no 

significant differences, Figs. S4b to S4f).

In additional control analyses, we found that the observed neural pattern sequences reflected 

an underlying discrete process and were not an artifact of the HMM inference. A Gaussian 

Process Factor Analysis (GPFA, see Fig. S5 and STAR Methods) (Engel et al. 2016, Byron 

et al. 2009, Churchland & Abbott 2012) revealed abrupt transitions in the time course of 

GPFA latent factors separating long and approximately constant epochs with long-tailed 

dwell time distributions (Fig. S5), closely matching the discrete HMM state sequences; and 

a strong bimodality of GPFA latent factors, consistent with underlying discrete states (Engel 

et al. 2016).

2.3 Patterns arise from dense and distributed neural representations

How do pattern sequences emerge from neural activity? Patterns formed separate clusters 

tiling population activity space, with between-cluster distances being significantly larger 
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than within-cluster distances (Fig. 3a, Wilcoxon rank-sum test, p < 10−20). Most neurons 

were active in several patterns, leading to dense neural representations, where overlaps 

between patterns (0.41 ± 0.22, defined as Pearson correlation between firing rate vectors) 

were significantly larger than expected solely on the basis of the underlying firing rate 

distribution (Fig. 3b, p < 3 × 10–18, t-test). We found that the vast majority of neurons (88 

± 2 %) had firing rates significantly modulated across patterns (Fig. 3c). While 12 ± 2% 

of neurons were not modulated and 14 ± 2% had 2 different firing rates across patterns 

(bistable neurons), we found that 74 ± 2% of neurons were “multistable”, namely, they 

attained 3 or more firing rates across all patterns, in agreement with previous findings 

(Mazzucato et al. 2015). In particular, neurons attained on average 3.22 ± 1.17 different 

firing rates across patterns underscoring a distributed code of neural patterns across the 

neural population, Fig. 3c and Fig. S2i. Such multistability was more pronounced in the 

empirical data compared to the circular and swap shuffled datasets (Fig. S4a, Kolmogorov-

Smirnov test: empirical vs. circular shuffle, p = 5.9×10−6, empirical vs. circular shuffle, 

p = 1.4 × 10−33), suggesting that multistability is a property of ensemble dynamics 

beyond single neuron autocorrelations and pairwise correlations. Furthermore, we found 

no linear dependence between a single cell multistability property and its average firing rate 

(Pearson correlation R2 = 0.11, p = 0.20), thus suggesting that multistability is unrelated 

to a cell’s average firing rate. We concluded that most M2 neurons participated in the 

pattern sequences, suggesting that M2 neural populations can support dense and distributed 

representations characterized by mixed selectivity to several patterns.

2.4 Pattern onsets predict self-initiated actions

What kind of information about self-initiated behavior can be decoded from M2 pattern 

sequences? The statistical structures of neural patterns and action sequences shared 

remarkable similarities: single-trial consistency of identity and order of actions/patterns 

within a session, yet right-skewed distributions of timing intervals across trials (Fig. 1e and 

Fig. S3). We thus hypothesized that the onset of specific neural patterns could be causally 

involved with and therefore predictive of the timing and identity of upcoming self-initiated 

actions.

To test this hypothesis, we aimed to establish a cross-validated dictionary between actions 

and neural patterns, which we did by tagging the onset of specific patterns with the actions 

they most strongly predicted (Fig. 4a). This automated tagging method showed that, even 

though both pattern onsets and actions occurred at highly variable times in different trials, 

action onset times were reliably preceded by specific patterns onset on a sub-second scale 

(−99(−293, 28)ms, median (interquartile interval) between pattern onset and tagged action). 

In correct trials, defined as those in which a visit to the waiting port was followed directly 

by a movement to the reward port (both patient and impatient types, 67 ±16% fraction 

of trials per session, see Fig. 1a), the cross-validated accuracy of predicting actions from 

neural patterns was very high (Fig. 4c). Trials with other action sequences, where the animal 

behaved erratically, were deemed as incorrect trials (Fig. 4c and Fig. S6).

To assess the significance of the action/pattern dictionary, we aimed at testing whether 

pattern onsets could correctly predict actions performed during incorrect trials ( 32.5 ± 
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15.8%, see Fig. 4b and Fig. S6), based on the dictionary learned solely from correct trials. 

Pattern sequences in correct trials were more correlated (0.520 ± 0.108, mean ± sd Pearson 

correlation across sessions) than in incorrect trials (0.398 ± 0.076; t-test, p < 10−5). The 

correlation between sequences in correct trials and those in incorrect trials (0.395 ± 0.096) 

was similar to the correlation found in incorrect trials (t-test, p = 0.88). This is consistent 

with the fact that correct (Fig. 1e) and incorrect trials (Fig. 4b) both begin with a Poke 

In/Poke Out then start diverging. Nevertheless, when using the cross-validated action/pattern 

dictionary learned on correct trials, we were able to correctly predict which actions the 

animal would perform in incorrect trials (Fig. 4b to Fig. 4c).

Perhaps surprisingly, we found that single neurons in M2 were not responsive to sensory 

stimuli (auditory tones 1 and 2: 6 and 4 responsive neurons across 328 neurons). Moreover, 

it was not possible to discriminate patient vs. impatient conditions from modulations of 

population firing rates (from a decoding analysis, Fig. S6f) nor from the distribution of 

pattern dwell times (Kolmogorov-Smirnov test, p > 0.05 in 95% of the sessions), reflecting 

the consistency of action timing distributions between the two conditions ( p > 0.05 in 95% 

of the sessions). These results are consistent with the hypothesis that M2 neural activity 

reliably encodes for the animal’s actions, regardless of whether these actions are performed 

in a patient or impatient trial. Indeed, both conditions involved the same action sequence, 

encoded in a reliable neural pattern sequence occurring in both condition. These results 

suggest that M2 activity mostly reflected stochasticity in action timing from trial to trial, 

regardless of whether a trial was classified as patient or impatient. We thus concluded that 

the spatiotemporal variability observed in M2 population activity in single trials is consistent 

with a mechanism whereby specific pattern onsets anticipate self-initiated actions.

2.5 Correlated variability generates sequences of metastable attractors

What is a possible circuit mechanism underlying the observed pattern sequences? We aimed 

at capturing three main features of the empirical data: ( I) Long lived neural patterns (0.5s 

on average, Fig. 1f), suggesting they originate from attractor dynamics; ( II) Right-skewed 

pattern dwell time distributions (see Fig. 1f), suggesting that transitions may be noise-driven 

(see e.g., (Gardiner et al. 1985)); ( III) Highly reliable sequences across trials (Fig. 1e and 

Fig. S3). We thus sought a mechanistic model generating reliable sequences of long-lived 

attractors with noise-driven transitions between attractors.

The crucial ingredient driving transitions between patterns in the model entails constraining 

population activity fluctuations along a low-dimensional manifold within a high-dimensional 

of activity space. We achieved this by embedding a low-rank term in the synaptic couplings.

We modeled population activity in M2 as arising from a recurrent network of rate units 

governed by the following dynamics:

τu̇i t = − ui t + ∑
j = 1

N
Jij

Sϕj uj t + ζ t ∑
j = 1

N
Jij

Fϕ uj t , (2.1)
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where ui and ϕi ui  are post-synaptic currents and single-neuron current-to-rate transfer 

functions representing the activity of M2 neurons (fit to the empirical data in M2, Fig. 5a, 

Fig. S7). We hypothesized that patterns originated from p discrete attractors ƞμ, for μ = 1,…, 

p, stored in the symmetric synaptic couplings Jij
S ∝ ∑μ = 1

p f ηi
μ g ηj

μ  (f and g are threshold 

functions, see Methods and (Pereira & Brunel 2018)), consistent with experimental evidence 

supporting discrete attractor dynamics in M2 (Schmitt et al. 2017, Guo et al. 2017, Inagaki 

et al. 2019). Because we sought to generate transitions stochastically, the model operates 

in a regime where the attractors ƞμ were stable in the absence of the second term JF (Fig. 

S7c). Transitions between attractors, giving rise to sequences, originate from the asymmetric 

term Jij
F ∝ ∑μ = 1

p f ηi
μ + 1 g ηj

μ  in (Eq. (2.1)), henceforth referred to as correlated variability 

term. This term generates stochastic dynamics via the noise ζ (t). We will discuss below the 

mechanistic origin of this term.

