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Abstract

Ever since the discovery of the hypotensive and bradycardiac effects of adenosine, adenosine 

receptors continue to represent promising drug targets. First, this is due to the fact that the 

receptors are expressed in a large variety of tissues. In particular, the actions of adenosine (or 

methylxanthine antagonists) in the central nervous system, in the circulation, on immune cells, 

and on other tissues can be beneficial in certain disorders. Second, there exists a large number of 

ligands, which have been generated by introducing several modifications in the structure of the 

lead compounds (adenosine and methylxanthine), some of them highly specific. Four adenosine 

receptor subtypes (A1, A2A, A2B, and A3) have been cloned and pharmacologically characterized, 

all of which are G protein-coupled receptors. Adenosine receptors can be distinguished according 

to their preferred mechanism of signal transduction: A1 and A3 receptors interact with pertussis 

toxin-sensitive G proteins of the Gi and Go family; the canonical signaling mechanism of the 

A2A and of the A2B receptors is stimulation of adenylyl cyclase via Gs proteins. In addition 

to the coupling to adenylyl cyclase, all four subtypes may positively couple to phospholipase 

C via different G protein subunits. The development of new ligands, in particular, potent 

and selective antagonists, for all subtypes of adenosine receptors has so far been directed by 

traditional medicinal chemistry. The availability of genetic information promises to facilitate 

understanding of the drug–receptor interaction leading to the rational design of a potentially 

therapeutically important class of drugs. Moreover, molecular modeling may further rationalize 

observed interactions between the receptors and their ligands. In this review, we will summarize 

the most relevant progress in developing new therapeutic adenosine receptor antagonists.
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1. INTRODUCTION

The stimulation of cell surface adenosine receptors (ARs) is largely responsible for the 

broad variety of effects produced by adenosine throughout several organ systems. Based 

on the widespread and frequently beneficial effects, attributed to the accumulation of 

endogenously released adenosine, it has long been considered that regulation of ARs 

has substantial therapeutic potential. Incidentally, much recent focus has been on the 

cardioprotective1,2 and neuroprotective3,4 effects associated with AR activation during 

periods of cardiac and cerebral ischemia, respectively. On the other hand, it has been 

proposed recently that antagonists of distinct AR subtypes may be used in the treatment 

of asthma5,6 or certain neurological diseases such as Parkinson’s disease.6,7 Comprehensive 

reviews of the physiological roles of ARs and their potential as clinical targets in a variety of 

disease states have been published.6–11

ARs are members of the superfamily of G protein-coupled receptors (GPCRs), with four 

subtypes currently recognized, the A1AR, A2AAR, A2BAR, and A3AR.12 With the exception 

of the A3AR, the existence of AR subtypes in various tissues had been appreciated prior to 

their cloning as a result of pharmacological characterization.12

The cloning of the four AR subtypes has allowed for significant progresses to be made 

in the understanding of several facets of AR activity at a molecular level. A schematic 

representation of AR signaling pathways shown in Figure 1.11

Considering the overall protein structure, ARs display the topology typical of GPCRs. 

Many features of GPCR structure and function have been reviewed recently.12–15 Here 

we will highlight some fundamental features that may expand upon the classical view of 

GPCR structure and function. Sequence comparison between the different GPCRs revealed 

the existence of different receptor families sharing no sequence similarity even if specific 

fingerprints exist in all GPCR classes. However, all these receptors have in common a 

central core domain consisting of seven transmembrane helices (TM1-7), with each TM 

composed of 20–27 amino acids, connected by three intracellular (IL1, IL2, and IL3) and 

three extracellular (EL1, EL2, and EL3) loops. Two cysteine residues (one in TM3 and 

one in EL2), which are conserved in most GPCRs, form a disulfide link which is possibly 

crucial for the packing and for the stabilization of a restricted number of conformations 

of these seven TMs. Aside from sequence variations, GPCRs differ in the length and 

function of their N-terminal extracellular domain, their C-terminal intracellular domain, 

and their intracellular loops. Each of these domains provides very specific properties to 

these receptor proteins. Particularly, consensus sites for N-linked glycosylation exist on 

the extracellular regions of ARs, although the precise location of the sites for this post-

translational modification varies amongst the AR subtypes.16–19 The carboxyl-terminal tails 

of the A1AR, A2BAR, and A3AR, but not A2AAR, possess a conserved cysteine residue 

that may putatively serve as a site for receptor palmitoylation and permit the formation 

of a fourth intracellular loop. However, site-directed mutagenesis of this residue has not 

been performed for any AR subtype, and no role for putative AR palmitoylation has been 

described.
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The A1AR, A2BAR, and A3AR are very similar in regard to the number of amino acids 

composing their primary structure, and in general, these AR subtypes are among the smaller 

members of the GPCR family. For example, the human homologs of the A1AR, A2BAR, 

and A3AR consist of 326, 328, and 318 amino acid residues, respectively.20–22 Conversely, 

the human A2AAR is composed of 409 amino acids.23 All cloned species homologs of 

the A2AAR are of similar mass, and this relatively large size is manifested in the carboxyl-

terminal tail of the receptor, which is much longer than that of the other AR subtypes. 

