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Abstract

Inter-chemical correlations in metabolomics and exposomics datasets provide valuable 

information for studying relationships among chemicals reported for human specimens. With 

an increase in the number of compounds for these datasets, a network graph analysis and 

visualization of the correlation structure is difficult to interpret. We have developed the Chemical 

Correlation Database (CCDB), as a systematic catalogue of inter-chemical correlation in publicly 

available metabolomics and exposomics studies. The database has been provided via an online 

interface to create single compound-centric views. We have demonstrated various applications of 

the database to explore: 1) the chemicals from a chemical class such as Per- and Polyfluoroalkyl 

Substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), 

phthalates and tobacco smoke related metabolites; 2) xenobiotic metabolites such as caffeine 

and acetaminophen; 3) endogenous metabolites (acyl-carnitines); and 4) unannotated peaks 

for PFAS. The database has a rich collection of 35 human studies, including the National 

Health and Nutrition Examination Survey (NHANES) and high-quality untargeted metabolomics 

datasets. CCDB is supported by a simple, interactive and user-friendly web-interface to retrieve 

and visualize the inter-chemical correlation data. The CCDB has the potential to be a key 

computational resource in metabolomics and exposomics facilitating the expansion of our 

understanding about biological and chemical relationships among metabolites and chemical 

exposures in the human body. The database is available at www.ccdb.idsl.me site.
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1. Introduction

Combined exposures to millions of different chemicals and its impact on the health and 

development of human body is a major component of the exposome (Vermeulen et al., 

2020). The chemical exposome is made up of nutrients and environmental non-food 

chemicals, consisting of natural and synthetic exogenous compounds (Barupal and Fiehn, 

2019; Matta et al., 2020; Rappaport et al., 2014). After entering the body, through 

biotransformation they also become part of the metabolome, which includes metabolic end 

products of the host and its commensal microbiota. This chemical space (e.g. industrial 

chemicals, nutrients, drugs, and bioactive internal molecules such as hormones and 

oxylipins) has significant influence on health trajectories and chronic health outcomes and 

is implicated in all diseases, including cancer as well as neurological, cardiovascular, and 

respiratory diseases (Drouin-Chartier et al., 2021; Jobard et al., 2021; Loftfield et al., 2021; 

Needham et al., 2021; Nemet et al., 2020; Nymand Ennis et al., 2019; Peters et al., 2021; 

Petrick et al., 2020; Schillemans et al., 2021; Tahir et al., 2021; Vangipurapu et al., 2020). 

Emerging evidence demonstrates that the scale, magnitude, and structural diversity (Guha 

et al., 2016; Rappaport et al., 2014) of the internal chemical space is vast and that many 

chemicals could be classified together because they are structurally and functionally related 

to each other (Paul-Friedman et al., 2019; Richard et al., 2021; Zimmermann et al., 2019). 

A systematic understanding and cataloging of targeted and untargeted analyses of small 

molecules measured in biospecimens is needed, as such datasets are critical to translate the 

information gathered from exposomics and metabolomics projects (Hendrix et al., 2015). 

These key datasets include: 1) population-scale biomonitoring surveys; 2) targeted analysis 

of multiple analytes in hypothesis-driven studies (typically 10–100); and 3) untargeted 

analysis of thousands of chemicals using a high-resolution mass spectrometry instrument 

(Barupal et al., 2021a; David et al., 2021). They cover key high priority exposome chemicals 

(Barupal et al., 2021b) including carcinogens (Hecht et al., 2016; Park et al., 2021), 

endocrine disrupters (Kassotis et al., 2020) and industry chemicals (Shearer et al., 2021). 

These core datasets support different statistical and bioinformatics analyses to reveal novel 

risk factors, hidden metabolic pathways, detrimental exposures and biomarkers for disease.