The correlated variability term constrains population activity fluctuations onto a low-

dimensional manifold within activity space, whose dimension is bounded by the number 

p of attractors, thus much smaller than the number of neurons N. The effect of this term is to 

generate population activity fluctuations which are correlated across neurons. Within a large 

range of parameters (Fig. S7d), the network model met all our objectives: ( I) long-lived 

attractors matching the empirical data (average dwell time in Fig. 5b fit to the representative 

session in Fig. 1) emerging from the network’s collective dynamics; ( II) Right-skewed 

dwell time distributions (Fig. 5c); ( III) highly reliable attractor sequences (in ~ 4% of trials 

the model generates the wrong sequence of patterns, reminiscent of the incorrect trials in 

the empirical data). Since attractors would be stable in the absence of noise ζ (t) (Fig. S7c), 

transitions between attractors were entirely noise-driven in this model.

Furthermore, we found that single-neuron firing rate distributions were heterogeneous (Fig. 

5d), similar to the empirical ones (Fig. 3c). In particular, most neurons participated in the 

sequential dynamics, attaining on average 3.8 ± 0.9 different firing rates across patterns, 

explaining the single-neuron multistability properties observed in M2 neural data (Fig. 5c, 

see also (Mazzucato et al. 2015)). When compared to traditional attractor models with sparse 

activations (Tsodyks & Feigel’man 1988), multistability was accompanied with a more 

dense code Fig. S8. We conclude that metastable attractor dynamics in our model captured 

the lexically stable yet temporally variable features of pattern sequences observed in the 

empirical data.

2.6 Correlated variability originates in a mesoscale feedback loop

The crucial ingredient driving transitions between patterns in the model (see Eq. (2.1)) 

entails restricting fluctuations along a low-dimensional manifold within activity space. We 

achieved this by embedding a low-rank noise term in the synaptic connectivity architecture 

of the neural circuit. What is the circuit origin of these couplings? We found that this low-

rank structure naturally arises from a two-area model, describing a feedback loop between 

a large recurrent circuit representing M2 and a small feedforward circuit (provisionally 

denoted as Y):
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τu̇i t = − ui t + ∑
j = 1

N
Jij

Sϕj uj t + ∑
j = 1

NY
W ij

M2 Y rj, (2.2)

τY ṙi = − ri + ∑
j = 1

N
W ijY M2ϕj uj .

Here, ui represent the activity of M2 neurons (same as in Eq. (2.1)), and ri represent 

activities of neurons in area Y (see model schematic in Fig. 5e). The latter area is smaller 

( NY ≪ N) and faster (τY <τ), and lacks recurrent couplings, suggesting it may correspond 

to a subcortical circuit. The asymmetric term J F in Eq. (2.1), which generates stochastic 

transitions between otherwise stable attractors, originates from the reciprocal couplings 

WY←M 2 and W M 2←Y between M2 and area Y in Sec. 2.6, its temporal dependence 

arising from fluctuations in the synaptic efficacy of the Y → M2 synapses (see Methods 

and Fig. 5e). The reciprocal connections WY←M 2 and WM 2←Y in this two-area model can 

be integrated out when dynamics in area Y are faster than in M2 (τY <τ) (Reinhold et al. 

2015, Jaramillo et al. 2019). The two-area mesoscale model (2AMAN) in Sec. 2.6 is then 

mathematically equivalent to the effective dynamics in Eq. (2.1), whose recurrent couplings 

are augmented to include an asymmetric term JF, inherited from the reciprocal loop. In the 

Methods section we show how the mean and variance of the noise term ζ (t) in Eq. (2.1) 

capture, respectively, the strength and the variability of the couplings in the feedback loop 

between M2 and area Y. Its time dependence arises from fluctuations in the synaptic efficacy 

assuming area Y is small. This variability in the synaptic efficacy may emerge from different 

but not-exclusive cellular mechanisms such as short term plasticity (Tsodyks et al. 1998) or 

stochastic synaptic vesicle release (Dobrunz & Stevens 1997). Network simulations of our 

two-area model confirm our mathematical results (see Fig. 5f).

2.7 Correlated variability is necessary to explain temporal variability in attractor networks

Is it possible to generate the observed pattern sequences with alternative mechanisms, in 

the absence of correlated variability? We varied symmetric ( JS) and asymmetric ( JF) 

synaptic coupling strength but with no noise ( ζ (t) = const in Eq. (2.1)), generating either 

decaying activity, or stable attractors, or sequences of attractors (Fig. S7c). However, all 

these alternative models failed to capture crucial aspects of the data. Namely, dwell times 

distributions were short and they showed no trial-to-trial variability, thus being incompatible 

with the observed patterns (Fig. 1f).

We then attempted to rescue these models by driving the network with increasing levels of 

private noise, namely, external noise, independent for each neuron (Fig. S8d, see Methods). 

This led to small amounts of trial-to-trial variability in dwell times, but was still qualitatively 

different from the empirical data. Increasing the private noise level beyond a critical value 

destroyed sequential activity (Fig. S8e).

We reasoned that the difficulty in generating long-lived, right-skewed distributions of dwell 

times in this alternative class of models was due to the fact that transitions were not 
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driven by noise, but by the deterministic asymmetric term JF. Adding private noise did not 

qualitatively change variability, due to the high dimensionality of the stochastic component. 

Private noise induces independent fluctuations in each neuron; however, in order to drive 

transitions from one attractor to the next one within a sequence, these fluctuations have to 

align along one specific direction in the N-dimensional space of activities. The probability 

that independent fluctuations align in a specific direction vanishes in the limit of large 

networks, explaining why in the private noise model transitions cannot be driven by noise. 

We thus concluded that correlated variability, in the context of attractor networks, was 

necessary to reproduce the right-skewed distribution of pattern dwell time observed in the 

data.

2.8 Low-dimensional variability of M2 pattern sequences

Our recurrent network model (see Eq. (2.1)) entails a specific hypothesis for the mechanism 

underlying the observed sequences: transitions between consecutive attractors are generated 

by correlated variability. We reasoned that, if this was the mechanism at play in driving 

sequences, then two clear predictions should be borne out in the neural population data. 

First, the correlated variability term in Eq. (2.1) predicts that population activity fluctuations 

within a given pattern (color-shaded intervals in Fig. 5b), henceforth referred to as “noise 

correlations”, lie within a subspace whose dimension is much smaller than that expected 

by chance (Fig. 6a, dimensionality in the model vs. shuffled surrogate dataset, ranksum 

test, p < 10−15). Second, the sequential structure of the correlated variability term in Eq. 

(2.1) implies that noise correlation directions for attractors that occur in consecutive order 

within a sequence should be co-aligned. A canonical correlation analysis showed that in 

the correlated variability model the alignment across attractor (measured using the top K 
principal components of the noise correlations, where K is its dimensionality) was much 

larger than expected by chance (Fig. 6b, alignment in the model vs. shuffled surrogate 

dataset, ranksum test, p < 10−5). More specifically, we found that the strongest alignment 

occurred between consecutive patterns within a sequence, compared to those occurring 

further apart (Fig. 6b and Fig. S9, ranksum test, p < 10–20).

Having established strong statistical features regarding low-dimensional, aligned noise 

correlations, we tested whether the structure of correlations predicted by the model was 

observed in the M2 neural ensemble data. We defined noise correlations in the empirical 

data as population activity fluctuations around each neural pattern inferred from the HMM 

fit (Fig. 6a). Applying the same analyses to the data that were run on the model, we found 

that indeed empirical noise correlations around each neural pattern had lower dimension 

than expected by chance, and closely matched the dimensionality predicted by the model 

(Fig. 6a). CCA further revealed that noise correlations were highly aligned between 

patterns, significantly above the alignment expected by chance (Fig. 6b, rank-sum test p 
= 1.70×10−4). Finally, directions of variability were more aligned between consecutive 

patterns, compared to patterns further apart in the sequence, (rank-sum test, p < 10−14; see 

Fig. 6c and Fig. S9). Thus, the features of the noise correlations in the neural ensemble data 

were strongly consistent with the predictions from the correlated variability model.
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3. Discussion

Our results establish a correspondence between self-initiated actions and discrete pattern 

sequences in secondary motor cortex (M2). We found that population activity in M2 during a 

self-initiated waiting task unfolded through a sequence of patterns, with each pattern reliably 

predicting the onset of upcoming actions. We interpreted the observed patterns as metastable 

attractors emerging from the recurrent dynamics of a two-area neural circuit. The model 

was capable of robustly generating reliable sequences of metastable attractors recapitulating 

the properties of the dynamics found in the empirical behavioral and neural data. We 

propose a neural mechanism explaining the variability in attractor dwell times as originating 

from correlated variability in a two-area model. The model predicts that population activity 

fluctuations around each attractor (i.e., “noise correlations”) are highly aligned between 

attractors and constrained to lie on a low-dimensional subspace, and we confirmed these 

predictions in the empirical neural (M2) data. Our work establishes a mechanistic framework 

for investigating the neural underpinnings of self-initiated actions and demonstrates a novel 

link between correlated variability and attractor dynamics.