It should be noted that the size of ARs deduced from their primary amino acid structure 

frequently is not consistent with the mass estimated by polyacrylamide gel electrophoresis 

of the expressed proteins. The aforementioned post-translational glycosylation of ARs, 

which may vary in a cell type-dependent fashion, likely accounts for these discrepancies. 

The human A1AR and human A3AR display ca 49% overall sequence identity at the amino 

acid level, while the human A2AAR and human A2BAR are 45% identical. A general 

topology of all four receptor subtypes are shown in Figure 2.

Indeed, for all GPCRs, the identification of discrete receptor regions, or even single amino 

acids that are critical for ligand recognition and are responsible for discerning between 

agonist and antagonist ligands, has been an area of extensive investigation.11,24–27 In 

addition to a basic understanding of receptor activation, it has been hoped that a delineation 

of ligand–receptor interaction at a molecular level may provide the basis for rational drug 

design.11,24–27 As summarized below, both TMs and extracellular regions of ARs have 

been implicated as playing a role in the formation of the ligand-binding pocket.11,24–27 

Key amino acids identified via mutagenesis studies as contributing to the ligand-binding 

properties of the ARs are briefly summarized in Table I.

Site-directed mutagenesis studies in parallel with different molecular modeling approaches 

have been recently used as powerful strategy to design potent and selective GPCR 

ligand.11,36–39 Of course, the evolution of the field of computer-aided design of ligands 

(both agonists and antagonists) for GPCRs, including adenosine receptors, has depended on 

the availability of suitable molecular receptor templates. In fact, due to technical difficulties, 

which complicate experimental X-ray diffraction and NMR structure determination of 

GPCRs, the 3D structure of most GPCRs is still unknown. The only known GPCR 

structure, a 2.8 Å resolution structure of rhodopsin, was published only recently by 

Palczewski and collaborators.40 However, a structure-based approach to GPCR drug 

discovery in the absence, but probably also in the presence, of the real structures requires 

a multidisciplinary approach, where molecular models represent a structural context to 

efficiently integrate experimental data and inferences derived from molecular biological, 

biophysical, bioinformatic, pharmacological and organic chemical methods. Although not 

always achievable, the success of a synergistic effect among these disciplines is highly 

dependent on the experimental design. Synergy is best achieved when mutations are 

structurally interpretable, structural hypotheses are experimentally testable, ligands are well 

characterized pharmacologically, and the necessary chemical modifications of the ligands 

are feasible.11

In recent decades, numerous medicinal chemistry groups have made intense efforts in 

searching for ideal ligands for these receptor subtypes.9–11,41–45 In particular, the search 
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for selective antagonists held greater appeal than selective agonists, not only for their 

potential therapeutic applications but also considering the fact that antagonists are preferred 

molecular probes for pharmacological characterization of receptors. Considering all of these 

aspects, the search for potent and selective adenosine receptor antagonists has been one 

of the most highly investigated areas in medicinal chemistry in recent years. It should 

be emphasized that for all the receptor subtypes the alkylxanthines (e.g., theophylline, 

caffeine), which are natural antagonists for the adenosine receptors, have represented 

the starting point for the discovery of potent and selective antagonists.41–45 Following 

multiple modifications of the xanthine nucleus, various potent and selective antagonists have 

been found. Nevertheless, xanthine derivatives have several physico-chemical limitations, 

including low water solubility. For this reason, several research groups have focused 

on compounds having a non-xanthine structure for improving the water solubility and 

consequently bioavailability.41–45

The purpose of this review is to summarize the most recent developments made in the field 

of adenosine receptor antagonists, which for all classes could be subdivided into two large 

families: (i) xanthine derivatives; (ii) polyheterocyclic derivatives.

2. A1 ADENOSINE RECEPTOR ANTAGONISTS

The A1AR could be considered the best-characterized member of the adenosine receptor 

family. Several antagonists are currently under clinical investigations, and are recently 

reviewed.10,41–43

A. Xanthine Derivatives

A large number of modifications on the xanthine core at the 1, 3, and 8 positions led to 

the discovery of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1) which was highly potent 

and selective at the adenosine A1AR in a rat model,46 while at the human A1AR it was 

10-fold less potent with a consequent reduction of selectivity versus the other receptor 

subtypes. Also, DPCPX displays considerable affinity at the human A2BAR.47 For these 

reasons the search for a truly selective A1AR adenosine receptor antagonist in the human 

model represented a new appealing goal to be achieved (Fig. 3).

In addition to DPCPX, other substituted xanthines have been proposed as A1AR antagonists, 

in particular, by introducing chiral substituents to demonstrate the importance of the 

stereochemistry, or by insertion of polar moieties. The introduction at the 8-position on 

the 1,3-dipropylxanthine nucleus of a [2-(5,6-epoxy)norbornyl] moiety led to the discovery 

of BG-9719 (2) which was highly potent and selective at the A1AR in a human model.48 

A small stereochemical effect on the affinity was present with this compound, such that the 

R-isomer was twofold less potent (Ki hA1 = 0.80 nM) than the S-isomer (Fig. 3).