3.1 Evidence for discrete attractor dynamics in cortex

Attractors are characterized by long periods where neural ensembles discharge persistently 

at approximately constant firing rate (defining a neural pattern) punctuated by relatively 

abrupt transitions to a different relatively constant pattern. Evidence for attractors was 

reported in temporal (Fuster & Jervey 1981, Miyashita 1988) and frontal areas in primates 

(Fuster & Alexander 1971, Funahashi et al. 1989) and rodents (Erlich et al. 2011, Schmitt 

et al. 2017, Guo et al. 2017, Inagaki et al. 2019), and in rodent sensory cortex (Jones et al. 

2007, Ponce-Alvarez et al. 2012, Mazzucato et al. 2015).

Experimental evidence for stimulus-driven sequences of metastable attractors was previously 

found in primate frontal areas (Gat & Tishby 1993, Abeles et al. 1995, Seidemann et al. 

1996) and rodent sensory areas (Jones et al. 2007). Random sequences were also observed 

during ongoing periods (Mazzucato et al. 2015, 2016, Engel et al. 2016). In all those 

cases, and consistent with our results, state dwell times showed large trial-to-trial variability 

captured by Markovian dynamics (i.e., right-skewed distributions), suggesting an underlying 

stochastic process driving transitions (Miller & Katz 2010, Mazzucato et al. 2015, 2019). A 

novel feature of our results is that the reliable sequence of metastable attractors is not driven 

by external stimuli, but rather is internally generated.

3.2 Neural circuits underlying pattern sequences

The main features of M2 ensemble activity explained by our network models were the 

reliable identity and order of long-lived neural patterns occurring in a sequence, and the 

large trial-to-trial variability of pattern dwell times. Both features can be robustly attained 

when transitions between attractors arise from correlated variability. For an extended 

comparison with other mechanistic models of attractor sequences see Table S1.

How does our two-area mesoscale attractor network (2AMAN) model architecture map 

onto specific neural circuits? Previous work showed, using inactivation experiments, that 
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the stochastic component in action timing variability originated in M2 (Murakami et al. 

2017). Our 2AMAN model relies on a small and fast network lacking recurrent couplings, 

representing a subcortical circuit connected to M2, such as the areas that comprise its basal 

ganglia or thalamic nuclei, as suggested by recent perturbation experiments (Guo et al. 

2017, Schmitt et al. 2017). Although a larger mesoscale network may underlie sequence 

generation, including cortex, thalamus, and basal ganglia (Kawai et al. 2015, Hélie et al. 

2015, Desmurget & Turner 2010, Nakajima et al. 2019, Markowitz et al. 2018, Murray et al. 

2017, Nakajima et al. 2019, Kao et al. 2005) or a distributed mesoscale network (Svoboda & 

Li 2018).

A large amount of evidence implicated preparatory activity in rodent M2, specifically the 

anterolateral motor cortex, in action and movement planning both in forced-choice tasks 

(Erlich et al. 2011, Li et al. 2015, Chen et al. 2017, Sul et al. 2011, Inagaki et al. 2019, 

Guo et al. 2014) as well as self-initiated tasks (Murakami et al., 2014, 2017). The pattern 

sequences we uncovered in M2 were consistent with the features of preparatory activity (Jin 

& Costa 2015): a precise dictionary linked specific patterns to actions; pattern onset reliably 

predicted action onset; and action timing variability strongly correlated with pattern onset 

variability.

3.3 Correlated variability in sensory vs. motor processing

The main conceptual innovation in our 2AMAN model is the introduction of low-

dimensional correlated variability driving reliable sequences with variable timing. Similar 

“motor noise correlations” have been recently reported during vocal babbling in juvenile 

songbirds (Darshan et al. 2017). Low-dimensional correlated variability has been widely 

reported in sensory cortex, where it may carry information about the animal’s behavioral 

state (McGinley et al. 2015, Cohen & Maunsell 2009, Huang et al. 2019) or movements 

(Niell & Stryker 2010, Polack et al. 2013, Stringer et al. 2018, Musall et al. 2019, Salkoff et 

al. 2019). It has been proposed that low-dimensional correlated variability in sensory cortex 

may be detrimental to sensory processing as it may limit a network’s information processing 

capability (Moreno-Bote et al. 2014). Here, we found that low-dimensional correlated 

fluctuations in a motor area are the crucial mechanism enabling neuronal sequences to 

unfold with variable timing. It is likely that variable timing is an adaptive feature of motor 

behavior to avoid predation or competition, or to explore the temporal aspects of a given 

behavior independently of the choices of actions. We speculate that exploration could allow 

learning of proper timing by a search in timing space independent of action selection and 

vice-versa, as may be the case in songbirds (Kao et al. 2005, Goldberg & Fee 2011, Darshan 

et al. 2017). Our results thus suggest that low-dimensional correlations are essential for 

motor generation.

3.4 Action timing variability and M2 activity

Here, we provided new evidence suggesting that M2 is involved in generating self-initiated 

actions and, crucially, show how variability in M2 population dynamics could generate the 

variability in self-initiated behavior. Our previous studies showed that most of the variance 

in waiting times of impatient trials is of stochastic origin, although a small fraction is of 

deterministic origin and could be interpreted as a trial-history-dependent bias in waiting 
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times (Murakami et al. 2014, 2017), likely originating in the prefrontal cortex (PFC). 

Waiting time itself, however, was encoded only in M2 activity but not in PFC, consistent 

with the parsimonious hypothesis that the stochasticity in waiting time originates in a circuit 

that includes M2 itself. These results thus provide strong evidence for our interpretation 

that M2 circuits are directly involved in the decision of which action to plan and when 

to act, generating the stochasticity in self-initiated action timing. More generally, these 

results support a combined PFC-M2-subcortical picture leading to the decision to act: 

PFC providing a deterministic choice bias, which is translated into an actual choice signal 

by a downstream circuit including M2, injecting stochastic trial-to-trial variability via a 

subcortical feedback loop.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be 

directed to and will be fulfilled by the Lead Contacts, Zachary Mainen 

(zmainen@neuro.fchampalimaud.org) and Luca Mazzucato (lmazzuca@uoregon.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The code for simulating the network model is available 

at the following GitHub repository https://github.com/ulisespereira/sequences-attractors-M2. 

Data or data analysis scripts are available upon reasonable request from the lead contacts.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures involving animals were either carried out in accordance with US National 

Institutes of Health standards and approved by Cold Spring Harbor Laboratory Institutional 

Animal Care and Use Committee or in accordance with European Union Directive 

86/609/EEC and approved by Direção-Geral de Veterinária. Experiments were performed on 

37 male adult Long-Evans hooded rats. Rats had free access to food, but water was restricted 

to the behavioral session and 20–30 additional min per day. Animals were involved in 

previous procedures.

Behavioral task—Rats were trained on the self-initiated waiting task (Fig. 1a) in a 

behavioral box containing a Wait port at the center and a Reward port at the side (entry/ 

exit from ports were detected via infrared photo-beam). Rats self-initiated a trial by poking 

into the Wait port (“Poke In”). If the rat stayed in the Wait port for T1 delay (0.4s), the 

first tone played (tone 1; 6 or 14 kHz tone), signaling availability of reward in the Reward 

port. If the rat waited in the Wait port after tone 1, then tone 2 was played after a T2 delay 

(14 or 6 kHz, different from tone 1). If the rat visited the Reward port after tone 2, a large 

water reward (40 μl) was delivered after a 0.5s delay (patient trial). If the rat poked out 

after tone 1 but before tone 2, and visited the Reward port, a small water reward (10 μl) 

was delivered after a 0.5s delay (impatient trial). The rat had to visit the Reward port within 

2s after the poke out to collect rewards. These trials were referred to as “correct trials;” 

trials were the animal performed different action sequences were deemed “incorrect trials.” 

Recanatesi et al. Page 13

Neuron. Author manuscript; available in PMC 2023 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ulisespereira/sequences-attractors-M2


If the rat poked out before tone 1, no rewards were made available. Re-entrance to the 

Wait port was discourage with a brief noise burst. T2 delay was drawn from an exponential 

distribution, with minimum value 0.7s and mean adjusted to achieve patient trials in one 

third of the session. After reward delivery, an inter-trial interval (ITI) started during which 

white noise played. The time from the Poke In to the ITI end was held constant, so that the 

rat could not increase reward collection by leaving the Wait port fast with the goal to start 

the next trial early. The optimal strategy was thus to always wait for tone 2. To test whether 

neuronal responses depended on a specific action, 3 rats were trained on two variants of the 

task. In these experiments, a different behavioral box contained a Reward port, a nose-poke 

Wait port, and a lever-press Wait port. Blocks of nose-poke trials and lever-press trials were 

interleaved in each session. In the nose-poke block, the rat was to perform the same task as 

above. In the lever-press block, task rules were the same but the rat had to wait for the tones 

by keeping the lever pressed. The wrong action (nose-poke waiting in the lever-press block 

and vice versa) was not rewarded and classified as “incorrect trials.” 5 animals were trained 

on only the delay variant of the task. 3 animals where trained on both variants (delay and 

lever). We restricted the statistics of recordings to sessions where 6 or more neurons were 

simultaneously recorded. Upon applying such criteria a total of 33 sessions including 33 

delay blocks and 21 lever blocks were analyzed across 8 animals. Each block last for 70–100 

trials. Transitions between the blocks were not signaled. 33 sessions (7 rats) were recorded, 

see (Murakami et al. 2014) for extensive details.

Electrophysiological data—Rats were implanted with a drive containing 10–24 movable 

tetrodes targeted to the M2 (3.2–4.7 mm anterior to and 1.5–2.0 mm lateral to Bregma). 

Electrical signals were amplified and recorded using the NSpike data acquisition system 

(L.M. Frank, University of California, San Francisco, and J. MacArthur, Harvard University 

Electronic Instrument Design Lab). Multiple single units were isolated offline by manually 

clustering spike features derived from the waveforms of recorded putative units using 

MCLUST software (A.D. Redish, University of Minnesota). Tetrode depths were adjusted 

before or after each recording session in order to sample an independent population of 

neurons across sessions. See (Murakami et al. 2014) for details.

METHOD DETAILS

Pattern sequence estimation—A Hidden Markov Model (HMM) analysis was used to 

detect neural pattern sequences from simultaneously recorded activity of ensemble neurons. 

Here, we briefly describe the method used and refer to Refs.(Mazzucato et al. 2015, 2019) 

for details. According to the HMM, the network activity is in one of M hidden “patterns” 

at each given time. A pattern is a firing rate vector ri (m) (the “emission matrix”, Fig. 1c), 

where i = 1,…, N is the neuron index and m = 1,…, M identifies the pattern. In each 

pattern, neurons discharge as stationary Poisson processes conditional on the pattern’s firing 

rates ri (m). Stochastic transitions between patterns occur according to a Markov chain 

with transition matrix (TPM, Fig. 1c) Tmn, whose elements represent the probability of 

transitioning from pattern m to n at each given time. We segmented trials in 5 ms bins, and 

the observation of either yi (t) = 1 (spike) or yi (t) = 0 (no spike) was assigned to a bin at 

time t for the i-th neuron (Bernoulli approximation); if in a given bin more than one neuron 

fired, a single spike was randomly assigned to one of the active neurons. A single HMM was 
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fit to all correct trials per session, yielding emission probilities and transition probabilities 

between patterns, optimized via the Baum-Welch algorithm with a fixed number of hidden 

patterns M (iterative maximum likelihood estimate of parameters and latent patterns given 

the observed spike trains).

The number of patterns M is a model hyperparameter, optimized using the following model 

selection procedure (Engel et al. 2016). In each session, we used K-fold cross-validation 

(with K = 20) to train an HMM on (K –1) – folds and estimate the log-likelihood of the 

held-out trials LL (M) as a function of number of patterns M in the fit (see Fig. S2). The 

held-out LL (M) increases with M, until reaching a plateau. We selected the number of 

patterns M * for which the incremental increase LL (M +1) – LL (M) had the largest drop 

(the point of largest curvature) before the plateau (Satopaa et al. 2011a). For control, we 

performed model selection using an alternative method, the Bayesian Information Criterion 

(Mazzucato et al. 2019), obtaining comparable results (not shown).

To gain further insight into the structure of the model selection algorithm, we performed a 

post-hoc comparison between the parameters optimized on the training set for each value of 

M (number of patterns), across the cross-validation K-folds. In particular, we estimated the 

similarity between the optimized features (emission ri
k1 m  and transition matrices Tmm

k1 ) in 

the k1 -th fold and the k2 –th fold for given M, according to the following congruence C (k1, 

k2) measure (Tomasi & Bro 2006):

C k1, k2 = ∑
m = 1

M
∑

i = 1

N
ri

k1 m ri
k2 m ⋅ ∑

m, n = 1

M
Tmn

k1 T mn
k2

where N is the ensemble size, r i
k m = ri

k m / r k m 2 is the normalized emission for 

pattern m, and T mn
k  is the normalized transition matrix T mn

k = Tmn
k / T k

2. Features were 

matched across folds using the stable matching algorithm (Gale & Shapley, 2013). If the 

two folds yielded identical parameters, one would find C (k1, k2) = 1. A congruence 

above 0.8 signals good quantitative agreement between different folds, whereas congruence 

below 0.6 suggests a poor similarity among folds (Williams et al. 2018). We calculated 

the average congruence across all fold pairs for given M and verified that the number M 
* of patterns selected with the cross-validation procedure above corresponded to the elbow 

in the congruence curve (see Fig. S2a). For larger number of patterns, average congruence 

typically fell below 0.8.

The Baum-Welch algorithm only guarantees reaching a local rather than global maximum 

of the likelihood. Hence, for each session, after selecting the number of pattern M * as 

above, we ran 20 independent HMM fits on the whole session, with random initial guesses 

for emission and transition probabilities, and kept the best fit for all subsequent analyses. 

The winning HMM model was used to infer the posterior probabilities of the patterns at 

each given time p (m, t) from the data. Only those patterns with probability exceeding 

80% in at least 50 consecutive ms were retained (henceforth denoted simply as patterns, 

Fig. 1d). This procedure eliminates patterns that appear only very transiently and with low 

Recanatesi et al. Page 15

Neuron. Author manuscript; available in PMC 2023 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probability, also reducing the chance of over-fitting. Pattern dwell time distributions (Fig. 

1f) within each session were estimated from the empirical distribution of interval times 

where a pattern’s probability was above 80%. Lowering the value of 50ms would extend the 

distribution of pattern dwell times towards zero (cf. Fig. 1f) reducing the mean of such a 

distribution, although the characteristic tail and long transitions would remain as a hallmark 

of the underlying neural processes.

HMM robustness to neural population subsampling—We compared the HMM 

analysis of the full empirical dataset with two datasets obtained by removing specific 

neurons in each session. The two datasets were obtained as follows. For each session we 

computed the average firing rate for each neuron across all trials without taking HMM states 

into account, Fig. S4b. Then in one case (first dataset) we removed the neuron with the 

highest firing rate and run the HMM analysis again, this is labelled ”high” in Fig. S4c. 

In the second case we removed the neuron with median firing rate and similarly run the 

HMM analysis, ”median” case in Fig. S4d. Examples of the outcome of the HMM fit on the 

example session excluding respectively the top firing and median firing neuron are shown in 

Figs. S4c to S4d. The HMM fits to the subsampled statistics were in astounding agreement 

with the HMM fit to the full population underscoring the robustness of the HMM method 

even for small population sizes. In our statistics the average number of neurons per session 

was 9.9 ± 3.3. This robustness was captured by several metrics Figs. S4e to S4f. The number 

of states individuated selected by the HMM was remarkably similar across all sessions Fig. 

S4e, both concerning the number of states selected by our crossvalidation procedure and 

the number of states retained by our selection criteria, cf. Methods 4.3. Similarly properties 

related to the sequence of states (i.e., number of states per sequence, average state duraction 

and fraction of time for each trial occupied by states with a 80% posterior probability) were 

all remarkably similar with no significant difference across all sessions Fig. S4f.

Comparison with surrogate datasets—We compared the HMM analysis of the 

empirical dataset with two surrogate datasets, obtained with the following shuffled 

procedure (Fig. 2, (Maboudi et al. 2018)). In the “circular” shuffle, each neuron’s 

binned spike counts were circularly shifted within-trial randomly (row-wise circular shift), 

preserving autocorrelations but destroying pairwise correlations. In the “swap” shuffle, 

packets of binned population spike counts were randomly permuted in time (column-wise 

swap), preserving pairwise correlations but reducing autocorrelations. Each packet consisted 

of 10 binned spikecount vectors amounting to a total time of 50ms as each bin was of 5ms. 

For comparison of the real dataset with shuffled ones, we adopted the same K-fold cross-

validation procedure as above, where an HMM was fit on training sets and the posterior 

probabilities p (m, t) of patterns were inferred from observations in the held-out trials (test 

set).