Recently, a fluorescent derivative of the xanthine amine functionalized congener (XAC)49 

was shown to be useful for visualizing the A1AR in small areas of cell membranes using 

fluorescence correlation spectroscopy.50
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B. Polyheterocyclic Derivatives

Numerous classes of heterocyclic derivatives were shown to bind to the A1AR. Among the 

first such derivatives were the 1H-imidazo[4,5-c]quinolin-4-amines, which were synthesized 

based on a prediction from early ligand modeling.51 Most of these derivatives could be 

considered an extension of the xanthine structure. More recently, some synthetic triazolo-

purinones (3,4), clearly derived as tricyclic extensions of the xanthine nucleus, showed very 

promising affinity at the A1AR subtype with significant degree of selectivity versus the 

A2AAR subtype (Fig. 4).52

Another class of A1AR antagonists is represented by 3-aryl-[1,2,4]triazino[4,3-a]-

benzimidazol(10H)-4-one derivatives. In particular, compound 5 displayed high affinity 

at the bovine A1AR and significant selectivity in comparison to the A2AAR and A3AR 

subtypes (Fig. 4).53 A related A1AR antagonist could be considered the triazolo-quinoxaline 

6 which displays high potency and good selectivity (Fig. 4).54 Isosteres of 6, such as 

pyrazolo-quinolines or imidazo-quinoxalines have been also reported as A1AR antagonists. 

Although the affinity at A1AR was in the nanomolar range, none of the reported compounds 

were found to be highly selective.55,56

A series of non-xanthine heterocycles displaying high potency at A1AR and selectivity 

versus all the other subtypes is represented by 7-deaza-adenines. One particular derivative 7 
(APEPI) proved to be highly potent and selective (Fig. 4). The A1AR affinity is prevalently 

due to the R-enantiomer. Many other modifications have been made on this nucleus (e.g., 

replacement of phenyl ring at the 2 position or structure simplification to an indole nucleus), 

but none of these variations improved both affinity and selectivity.56,57

Very simplified heterocyclic derivatives as adenosine receptor antagonists are represented 

by thiazole and thiadiazole derivatives (Fig. 5). In particular, thiadiazole 8 (LUF5437) has 

been considered the starting point for this new class of compounds.58 In fact, complete 

hydrogenation of phenyl ring led to derivative 9 (LUF5472), which was less potent at the 

A1AR but more selective. Replacement of the thiadiazole nucleus with a thiazole moiety 

seemed to be well tolerated at the A1 receptor.58,59

Another class of simplified analogs structurally related to the xanthine core consists of 

derivatives of the pyrazolo[1,5-a]pyridine nucleus. Compound 10 (FK453) represents the 

lead compound of this series showing favorable affinity and selectivity for the A1AR 

compared to the A2AAR (Fig. 5). Various modifications have been performed on this 

nucleus but when acryloyl amide was constrained into a pyridazinone nucleus and nitrogen 

was substituted with an isobutyryl moiety (compound 11) a significant increase of potency 

and selectivity was obtained (Fig. 5).60–62

Also, a naphthyridine nucleus has been investigated for A1AR antagonists. In a 

naphthyridine series, compound 12 proved to be a promising antagonist displaying 

affinity in a sub-nanomolar range and high levels of selectivity in a bovine model, 

while unfortunately in human the compound dramatically lost potency and consequently 

selectivity.63,64
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Very recently, IJzerman and coworkers synthesized a large number of pyrimidine derivatives 

designed with the help of molecular modeling. This study permitted to identify the 

compound 13 that was potent and selective as a human A1AR antagonist (Fig. 5).65

As clearly described, chemically diverse classes of compounds have been identified as 

A1AR antagonists. Nevertheless, considering that many have not yet been examined at all 

four adenosine receptor subtypes and the species differences are evident, most of these 

synthetic compounds should be reexamined in a human model for better understanding and 

for consideration as clinical candidates.

C. Biological Actions of A1 Adenosine Receptor Antagonists

Peripheral applications envisioned for A1 receptor antagonists include kidney protection and 

cardiac anti-arrhythmic agents.42,43 Since caffeine is best known for its stimulant activity in 

the central nervous system, adenosine antagonists of the A1 receptor and other subtypes have 

been of interest in cognitive disorders. A novel, potent, and selective adenosine A1 receptor 

antagonist FR194921 exerts both cognitive-enhancing and anxiolytic activity, suggesting the 

therapeutic potential of such compounds for dementia and anxiety disorders.66

3. A2A ADENOSINE RECEPTOR ANTAGONISTS

Both xanthines and non-xanthines have been developed as selective A2AAR antagonists. 

A2AAR antagonists proved to be attractive for the treatment of several diseases of the central 

nervous system, such as motor dysfunctions, due to the clearly demonstrated interaction 

between A2AAR and D2 dopamine receptors (both at the protein and second messenger 

levels) in the basal ganglia.67 For this reason, A2AAR antagonists could be considered 

potential drugs for the treatment of neurodegenerative disorders such as Parkinson’s disease.

A. Xanthine Derivatives

The first xanthine analog, which displayed good potency at the A2AAR subtype (100 nM) 

and significant selectivity in comparison to the A1AR (45-fold) was the 8-unsubstituted 

1-propargylxanthine (14) (Fig. 6).68

Starting from this observation, a program to screen various 1-, 3-, 8-substituted xanthines 

led to the discovery of the first very potent and selective A2AAR antagonist, 1,3-dipropyl-7-

methyl-8-(3, 4-dimethoxystyryl)xanthine (KF17837, 15), which proved to be potent in the 

nanomolar range at the A2AAR subtype (1 nM) and significantly selective in comparison 

to A1AR (62-fold) (Fig. 3).69,70 In a detailed SAR study on this class of compounds, the 

3-chlorostyrylcaffeine (CSC, 16) was identified as being less potent than 15 at the A2AAR 

(54 nM) but with an increased selectivity in comparison to the A1AR subtype (560-fold).71

Two major problems have limited the use of these xanthine derivatives as pharmacological 

tools for studying the A2AAR subtype: (a) the low water solubility;72 (b) the rapid 

photoisomerization which they undergo when exposed to daylight in dilute solution.73 It 

should be noted that this isomerization process is not relevant when styrylxanthines are 

administered orally as solid substances. In an attempt to avoid this problem, the styryl 

moiety has been replaced with different functional groups (e.g., triple bond, cyclopropyl, or 
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diazo group) or constrained structure. However, none of this isosteric substitutions has led to 

an improvement in the pharmacological profile, but rather in many cases to a complete loss 

of affinity.68,74

Instead, the introduction of a propargyl at the 1-position in combination with the 8-styryl 

group by Müller and coworkers seemed to increase affinity at the A2AAR subtypes with the 

retention of selectivity. These studies led to the discovery of the BS-DMPX (3,7-dimethyl-1-

propargyl-8-(3-bromostyryl)xanthine 17, which could be considered a lead compound of a 

new series.75 However, at the 3 and 7 positions, methyl substitution seemed to be desirable 

for achieving both affinity and selectivity at the A2AAR subtype (Fig. 6).76–78 2A Regarding 

the substitutions at the 8-position, it has been clearly demonstrated that an aromatic ring 

attached to an ethenyl group is a fundamental requirement for both affinity and selectivity at 

the A2AAR.77,79

For the improvement of water solubility of styryl xanthines, two different approaches 

have been utilized: (a) introduction of polar groups on the phenyl ring; (b) preparation 

of phosphate pro-drugs. The introduction of a sulfonate group on the phenyl ring of styryl 

moiety produces a significant reduction of affinity (20- to 30-fold) at the A2AAR but with 

retention of selectivity.80

More interesting results have been obtained using phosphate ester pro-drugs. In fact, the 

pro-drug 18, which was stable in aqueous solution but readily cleaved by phosphatases to 

liberate MSX-2 (3-(3-hydroxypropyl)-8-(3-methoxystyryl)-1-propargylxanthine, showed a 

very high affinity and selectivity for the A2AAR (19, Fig. 6).81

All these studies, performed by several laboratories, have strongly suggested reconsidering 

the xanthine family as A2AAR antagonists. In fact, such an antagonist, KW-6002 (1,3-

diethyl-8-(3-methoxystyryl)-7-methilxanthine, 20, is already in phase II clinical trials for the 

treatment of basal ganglia disorders such as Parkinson’s disease.82

Unfortunately, very recently, more detailed studies performed on MSX-2 (19), in contrast 

with previous studies, clearly demonstrated that styryl xanthines at the solid state upon light 

irradiation led to dimmer derivatives which are almost inactive at the A2AAR. This should 

be considered a further limit of clinical use of styryl xanthine derivatives.83

B. Polyheterocyclic Derivatives

The first promising A2AAR antagonist with a non-xanthine structure was CGS 15943 (21, 

9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-c]quinazolin-5-amine),84,85 which showed affinity 

but not selectivity versus A1AR, A2BAR, and A3AR (Fig. 7).86 Nevertheless, it has 

represented the starting point for developing new non-xanthine structures as A2AAR 

adenosine antagonists. A few years later, bioisosteric replacement of the phenyl ring of 

CGS15943 with an N7-substituted pyrazole led to the family of N8-substituted pyrazolo-

triazolo-pyrimidines. Two selected compounds of this family named SCH 58261 (22, 

5-amino-7-(β-phenylethyl)-2-(2-furyl)pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine) and 

SCH 63390 (23, 5-amino-7-(3-phenylpropyl)-2-(2-furyl)pyrazolo[4,3-e]1,2,4-triazolo[1,5-
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c]pyrimidine) proved to be potent and selective A2AAR antagonists both in rat and human 

models (Fig. 7).87,88

However, a major problem of this class of compounds is related to their 

low water solubility and consequently poor bioavailability. The introduction of a 

hydroxyl group at the para position on the phenyl ring of compounds 22 and 

23 led to derivatives 24 (5-amino-7-[β-(4-hydroxyphenyl)ethyl]-2-(2-furyl)pyrazolo[4,3-

e]1,2,4-triazolo[1,5-c]pyrimidine) and 25 (5-amino-7-[3-(4-hydroxyphenyl)-propyl]-2-(2-

furyl)pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine), which not only displayed greater 

hydrophilic character, but also a significant increase of both affinity and selectivity 

at the A2AAR subtype, most probably due to hydrogen bond formation (Fig. 7). 