From the pattern posterior probabilities inferred on held-outs, we estimated several 

observables for comparison between real and shuffled datasets. Pattern detection confidence 

was estimated as the fraction of a trial length where a pattern was detected with high 

confidence ( p (m, t) > 80%).
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Sparseness of transitions was estimated as the average Gini coefficient of TPMs obtained 

from the K training sets. The TPM returns the probability for a transition between two 

patterns to occur (see Sec. S4.3), therefore a sparser TPM suggests a more robust sequence 

unfolding. We also estimated the across-trials sequence similarity as follows. In a trial where 

patterns were detected above 80% in a certain consecutive order, we compiled a “symbolic” 

TPM, whose diagonal element Tmm
sym  were set equal to the number of non-consecutive 

occurrences of pattern m, and off-diagonal element Tmn
sym  was set equal to the number of n 

→ m transitions observed; finally each row was normalized: Tmn
sym Tmn

sym /∑l = 1
N Tml. E.g., 

the pattern sequence 1, 2, 3,1, 2 is in one-to-one correspondence to the symbolic TPM

sequence 1,2,3,1 Tmn
sym =

0.67 0.33 0
0 0.5 0.5

0.5 0 0.5
.

Sequence similarity was defined as the trial-averaged Pearson correlation between T (sym).

In the data, we define the overlaps q between N-dimensional vectors ri and si describing 

inferredpatterns as the correlation coefficient

q r, s = 1
N ∑

i = 1

N
risi

σ r σ s ,

where σ (r) is the standard deviation of r i.

Single neuron multistability—To assess how single-neuron activity was modulated 

across different patterns, local (i.e., single-trial) firing rate estimates for neuron i given a 

pattern m were obtained from the maximization step of the Baum-Welch algorithm

ri m = − 1
dt log 1 −

∑t = 1
T p m, t yi t
∑t = 1

T p m, t
, (3.1)

Where yi (t) are the neuron’s observations in the current trial of length T. To determine 

whether a neuron’s conditional firing rate distributions differed across patterns (Fig. 3c), 

we performed a non-parametric one-way ANOVA (unbalanced Kruskal-Wallis, p¡0.05). 

A post-hoc multiple-comparison rank analysis (with Bonferroni correction) revealed the 

smallest number of significantly different firing rate distributions across patterns. Given a p 

value pmn for the pairwise post hoc comparison between patterns m and n, we considered the 

symmetric M × M matrix S with elements Smn = 0 if the rates were different ( pmn < 0.05 / 

M) and Smn = 1 otherwise. For example, consider the case of 3 patterns and the following S 

matrix, where patterns were sorted by firing rates:
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S =
⋅ 1 0
⋅ ⋅ 0
⋅ ⋅ ⋅

.

Firing rates of patterns 1 and 2 were not significantly different, but they were different from 

pattern 3 firing rate. Hence, in this case we classified the neurons as multistable with 2 

different firing rates across patterns (Mazzucato et al. 2015).

Tagging pattern onsets to self-initiated actions—The HMM analysis yields a 

posterior probability distribution p (m, t) for the neural pattern m at time t. At any time 

t  we identified the active pattern m when p m, t ≥ 0.8. When this criterion was not met by 

any pattern then no pattern was assigned, cf. Fig. 1d. The onset time of a specific pattern m
was identified as the first time t  where p m, t ≥ 0.8. Transitions of several patterns appeared 

in close proximity to specific events (Fig. 4a), we thus developed a method to tag pattern 

onsets to specific events. Specifically we tagged onset of a given pattern with one of three 

actions (Poke In, Poke Out, Water Poke In, respectively, for poking in and out of the Wait 

port and poking in to the Reward port) with the following procedure. For each session we 

analyzed all correct trials. We first realigned trials to the specific event recomputing the 

times of occurrences of all pattern onsets with respect to the event. In each session we 

analyzed all transitions to patterns which occurred in at least 70% of correct trials. This 

returned a distribution of times T m  for the onset times of pattern m.

If the average of the distribution μ T m ∈ −0.5, 0.1 sec, we tagged the pattern m to the 

event. When multiple transitions matched our criteria, we selected the one with minimum 

inter-quartile iqr T m . This procedure returned patterns tagged with specific actions for 

each trial (cf. Fig. 4c) and tagged one or more patterns in 82% of the sessions. Wherever a 

pattern was tagged it appeared on average in 90% of the session’s trials. We name pattern 

onset times {tPI, tPO, tWPI } respectively for the actions Poke In, Poke Out and Water Poke 

In.

Decoding actions from pattern onsets—We reversed the pattern tagging procedure to 

decode actions from pattern onsets. Transitions were tagged to actions using correct trials 

(training set) using the procedure above, then actions were decoded from pattern onsets 

using incorrect trials (test set). The decoding procedure follows these steps: for every trial, 

given an action time taction and the tagged pattern onset times te ∈ tPI, tPO, tW PI , we 

classified the action according to

action = argmin
action ∈ PI, PO, W PI

taction − te if taction − te ∈ −0.5, 0.1 sec .

When no patterns passed this criteria the action was not labelled. This procedure labelled 

63% of all actions. This procedure labelled 63% of all actions (at least one pattern was 

tagged to actions in 82% of the sessions). Whenever a pattern was tagged to an action, the 

pattern appeared in 90% (on average) of the session’s trials. The tagging procedure was 

therefore robust, and we believe that it could significantly improved in future experiments 
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with the availability of larger populations of simultaneously recorded neurons. For each 

session and all tagged actions we estimated a confusion matrix of our decoding procedure 

(cf. Fig. 4c) by comparing the true actions (rows of the confusion matrix) with their 

predicted labels (columns of the confusion matrix). The confusion matrix across all sessions 

was obtained by averaging confusion matrices for individual sessions. In order to show, in 

our analysis, the statistics of non-classified actions despite tagged states being present in the 

trial, we performed a second analysis. We limited the statistics of sessions and trials to those 

where all three actions had corresponding tagged patterns. In such sessions each tagged 

transition could be misclassified with a different action or with no action at all. Thus, it was 

possible to uniformly report the statistics comparing the relative occurrence of the prediction 

of an action versus no-action; confusion matrices for these reduced statistics are reported in 

Fig. S6d.

Noise correlation analysis—To assess trial-to-trial variability in population activity we 

measured the neural dimensionality of population activity fluctuations around each pattern. 

We first estimated the noise covariance Cij (m), namely, the covariance conditioned on 

intervals where pattern m occurred (the time window with posterior probability ≥ 80% in 

each trial):

C m ij = 1
NT

∑
a

NT
ria m rj

a, T m − 1
NT

∑
a

NT
ria m 1

NT
∑

a

NT
rj

a, T m , (3.2)

where NT is the number of trials in the session and i, j = 1,…, N index neurons. The 

superscript T denotes vector transposition. In each trial a and window the average firing rate 

ria m  in pattern m was computed from eq:hmmrate. We then computed the dimensionality d 

(m) of population activity fluctuations around pattern m as the participation ratio (Abbott et 

al. 2011, Mazzucato et al. 2016):

d m = Tr C m 2

Tr C m 2 =
∑i

N λi
2

∑i
N λi

2 , (3.3)

where λi are the eigenvalues of the covariance matrix for i = 1,…, N neurons (Abbott et al. 

2011, Mazzucato et al. 2016). This measure is bounded by the ensemble size N and captures 

the number of directions, in neural space, across which variability is spread over.

To test the hypothesis that trial-to-trial variability is constrained within a lower dimensional 

subspace, we proceeded as follows. For each neural pattern m, we considered the first 

K Principal Components {PC1,…, PCK }m of C (m) in methods:cm, where K is the 

integer minor or equal to the average of d (m) across the M patterns within each session: 

K = floor 1
M ∑m = 1

M PRm . This represents the across-patterns average dimensionality of 

noise correlations within a session. Using a Canonical Correlation Analysis we then 

estimated the canonical variables between PC1, …, PCK m1 and PC1, …, PCK m2 for pairs 

of patterns m1 and m2, obtaining the respective correlation coefficients ρ/j between the K 
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canonical variables, j ∈ {1..K}. Alignment A(m1, m2) was then defined as the average 

correlation coefficient between the canonical variables A m1, m2 = 1
K ∑j = K

N ρj, cf. Fig. 6b.

To compute the shuffled statistics for Fig. 6 and similar, we proceeded as follows. 

In the case of the dimensionality (Fig. 6a) we created random ensambles of pattern 

activities by shuffling (using random permutations) neural activities within a session 

across all patterns and neurons. In the case of the of the pattern alignment (Fig. 6b) 

we computed the shuffled statistics by computing canonical correlation coefficients not 

between top principal components of two patterns (as many as individuated by the average 

dimensionality described above in each session) but rather between random principal 

components directions. In such a way the plots highlight how top principal components of 

pattern correlations are aligned between two patterns against the null hypothesis of random 

alignment between any two principal components of the same patterns.

Firing rate modulations by stimuli and conditions

Single cell responses to tones.: To estimate single neuron responses to the tone we 

performed a t-test for responses of individual neurons before and after the two tones from 

the spike count vector, across trials, before and after the sensory stimulus in a window of 

50ms. We retained only trials where no other event (e.g., Poke Out) was present within a 

100ms window from the onset of the stimulus.