Therefore, to understand the nature of the hydrogen bond, compound SCH 442416 

(26, 5-amino-7-[3-(4-methoxyphenyl)-propyl]-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-

c]pyrimidine) was synthesized. This derivative showed a surprising increase of affinity for 

the A2A adenosine receptor to qualify it as a candidate tool for PET studies in its 11C 

labeled form. The high affinity was consistent with the compound acting as a hydrogen bond 

acceptor (Fig. 7).89

However, the introduction of oxygenated groups on the phenyl ring of the side chain was 

not sufficient to confer the necessary water solubility, and the introduction of additional 

functionality resulted in a compelling need to address this problem. Toward this purpose, 

carboxylic and sulfonic moieties were introduced, which contributed greatly to the water 

solubility especially in the case of the sulfonic moiety, but a great loss of affinity was 

observed.90

A partial resolution to this problem was obtained by the former Zeneca group in proposing 

a compound named ZM 241385 (27, 4-[2-[[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a] 

[1,3,5]triazin-5-yl]amino]ethyl]phenol), which proved to be one of the most potent A2AAR 

antagonists ever reported and having favorable water solubility (Fig. 8).91

However, ZM 241385, which could be considered a simplified analog of the pyrazolo-

triazolo-pyrimidine series, was found to bind also with good affinity at the human A2BAR. 

In fact, its tritiated form is actually used in radioligand binding studies of this receptor 

subtype as well as at the A2AAR.92

Recently, a large series of derivatives bearing various substituents at the 5-position on the 

triazolo-triazine nucleus and the related triazolo-pyrimidine nucleus have been synthesized. 

In particular, derivative 28 showed great potency and selectivity for the A2AAR as compared 

with the A1AR (Fig. 8). Nevertheless, the lack of binding data at the A2B and A3 prevents 

a comparison of the derivatives with other fully characterized derivatives. Some of these 

derivatives, although not displaying exceptional high potency in binding studies, showed 

good oral efficacy in a rodent catalepsy model of Parkinson’s disease.93–97

Over the last few years, other classes of compounds have been investigated with the aim 

of obtaining new antagonist tools for studying A2AAR. Unfortunately, none of the reported 

compounds showed a better profile than the above-mentioned derivatives. Only two classes 
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of compounds, the triazolo-quinoxaline98 and some pyrazolo-pyrimidines,99 seem to possess 

promising requirements as A2A adenosine receptor antagonists (Fig. 8).

In the triazolo-quinoxaline series, only one compound 29 showed interesting A2AAR 

affinity. Unfortunately, this nucleus seemed to be very sensitive to any kind of modification. 

In fact, alkylation of the amino group, or its replacement with a carbonyl group, or 

substitution of the phenyl ring was detrimental in terms of affinity at the A2AAR. In some 

cases, the affinity at the human A3AR was predominant. Instead, in the pyrazolo-pyrimidine 

series, only one 30 showed a promising binding profile, but was nevertheless of low potency 

and low selectivity for the A2AAR.

C. Biological Actions of A2A Adenosine Receptor Antagonists

The A2AAR antagonists that is furthest advanced in clinical trials is KW6002, as 

described above, and other antagonists of this subtype are under development.82,97,100 

The interest in CNS action of A2AAR antagonists also extends to impeding the 

neurodegenerative process4,7,8,10 and possibly the treatment of stroke.101 The peripheral 

actions of A2AAR antagonists might be complicated by a proinflammatory effect,102 but 

might be therapeutically useful for cancer treatment.103

4. A2B ADENOSINE RECEPTOR ANTAGONISTS

Most of the high affinity receptor antagonists thus far reported have been xanthine 

derivatives. Consideration of the potential therapeutic applications of A2BAR antagonists, 

particularly their possible use an anti-asthmatic agents,104,105 has stimulated many research 

groups to search for potent and selective antagonists for this subtype. Recognition of 

the possibility that the mechanism of action of the anti-asthmatic drugs theophylline (1,3-

dimethylxanthine) and enprofylline (3-propylxanthine) might involve the A2B adenosine 

receptor has spurred this research.105

A. Xanthine Derivatives

A large number of substitutions at the 1, 3, and 8 positions of the xanthine core have 

been performed with the aim of describing an SAR profile for the A2BAR subtype. In 

particular, it has been observed that 1,3-unsubstituted xanthine derivatives bearing a phenyl 

ring at the 8-position possesses good selectivity but poor potency at the A2BAR subtype.106 

An optimization of this structure led to the discovery of 1-propyl-8-(4-sulphonyl)phenyl 

xanthine PSB 1115 (31) and some related pro-drugs, such as a 4-nitrophenylester, which 

were found to be potent and selective A2BAR antagonists (Fig. 9).107,108

In the series of 8-phenyl xanthine derivatives, a large number of amides 

derived from the 8-{4-[(carboxymethyl)oxy]phenyl}-1,3-dipropylxanthine have been 

prepared and tested as A2BAR antagonists.109,110 This study led to the 

discovery of the ([N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-

purin-8-yl)phenoxy] acetamide] (32, MRS1754) and ([N-(4-acetylphenyl)-2-[4-(2,3,6,7-

tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy] acetamide] (33, MRS 1716), 

which proved to be the most potent and selective human A2BAR antagonists.111 In fact, the 
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tritium labeled form of derivative 32 has been prepared and utilized in radioligand binding 

studies112 (Fig. 9).

Phenyl replacement with a pyrazole moiety led to compounds which showed a quite similar 

A2BAR affinity with respect to the phenyl series.113,114 Recently, Zablocki and coworkers 

have reported an extended series of 8-aryl xanthines as selective A2BAR antagonists.115

In the xanthine family, a new class of deaza-analogs has recently been reported, which 

displayed affinity at A2BAR in the micromolar range, but poor selectivity versus the A2AAR 

subtype.116

B. Polyheterocyclic Derivatives

Within this category of adenosine antagonists, quite varied structures have been introduced 

and modified in the search for new A2BAR antagonists.

Starting from the experimental observation that the non-selective A2AAR antagonist 

CGS15943 (21) (Fig. 7) also proved to be an effective A2BAR antagonist both in functional 

and binding studies, a large number of acyl moieties have been placed at the N5 position 

(Fig. 10).117

The introduction of apolar chains such as the N5-pivaloyl group resulted in compound 34, 

which displayed significant selectivity but not high potency at the A2BAR (Fig. 10).117

A similar approach has been utilized with the pyrazolo-triazolo-pyrimidine nucleus, whose 

potency at the A2BAR was obtained while a complete loss of selectivity was observed.118 

Only when bulky substituents at both N5 and N8 positions were present (compound 35), was 

a significantly potent and selective A2BAR antagonist obtained (Fig. 10).119

Considering that the potent and selective A2AAR antagonist ZM241385, 27 (Fig. 8) proved 

to be also quite potent at the A2BAR, its tritiated form is usually utilized in radioligand 

binding studies,120 several modifications at the 5-position of the triazolo-triazine nucleus 

have been performed. It has been observed that the hydroxyl group replacement (36) 

enhanced the A2BAR affinity although the selectivity was poor (Fig. 10).121

Very promising results at this receptor subtype were obtained upon modification of adenine 

nucleus.122 A detailed investigation on this class of compounds permitted the partial 

optimization of the substitution of adenine nucleus to enhance both potency and selectivity 

for the A2BAR subtype. In particular, the presence of alkynyl moiety at the 2-position and 

the presence of a furyl ring at the 7-position led to a very promising potent and selective 

A2BAR antagonist (37).123 These data suggest that further optimization of the pattern of 

substitutions at this third position could lead to the discovery of a highly potent and selective 

A2BAR antagonist (Fig. 10).

Recently, in a screening program focused on the searching of new tools as 

adenosine receptor antagonists, a quinazoline derivative, named CMB 6446 ((4-methyl-7-

methoxyquinazolyl-2-(2′-amino-4′-imidazolinone)) (38), proved to be quite potent and 

selective at the A2BAR subtype with a binding Ki value of 112 nM.124 (Fig. 10). 
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However, further efforts to enhance the A2BAR affinity of 38 failed even extensive synthetic 

modification was made on this class of compounds.

Very recently, a tritiated form of a pyrrolo-pyrimidine derivative, named [3H]OSIP-339391 

(39) has been proposed as a very promising radioligand for studying A2BAR. In fact, it 

showed a KD value of 0.41 nM and selectivities versus the other receptor subtypes higher 

than 70.125

C. Biological Actions of A2B Adenosine Receptor Antagonists

The therapeutic potential-based peripheral actions of A2B adenosine receptor antagonists 

might include treatment of asthma.104,105 The anti-asthma drugs, theophylline and 

enprofylline, are used therapeutically to treat asthma at concentrations to block 

A2BAR.104,105 A2BAR antagonists may also serve as novel drugs for type-II diabetes,126 

Alzheimer’s disease127, and cystic fibrosis.128

5. A3 ADENOSINE RECEPTOR ANTAGONISTS

In the last years, many efforts have been made to search for potent and selective human 

A3AR antagonists.11 The interest in blocking this class of receptors arose after the discovery 

of their involvement in cellular growth.129

A. Xanthine Derivatives

Natural xanthines, such as caffeine and theophylline that are considered the natural 

antagonists for adenosine receptors, show in general very low affinity for the A3AR 

subtype (in the high micromolar range).130 Nevertheless, very recent SAR studies on 

these compounds indicated that a cyclization between the 7 and 8 positions led to 

pyridopurine-2,4-dione derivative (40) as potent A3 adenosine receptor antagonists131 (Fig. 

11).

Other positions of the xanthine core have been modified with the aim of improving 

A3AR affinity. The discovery of 2-phenylimidazopurin-5-ones as water soluble derivative 

of xanthines led to PSB-10 (41) a highly potent and selective human A3AR antagonist (Fig. 

11).132 The tritiated form of a related compound named PSB-11 has been used as a high 

affinity radioligand at this subtype with favorably low non-specific membrane binding.133

Following these observations, other structural classes in which the xanthine structure was 

extended have been reported as A3AR antagonists. One such class was the triazolo-purines 

(42,43), which proved to be quite potent and selective human A3AR antagonists (Fig. 