Decoding of condition.: We sought to decode patient vs impatient trials from the time 

course of neural activity. We started by computing spikecount vectors binning spikes 

of neural activity through a non-overlapping moving window of 50ms. In each trial we 

considered the neural activity from 1sec before Poke In until 1.5sec after Water Poke In. 

We then labelled each spikecount vector respectively as ”patient” or ”impatient” if they 

belonged to a trial where the animal displayed the corresponding behavior. Finally we used 

a neural classifier (linear or SVM) trained on all spikecount vectors (Fig. S6f). In the SVM 

case several kernels yielded similar results, displayed are results for a Gaussian kernel.

GPFA fit to neural data—A Gaussian Process Factor Analysis (GPFA (Byron et 

al. 2009)) represents a continuous latent space model where hidden factors underlying 

the dynamics smoothly unfold through time giving rise to neural activity. GPFA posits 

that population activity is generated by an underlying continuous and low dimensional 

Gaussian process. By its nature, the GPFA aims to fit a continuous latent trajectory to 

population activity, as opposed to the HMM’s discrete nature of sudden transitions between 

long-dwelling states. Although this hypothesis may theoretically provide an alternative 

explanation for our results, we discovered that the time course of the GPFA latent factors 

closely matched the HMM discrete pattern sequences.

The number of latent variables Nfactors for each session was identified by means of a 

3-fold crossvalidation procedure and selected by means of choosing the point of maximum 

curvature in the crossvalidation curve, identically to the criterion used to identify the number 

of HMM states. Here we used the knee locator algorithm described in (Satopaa et al. 2011b) 
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with sensitivity parameter s = 1. Once the number of latent variables was assessed for each 

session, a GPFA model with the corresponding number of variables was fit.

The application of the GPFA method resulted in a time series for each of the Nfactors in each 

trial which were underlying neural dynamics. These time series are displayed in Fig. S5a for 

the example session considered in Fig. 1b to Fig. 1e. To aid visualization, for each factor (in 

each of the top 5 panels) we time warped the temporal dynamics in each trial to visualize it 

across all trials of the session. The characteristic trend of latent factors in this session shows 

how the onset of different actions is characterized by strong modulations of a subset of latent 

factors, capturing sudden changes in the neural dynamics they fit. This hints to a discrete 

rather than continuous feature of the latent space underlying neural dynamics. We visualized 

the trajectory of latent factors in their PC space Fig. S5b confirming a similar signature. The 

marginal distribution of PC 1 and PC 2 are shown in the plots at margin.

Network model—In this section we describe the correlated variability model generating 

reliable sequences of metastable attractors (see Eq. (2.1)), whose dynamics is ruled by the 

current-based formulation of the standard rate model (Grossberg 1969, Miller & Fumarola 

2012):

τu̇i t = − ui t + ∑
j = 1

N
Jij

Sϕj uj t + ζ t ∑
j = 1

N
Jij

Fϕj uj t . (3.4)

The firing rates are analog positive variables given by the transformation of synaptic 

currents to rates by the input-output transfer function ϕi (ui). Transfer functions ϕi were 

inferred from the empirical firing rate distribution of M2 single neurons (see below 

inferring_transfer_function). The parameter τ corresponds to the single neuron time 

constant. We set the M2 symmetric connectivity to be sparse (Mason et al. 1991, Markram 

et al. 1997, Holmgren et al. 2003, Thomson & Lamy 2007, Lefort et al. 2009). Our 

connectivity consists of two terms, traditionally referred to as the symmetric term Jij
S and the 

asymmetric term Jij
F  (Domany et al. 1995). The symmetric term reads

Jij
S = cijAS

Nc ∑
μ = 1

p
f ηi

μ g ηj
μ , (3.5)

where t he variable cij represents the structural connectivity of the M2 local circuit, modeled 

as an Erdos-Renyi graph where cij = 1 with probability c. The normalization constant Nc 

corresponds to the average number of connections to a neuron; AS is the overall strength 

of the symmetric term. For any nonzero synaptic connection (i.e., cij = 1), the strength of 

the synaptic weight is given by 
AS
Nc ∑μ = 1

p f ηi
μ g ηj

μ . The variables ηj
μ are distributed as 

ηj
μi . i . d .ϕ zi

μ , where zi
μ are normally distributed, i.e., zj

μi . i . d .N 0, 1 . The functions f and g 

are given by the step functions
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f η =
qf if xf ≤ η

− 1 − qf if η ≤ xf
, g η =

qg if xg ≤ η
− 1 − qg if η ≤ xg

(3.6)

Therefore, the pair of binary random patterns f ηi
μ  and q ηi

μ  are correlated. We assume that 

g = 0, which constrains one of the two parameters of g. This constrain does not apply to 

f (i.e., f = 0), and in our model the function f is biased towards inhibition (i.e., f < 0). 

While Jij
S is symmetric only if f = g, we choose to keep the terminology ‘symmetric’ for this 

term for consistency with early work in networks of binary neurons (Sompolinsky & Kanter 

1986, Kleinfeld 1986, Herz et al. 1989, Domany et al. 1995).

The correlated variability term ζ t ∑j = 1
N Jij

Fϕ uj t  in Eq. (3.4) is comprised by the 

asymmetric matrix Jij
F  which is is given by

Jij
F = 1

N ∑
μ = 1

p
f ηi

μ + 1 g ηj
μ , (3.7)

where the rank p of the matrix Jij
F  is much lower than the number of neurons N in the 

network. Hence, this term induces low-dimensional correlated fluctuations across neurons, 

driven by the Ornstein-Uhlenbeck process ζ (t) given by

τζζ̇ t = − ζ t + ζ + 2σζ
2τζx t , (3.8)

where τζ, ζ and σζ
2 are the timescale, mean and variance of the process, respectively. For a 

derivation of these parameters see the next section.

In Sec. 2.7, we compared the correlated variability model (see Eq. (3.4)) to a private noise 
model

τu̇i t = − ui t + ∑
j = 1

N
Jij

Sϕj uj t + ζ ∑
j = 1

N
Jij

Fϕj uj t + 2σp2τχi t , (3.9)

where term 2σp2τχi t  is additive white Gaussian noise with mean zero and variance σp
representing private noise, independently drawn for each neuron. Here, the asymmetric part 

of the synaptic couplings is constant, proportional to the parameter ζ, unlike the time varying 

asymmetric term in Eq. (3.4).

As a measure of the pattern retrieval (Fig. 5), we used overlaps, defined as the Pearson 

correlation between the instantaneous firing rate and the nonlinear transformation of a given 

pattern g η l  (Pereira & Brunel, 2018; Gillett et al., 2020)
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ml t =
Cov g η l r t

V ar g η l V ar r t
. (3.10)

Two-area mesoscale model—In this section, we show how to obtain the network model 

in Eq. (2.1), starting from the two-area network in Sec. 2.6, whose dynamics is governed by

τu̇i t = − ui t + ∑
j = 1

N
Jij

Sϕj uj t + ∑
j = 1

NY
W ij

M2 Y rjY (3.11)

τY ṙiY = − riY + ∑
j = 1

N
W ijY M2ϕj uj .

In Fig. 5e a schematic of the two-area network model is shown. The first equation describes 

the dynamics of N neurons in area M2, with the notations as in Eq. (3.4). The second term 

represents the firing rates riY  of NY neurons in area Y, where we assume NY ≪ N. We 

approximate area Y dynamics as linear. The projections W ij
Y M2 from M2 to area Y are 

structured similarly as M2 recurrent connections in Eq. (3.5), i.e.,

W ij
Y M2 = AY M2

N ∑
μ = 1

p − 1
f yi

μ g ηj
μ , (3.12)

although there are two important differences. First, since the number of neurons in M2 and 

area Y are N and NY respectively, then W ij
Y M2 is a rectangular matrix with dimensions 

NY×N. Second, projections from Y to M2 are dense. The right vectors in the outer product 

inside the sum in Eq. (3.12), g ημ , are the same vectors as the right vectors in the Eq. (3.5). 

The left vectors in the outer product g yi
μ  are different than g ημ , but have the same statistics 

than ηi
μ, i.e. yi

μi . i . d .ϕ zi
μ  where zi

μ, are normally distributed zi
μi . i . d .N 0, 1 . Therefore, when 

M2 activity is in the μth attractor, since the μth overlap is order one, the activity is mostly 

projected along the g yi
μ  direction in area Y. The parameter AY ←M 2 corresponds to the 

overall strength of the M 2 → Y projections.

We assume the activity of area Y is fast with respect to M2 τY ≪ τ , replacing Sec. 3.4 by its 

steady state

riY = ∑
j = 1

N
W ij

Y M2ϕ uj . (3.13)
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Similarly to the M2 →Y projections, the feedback projections Y →M2 in Sec. 3.4 are given 

by

W ij
M2 Y = sijM2 Y t AM2 Y

NY
∑
μ = 1

p − 1
f ηi

μ + 1 g yj
μ . (3.14)

The variable sijM2 Y t  represents the synaptic efficacies from Y to M 2, which in our 

model fluctuate in time. The parameter AM2←Y corresponds to the overall strength of the 

Y → M 2 projections. Fluctuations in the synaptic efficacy are pervasive. They can be 

the product of several different cellular mechanisms as for example short term depression 

(Tsodyks & Markram 1997) or variability in the synaptic vesicle release (Dobrunz & 

Stevens 1997). In this work, we consider a simple model for capturing the temporal 

fluctuations in the synaptic efficacy given by a noisy linear dynamics below

ṡij
M2 Y =

1 − sijM2 Y t
τs

+ 2σM2 Y
τs

ξj
M2 Y t . (3.15)

Here τs corresponds to the time-scale of the fluctuations in the synaptic efficacy, σM2 Y
2

is the variance of these fluctuations, and ξj
M2 Y t  is a Gaussian random variable with 

mean zero and variance one. In our model, changes on synaptic efficacy of the Y →M2 

projections depend on fluctuations of pre-synaptic neurons in area Y given by the variable 

ξj
M2 Y t .

The input current to M2 due to the feedback loop between M2 and area Y is approximately

∑
l = 1

NY
W il

Y M2rl
Y = ∑

j = 1

N
∑
l = 1

NY
W il

M2 Y W lj
Y M2ϕ uj (3.16)

= 1
N ζ + σp

NY
ω t ∑

j = 1

N
∑

μ = 1

p
f ηi

μ + 1 g ηj
μ ϕ μj .

Here, we used the fact that 1
NY

∑l = 1
NY f yl

μ g yl
μ′ sil

M2 Y t  has mean ζδμ, μ′ and finite 

variance σ2, when averaged over an ensemble of ⋯ y, ξ t  of patterns y and fluctuations 

of the synaptic efficacies ξ t  in Eq. (3.15). The variable ω (t) represents the normalized 

fluctuations with mean zero and unit variance, and a finite autocovariance time-scale. 

Therefore, the matrix Jij
F  in Eq. (2.1) corresponds to the effective connectivity arising from 

the feedback loop between M2 and area Y given by
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Jij
F = ζ t

N ∑
μ = 1

p
f ηi

μ + 1 g ηj
μ , (3.17)

which has rank p ≪ N. Assuming p O NY ≪ N, the fluctuations in Sec. 3.4 are order 

1. We account for both the strength and the variability in the M2 →Y and Y →M2 

projections, via the Ornstein-Uhlenbeck process ζ (t) in Eq. (3.8). Notice that τζ is the 

effective time-scale of the temporal fluctuations in the sum over Y neurons in Sec. 3.4. Its 

mean ζ and variance σζ
2 control, respectively, the strength and the variability of the effective 

asymmetric couplings obtained after integrating out the dynamics in area Y. The variance σζ
2

is inversely proportional to the size of the neural population in area Y. Network simulations 

of our two-area model confirm our mathematical results (see Fig. 5f).

Inferring the transfer function from data—For inferring the input-output transfer 

function from in vivo recordings we adapted a method proposed in (Lim et al. 2015) to 

our hidden Markov model analysis. Briefly, for each session, the empirical distribution of 

mean firing rates across patterns and neurons is constructed. As in (Lim et al. 2015), we 

assumed normally distributed synaptic input currents. By rank-matching the firing rates to a 

standardized normal distribution we obtained the empirical current-to-rate transfer function 

(see Fig. S7). Similarly to (Pereira & Brunel 2018), for each recorded unit we fit this curve 

with a sigmoidal function

ϕ u = R0

1 + e−β u − ℎ0
. (3.18)

If input currents produced firing rates in transfer:1 larger than a neuron’s maximal firing 

rate Rmax, then the correspding firing rates were set to Rmax. Using the above procedure 

we inferred a distribution of parameters Rmax
i , R0

i , β i , ℎ0
i

i = 1
328

, one from each recorded 

unit (Fig. 5a). For conveying the diversity in the transfer functions inferred from data, 

in our model we randomly sampled with replacement 10000 samples from the parameter 

distribution above.

Network simulations—For the network simulations of the correlated variability model in 

Figs. 5 and Fig. 6, the parameter values used are listed in Table 1. The number of sessions 

and trials per session are matched to those in the empirical data. The number of attractors 

in each session, e.g., p (see Eq. (3.5)) are taken to be the same as the number of patterns 

inferred in each empirical session using the HMM. An attractor was detected in the model 

when the overlap between network activity and the attractor is larger than 0.4.

For the network simulations of the private noise model in Figs. S7c to S7d the parameter are 

the same as in Table 1 except AS = 1, σζ = 0, and σ p = 0.2. An attractor was detected in the 

model when the overlap between network activity and the attractor is larger than 0.2.

The simulations where performed using custom Python scripts.
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HMM fit to network model simulations—To verify our framework and the properties 

of our model, we fit a HMM model to the network simulations of the model and recomputed 

the same plots of Figs. 5 to 6 reported in Fig. S9. Neural activities in the model are of 

a continuous nature (rate based simulations) therefore we fit a gaussian HMM as follows. 

We run simulations of the model by matching the statistical properties of empirical data 

(see Sec. 3.4). For each simulated session we sampled a number of neurons equal to the 

one in the recordings. We then convolved neural activities with a gaussian filter of short 

duration (sd 60ms). We experienced this to be necessary to obtain a reliable convergence 

of the HMM. We selected the number of states in the model and fit the simulated 

neural population activities for each session with the HMM by means of a expectation-

maximization algorithm. This fit returned the identity of the state generating the neural 

activity. On these statistics we then run the analysis of Figs. 5 to 6 to obtain the metrics 

shown in Fig. S9.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analyses was performed with custom-written software using MATLAB (Mathworks) 

and Python. No statistical methods were used to pre-determine sample sizes, but sample 

sizes were similar to previous studies (Erlich et al. 2011, Guo et al. 2014). All summary 

statistics are mean ± sd across 33 sessions, unless otherwise stated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Behavioral sequences in freely moving rats revealed large variability in action 

timing.

• Actions were preceded by onset of specific neural patterns in secondary motor 

cortex.

• Metastable attractors in a network model can explain the origin of timing 

variability.

• Transitions between attractors are driven by low-dimensional correlated 

variability.
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Figure 1: Waiting task and M2 pattern sequences.
a) Schematic of task events. A rat self-initiated the waiting task by poking into a Wait port 

(Poke In), where tone 1 was played (after 400 ms), and, after a variable delay, a different 

tone 2 was played. The animal could decide to Poke Out of the Wait port at any time 

(after tone 2 in patient trials; between tone 1 and 2 in impatient trials) and move to the 

Reward port (Water Poke In) to receive a water reward (large and small for patient and 

impatient trials, respectively). Bottom: schedule of trial events. Three events (PI, PO, WPI) 

are triggered by self-initiated actions with respective interevents interval highlighted. b) 

Waiting behavior in a representative session. Tick marks represent event times (see legend). 

Vertical bars indicate waiting times for Poke Out and Water Poke In (yellow and cyan, 

respectively). When the red tick (second Tone) is not present, that marks an impatient 

trial. Inset: Interevent interval distribution for self-initiated actions ([PO - PI] and [WPI - 

PO], yellow and cyan, respectively). c) Neural pattern inference via Hidden Markov Model 

(HMM). An HMM (left, schematics) is fit to a representative session in d, returning a set of 

neural patterns (Emission Matrix, center) and a Transition Probability Matrix (TPM, right). 