11).134,135

B. Polyheterocyclic Derivatives

In this class of compounds, different heterocyclic moieties have been identified as potential 

A3AR, and extensively reviewed, which can be classified in six families of derivatives: 

(i) flavonoids; (ii) 1,4-dihydropyridines and pyridines; (iii) triazolo-quinazolines; (iv) 

isoquinoline and quinazolines; (v) pyrazolo-triazolo-pyrimidines; (vi) various.11,136 In 

Figures 12–14, representative members of these family of compounds are presented.
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The discovery of flavonoids as human A3AR antagonists was initiated by a broad 

screening of phytochemicals, in which it was shown that some flavonoid derivatives possess 

micromolar affinity at human A3AR. Optimization of reference compounds, through a 

classical structure-activity relationship study and with the help of molecular modeling 

approach, led to MRS 1067 (44), which proved to be the most potent (Ki, 561 nM) and 

selective compound of this series at the human A3AR subtype (Fig. 12).137MRS 1067 was 

the first reported antagonist suitable also for use with the rat A3 adenosine receptor,138 

although it has since been superseded by more potent compounds.

A very similar approach was utilized for studying the SAR at the human A3AR of 1,4-

dihydropyridines, which are typically antagonists of the L-type calcium channel. Initially, it 

was necessary to eliminate binding to these ion channels, which was accomplished through 

the introduction of extended arylalkynyl groups at the 4-position of the dihydropyridine 

nucleus in combination with phenyl substituents at the 6-position. These changes not only 

prevented the recognition at the calcium channel but also significantly improved the affinity 

at the human A3AR. In particular, a nitro derivative MRS1334 (45) proved to be the most 

potent analog of this series (Fig. 12).139

Simultaneously, the same authors studied the affinity of the pyridines, derived from the 

oxidation of the corresponding 1,4 dihydropyridines. In this class of compounds, to retain 

affinity and selectivity at human A3 adenosine receptor, small groups at the 4-position were 

found to be essential. This effect could be attributed to the change of the C4-hybridization 

from sp3 to sp2, with a consequent variation of the C5-C4-R4 angle from 68.1° to 0.2°. This 

study strongly supported by theoretical studies led to the discovery of MRS1523 (46), which 

showed favorable affinity at the human A3AR (18 nM) and was also the first derivative to 

possess submicromolar affinity at the rat A3AR subtype (Fig. 12).140 For various structural 

classes, most antagonists described as having high potency at the human A3AR subtype 

were consistently found to be weak or ineffective at the rat A3AR. This pronounced species 

difference could be correlated with the relatively modest sequence similarity (only 74%) that 

exists between rat and human A3AR sequences.141

The triazolo-quinazoline derivative CGS 15943 (21, Fig. 7), a classic non-selective 

adenosine receptor antagonist, has been a starting point for searching new potent and 

selective human A3AR antagonists. Its acylation led to the discovery of MRS1220 (47) 

a highly potent (0.65 nM) and quite selective human A3AR antagonist (Fig. 13).142

In a program of screening compound libraries by IJzerman and coworkers, it has been 

found that a series of 3-(2-pyridinyl)-isoquinoline derivatives possessed adenosine A3AR 

affinity.143 The synthesis of related quinazoline derivatives, with a classical bioisosteric 

substitution of carbon with nitrogen and the substitution of amide spacer with an urea 

moiety led to a compound, VUF5574 (48), which had improved affinity at human A3AR 

while being entirely inactive at A1AR and A2AAR receptor subtypes144 (Fig. 13).

The discovery of pyrazolo-triazolo-pyrimidines as human A3AR antagonists, was based 

on the creation of a hybrid molecule between antagonists and agonists of this subtype. 

Specifically, the triazolo-pyrazolo-pyrimidine core, typical of classic adenosine receptor 
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antagonists, was substituted at the N5 position a 4-methoxy phenyl carbamoyl moiety, 

which resulted to be optimal for having A3 affinity when introduced at the N8 position 

of NECA.130 This combination led to compound 49 which was one of the most potent 

and selective human A3AR antagonist ever reported. A classic SAR study combined with 

molecular modeling simulation permitted the identification of the structural requirements 

indispensable for receptor recognition. In particular, small substituents (e.g., methyl group) 

at the N8 position and at the 5-position unsubstituted phenyl ring seemed well tolerated. 

This resulted in compound 50, which displayed an increased affinity at the human A3AR.145 

These results permitted the synthesis of a completely water soluble (15 mM) derivative 51, 

in which the phenyl ring was replaced by a pyridinium salt. The introduction of a nitrogen 

not only improved water solubility but also a significant increased affinity at the human 

A3AR. This observation suggested that electrostatic interactions were strongly involved in 

receptor recognition in this region (Fig. 13).146 Other derivatives structurally related to this 

family have been reported, including the triazolo-quinoxalines. Within this structural class, 

several compounds have been synthesized as antagonists for different adenosine receptor 

subtypes. These SAR studies permitted the identification of compound 52 as one of the most 

potent and selective human A3AR (Fig. 14).147,148

Other A3AR antagonists were the result of library screening in which novel heterocyclic 

derivatives with high affinity were identified, such as L-249313 (53) and L-268605 (54) 