Each pattern is a population firing rate vector (columns in the Emission Matrix). The TPM 

returns the probability for a transition between two patterns to occur. d) Representative 

trials from one ensemble of 12 simultaneously recorded M2 neurons during patient (top 

and bottom left) and impatient (bottom right) trials. Top: spike rasters with latent patterns 

extracted via HMM (colored curves represent pattern posterior probability; colored areas 

indicate intervals where a pattern was detected with probability exceeding 80%). e) All trials 

from the representative session (each row corresponds to a trial). Individual trials have been 
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time-stretched to align to five different events (1 s before Poke In, Poke In, Poke Out, Water 

Poke In, 1s after Poke Out). All trials display a stereotyped pattern sequence. Color-coded 

lines represent stretched intervals where patterns were detected (same as colored intervals 

in d). Black tick marks represent tone 2 onset in patient trials only, while impatient trials 

are displayed but tone 2 is not reported. f) Left: Histogram of pattern dwell times for all 

patterns across all trials in the representative session reveal right-skewed distributions (we 

excluded the first and last pattern in the sequence, whose duration artificially depends on 

trial interval segmentation). Skewness and coefficient of variability (CV) of pattern dwell 

time distributions reveal large trial-to-trial variability (33 sessions).
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Figure 2: Robustness of pattern inference.
a) Schematic of shuffled procedure to create surrogate datasets: Circular Shuffle (left) 

preserved single-cell autocorrelations and destroyed pairwise correlations; Swap Shuffle 

(right) preserved pairwise correlations and destroyed autocorrelations. c) Representative 

trial showing detection confidence measure (same color-coded notation as in Fig. 1; black 

and grey bars: fraction of trial duration where patterns were detected with probability 

larger or smaller than 80%, respectively. d) HMM robustness analyses. Left: Average 

number of patterns in each trial for empirical and surrogate datasets. Center: Pattern 

detection confidence, estimated as fraction of time across all trials where patterns were 

detected with probability exceeding 80%. Right: Consistence of pattern sequence, estimated 

as Pearson correlation coefficients between single-trial estimates of “symbolic” TPMs 

encoding the sequence identity (see Methods methods:comparison). b-d: signed-rank tests 

between empirical and shuffled datasets, * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

Recanatesi et al. Page 35

Neuron. Author manuscript; available in PMC 2023 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Dense and distributed population code in M2.
a) Neural patterns cluster in Principal Component space (all trials from the representative 

session in Fig. 1; color-coded dots represent patterns in single trials; one representative trial 

smoothed trajectory obtained by averaging neural activity in a sliding window of 600ms; 

arrows show events onsets along trajectory). Inset: Distribution of within- and across-cluster 

distances between patterns (ranksum test p < 2.0 × 10−7). Colors of different patterns are 

consistent with previous and following figures where the same example session is analyzed. 

b) Pearson correlation matrix between patterns reveals significantly larger overlaps in the 

empirical data (top left: representative session) compared to those found when drawing 

random patterns from the empirical firing rate distribution (bottom right). In this case the 

average firing rate of individual neurons in each pattern and trial was randomly drawn 

from the firing rate distribution of all neurons across all patterns in the same trial. Inset: 

Distribution of pattern correlations for empirical (blue) versus shuffled datasets (red). c) 

Single neuron firing rates are modulated by pattern sequences. Left: Cumulative firing rate 

distributions conditioned on patterns (color-coded as a) and Fig. 1d) for two neurons from 

the representative ensemble, revealing 3 and 6 significantly different firing rates across 

patterns, respectively (see Methods sec. 3.4 and Fig. S2i). Right: Number of different firing 

rates per neuron revealed multistable dynamics where 87 ± 2% of neurons had activities 

modulated by patterns.
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Figure 4: Predicting self-initiated actions from neural pattern onsets
a) Schematic of pattern/action dictionary. Left: For each action in a correct trial (left: 

representative trial from Fig. 1d), pattern onsets are aligned to that action (Poke In in this 

example). The pattern whose median onset occurs within an interval Δwin = [−0.5, 0.1] 

s aligned to the action, and whose distribution has the smallest dispersion, is tagged to 

that action (color-coded curves are distributions of action-aligned pattern onsets from all 

correct trials in the representative session in Fig. 1). b) In incorrect trials (55 trials from the 

same representative session; time t = 0 aligned to Poke In), the same patterns as in correct 

trials are detected (cf. Fig. 1e), but they concatenate in different sequences. c) Predicting 

self-initiated actions from pattern onsets. Left panel: In correct trials (split into training and 

test sets), using a pattern-action dictionary established on the training set (procedure in panel 

a), action onsets are predicted on test trials (confusion matrix: cross validated prediction 

accuracy averaged across 33 sessions; hits: correct action predicted within an interval of 

[−0.1, 0.5] s aligned to pattern onset). Right panel: In incorrect trials, actions onsets are 

predicted based on the cross-validated dictionary established in correct trials.
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Figure 5: Attractor model of pattern sequences.
a) Distribution of empirical single-cell current-to-rate transfer functions ϕi inferred from the 

data (328 neurons from 33 sessions), used as transfer functions in the recurrent network 

model (see Methods). b) The correlated variability model Sec. 2.6 generates reliable 

sequences of long-lived attractors with large trial-to-trial variability in attractor dwell times 

(representative trials: rows represent the activity of 12 neurons randomly sampled from the 

network; color-coded curves represent time course of overlaps (see Eq. (3.10)) between 

population activity and each attractor; detected attractors are color-shaded). c) Histogram of 

attractor dwell times across trials in the representative network of b) reveals right-skewed 

distributions (left, we excluded the first and last pattern in the sequence, whose duration 

artificially depends on trial interval segmentation). Skewness (center) and coefficient of 

variability (CV, right) of pattern dwell time distributions reveal large trial-to-trial variability 

(33 simulated networks). The same plots, generated by means of states individuated in the 
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model via a HMM fit on the model simulated neural traces, are shown in Fig. S9a. d) Single 

neuron firing rates are modulated by pattern sequences in the model. Cumulative firing 

rate distributions conditioned on attractors (color-coded as in b)) for two representative 

neurons in the model, revealing 2 and 3 significantly different firing rates across attractors, 

respectively (see Methods Sec. 3.4). Inset: Number of different firing rates per neuron 

revealed multistable dynamics where 99 ±1% of neurons had activities modulated by 

patterns. c) Two-area model schematic. Fluctuations in the synaptic efficacy depend only 

on the pre-synaptic terminals at area Y (see Eq. (3.15)), and therefore on the fluctuations on 

the synaptic efficacy of the Y→M2 synapses. d) Three example trials of the two-area model 

dynamics. As our analytical calculations predict, it produces meta-stable attractor dynamics 

that quantitatively match our phenomenological model and the data (dwell times distribution 

not shown). Parameters are the same as in Table 1. The additional parameters take values 

NY = 1000, AY←M2 = 0.12, and AM2←Y = 1. Area Y’s input-output transfer function is the 

rectifier linear function ϕ(x) = [x –1]+.
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Figure 6: Low-dimensional variability in models and data.
a) Comparison of dimensionality of pattern-conditioned noise correlations in the data (blue) 

and the model (grey) reveals low-dimensional population activity fluctuations, significantly 

smaller than expected by chance (red, shuffled datasets). In the shuffle dataset the firing 

rate of each neuron in each state and trial was randomly sampled from the the empirical 

distributions of firing rates for all states and trials in the same session. From left to right: 

first panel, representative session as in Fig. 1); second panel, summary across 33 sessions 

from the data and the model; third panel, fractional dimensionality in the data; fourth 

panel: model dimensionality estimated by matching ensemble sizes and number trials to data 

across 33 simulated sessions; inset: dimensionality estimated from N=10000 neurons in 33 

simulated sessions. b) Pattern-conditioned noise correlations are highly aligned between 

patterns in the data. Alignment between top canonical correlation vectors (blue, data; 

gray, model) is larger than between random principal component directions (red). c) Left: 

Alignment of noise correlations between each pattern and patterns occurring at lag n in the 

sequence (e.g., n =1 represents patterns immediately preceding or following the reference 

pattern) in the model (grey) and in the data (blue). Pattern alignments are significantly larger 

for patterns at one lag compared to patterns at longer lags. All panels: * = p < 0.05, *** = 
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p < 0.001. The same plots in panels a-c, generated by means of states individuated in the 

model via a HMM fit on the model’s simulated neural traces, are shown in Figs. S9b to S9d.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Long-Evans hooded rats. Harlan Le/CpbHsd

Software and algorithms

MATLAB MathWorks MATLAB R2019a

Python version 3.7 Python https://www.python.org/

Custom code for network simulations This paper https://github.com/ulisespereira/sequences-attractors-M2

MClust-3.5 A. David Radish, University of 
Minnesota

http://redishlab.neuroscience.umn.edu/MClust/
MClust.html

Other

Behavior control system: BControl Carlos D. Brody, Princeton University https://brodylabwiki.princeton.edu/bcontrol/index.php/
Main_Page

Tetrode wire P.Reid Polyimide-insulated nichrome 0.0005’’ diameter

NSpike data acquisition system L.M. Frank, University of California, 
San Francisco, and J. MacArthur,
Harvard University Electronic 
Instrument Design Lab

http://nspike.sourceforge.net/
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Table 1:

Network parameters.

Model parameters

Parameter Value comment

c 0.1 connectivity sparsity

N 10000 network size

q f 0.65 potentiation offset for f

x f 1.7 potentiation/depression threshold for f

x g 1.7 potentiation/depression threshold for g

A S 3 strength of the symmetric connectivity

ζ 0.65 mean of the synaptic noise

σζ 0.65 standard deviation of the synaptic noise

τζ 20ms synaptic noise time constant

σ p 0 standard deviation of the private noise

τ 20ms single neuron time constant
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