(Fig. 14), however, no detailed SAR has been provided.149

Structurally simplified A3AR antagonists have been reported. The thiadiazole (55) and the 

bioisostere thiazole derivative (56) seem to be the promising agents, considering their very 

straightforward synthetic pathway and their low hydrophobic character (Fig. 14).150

Since nearly all of the reported A3AR antagonists showed significant potency and selectivity 

at the A3 adenosine receptor only in the human model, pre-clinical studies in vitro and 

in vivo in other species were severely limited. This aspect has been partially avoided 

by working on the adenosine core, that is, converting a selective A3AR receptor agonist 

into an antagonist. This was particularly effective in designing species-independent A3AR 

antagonists, since the nucleosides tend to bind well at this subtype across species. In 

general, adenosine receptor agonism correlates with the presence of a 9-ribose moiety on 

the adenine structure, while other adenine derivatives (such as 9-methyl or ethyl) are usually 

adenosine receptor antagonists. A3AR homology modeling combined with mutagenesis 

and SAR studies indicated that the ribose moiety also had a requirement of flexibility, 

particularly in the 5′-region, to fully activate the receptor. Consistent with this finding, a 

spirolactam analog, that is in which the ribose ring was sterically constrained (MRS1292, 

57)151 proved to be a potent A3AR antagonist both in human and rat models (Fig. 14). 

MRS1292 contained the 5′-amide group, typical of potent agonists such as NECA, however 

the bicyclic constraint precluded receptor activation. Other modifications of nucleosides, 

such as the introduction of extended substituents at the 8-position and various substitutions 

of the N6 and 2 positions23,24 tended to convert agonists into antagonists.152
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C. Biological Actions of A3 Adenosine Receptor Antagonists

A3AR antagonists appear to be of use in reducing intraocular pressure, which would be 

useful in the treatment of glaucoma.153 The A3AR promotes flow into the aqueous humor by 

coupling in a positive fashion to chloride inflow in non-pigmented ciliary epithelial cells.153 

A3AR antagonists have also been of interest in possibly treating allergic conditions and 

inflammation.6,9–11

6. CONCLUSIONS

Potent and selective antagonists have been developed for the four subtypes of adenosine 

receptors. These advances have been based on both empirical methods and semi-rational 

design approaches, such as QSAR and receptor homology modeling. Both xanthines and 

non-xanthines have filled this need. The first non-xanthine heterocycles to attain nanomolar 

affinity were designed for the A2A receptor, by a series of studies in various laboratories in 

which the xanthine nucleus was elaborated and ring modified. The screening of chemically 

diverse libraries has resulted in novel chemical classes of A3 receptor antagonists, and 

also an intensive SAR studies on xanthines led to potent and selective A3AR antagonists. 

Now at all four subtypes, non-xanthine classes have been introduced as antagonists and 

optimized through substitution of functional groups and pendant moieties. The low aqueous 

solubility seen with many of these optimized compounds has been partially overcome with 

the introduction of polar or charged groups. Thus, the introduction of selective adenosine 

antagonists for the therapeutic treatment of a variety of diseases remains hopeful.
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Figure 1. 
Signal transduction pathways associated with the activation of the human adenosine 

receptors. Abbreviations: α, α-subunit of G protein; βγ, βγ-subunits of G protein; ATP, 

adenosine triphosphate; cAMP, cyclic adenosine monophosphate; DAG, diacylglycerol; Gi, 

Gi family of G proteins; Gs, Gs family of G proteins; Go, Go family of G proteins; Gq, 

Gq family of G proteins; IP3, inositol (1,4,5)-trisphosphate; P, phosphate moiety; PKC, 

proteinkinase C; PLC, phospholipase C.
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Figure 2. 
General topology of all adenosine receptors obtained using a rhodopsin-based homology 

modeling (modified from Moto et al.11).
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Figure 3. 
Structure and binding affinities of xanthines as A1AR antagonists.
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Figure 4. 
Structures and binding affinities of non-xanthine adenosine A1AR antagonists.
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Figure 5. 
Structures and binding affinities of simplified A1AR antagonists.
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Figure 6. 
Structures and binding affinities of xanthines as A2AAR antagonists.
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Figure 7. 
Structures and binding affinities of triazolo-quinazoline and pyrazolo-triazolo-pyrimidines 

as A2AAR antagonists.
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Figure 8. 
Structures and binding affinities of triazolo-triazine and new tools as A2AAR antagonists.
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Figure 9. 
Structures and binding affinities of xanthine derivatives as A2BAR antagonists.
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Figure 10. 
Structures and binding affinities of polyheterocyclic derivatives as A2BAR antagonists.
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Figure 11. 
Structures and binding affinities of xanthine derivatives as human A3AR antagonists.
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Figure 12. 
Structures and binding affinities of flavonoid, dihydropyridine, and pyridine derivatives as 

human A3AR antagonists.
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Figure 13. 
Structures and binding affinities of polyheterocyclic systems as human A3AR antagonists.
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Figure 14. 
Structures and binding affinities of other heterocyclic derivatives as human A3AR 

antagonists.
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