Computing the correlation coefficient using intensities of two chemicals is a fundamental 

statistical approach classically used to study enzyme kinetics (Frieden et al., 1976) and 

biotransformation (Hoffman et al., 1990). For modern multi-analyte targeted and untargeted 

assays, a pair-wise correlation matrix among detected chemicals is computed for almost 

every study because this matrix can be used to assess chemical clustering (Barupal et 

al., 2019a), peak annotation (DeFelice et al., 2017), heatmaps (Shen et al., 2020), and 

correlation network visualization (Barupal et al., 2019a). Correlation among gene expression 

data is often interpreted as evidence of a co-regulatory pathway such as a common 

transcription factor that controls expression of a group of genes (Obayashi et al., 2019; 
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Yin et al., 2021). As a corollary, with chemicals, correlation can reflect common exposure 

origins (Edmands et al., 2015) as well as chemical disposition, such as absorption pathways, 

biotransformation (Frederiksen et al., 2010; Saravanabhavan et al., 2013) and elimination 

as seen in drugs and their metabolic products (Guo et al., 2020; Guthrie et al., 2019). For 

exposomic projects, the probable interpretation of inter-chemical correlations is summarized 

in Fig. 1. The biological interpretation covers both kinetics (i.e. the metabolic fate of a 

chemical (Cohen et al., 2018)) and dynamics (i.e. the toxic effect of chemical exposure). 

The system connects to key metabolic pathways (Chen et al., 2020), and creates logical 

groupings of similar exposures in a chemical class (Barupal et al., 2019a). It can also 

indicate that two chemicals share an exposure source, such as occupation, consumer 

products (Stanfield et al., 2021), or food (McKillop et al., 2021). Despite the utility and 

application of inter-chemical correlation data, a database of these inter-chemical correlations 

has not yet been developed.

Metabolomic correlation network analyses show that chemically similar compounds and 

compounds belonging to the same pathway tend to show a higher correlation coefficient 

(Li et al., 2017; Liang et al., 2020; Toledo et al., 2017). However, creating and analyzing 

those networks for large and comprehensive metabolomics datasets that often have over 

ten thousand reported peaks is computationally challenging. It is even more difficult to 

create and analyze such network graphs for metabolomics datasets that are generated 

using multiple LC/GC assays (e.g. reverse phase (RP) and hydrophilic interaction liquid 

chromatography (HILIC) modes) for hundreds of samples (Barupal et al., 2019b). There is 

a need to catalogue these correlations in a systematic database for mining them in various 

interpretational contexts.

Herein, we describe a new database, CCDB, which catalogues pairwise inter-chemical 

correlations from publicly available metabolomics and exposomics studies. It is the largest 

database of pairwise correlations to date and provides new opportunities for interpreting 

metabolomics datasets for structural and biological relationships. The database is publicly 

available at www.ccdb.idsl.me.

2. Methods

2.1. Selection of studies

Table 1 provides the list of 35 studies and the details about the number of compounds 

and samples. For the development of the database, we constrained our approach to human 

specimen studies having at least 50 samples. To include a study in the CCDB, the data 

were reformatted into CCDB Excel template (SI File 1). The template requires three 

sheets 1) “data_dictionary” which contains the metadata for annotated and unannotated 

compounds 2) “data_matrix” which contains the intensity data for all peaks and 3) 

“sample_metadata” which contains the information about each sample. If data from 

different chromatography and ionization modes were available, data were stacked in the 

“data_dictionary” and “data_matrix” sheets. If data were not scaled or normalized, we 

applied a log2 transformation before computing the correlation.
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2.2. Processing of untargeted metabolomics studies

Only untargeted liquid chromatography high resolution mass spectrometry studies were 

selected. For each selected untargeted study (Table 1), we searched for a set of data types 

in the EBI-MetaboLights and Metabolomics WorkBench repositories. The set included 1) 

intensity values for annotated peaks 2) intensity values for un-annotated peaks 3) sample 

metadata and 4) metadata for the annotated peaks. For each reported peak, information about 

the analysis mode (reverse phase or hydrophilic interaction liquid chromatography) mass to 

charge ratio and retention time were collected in the “data_dictionary” tab in the CCDB 

template (https://github.com/idslme/chemcordb/blob/main/MTBSL204_INPUT.xlsx).

2.3. Processing of the National health and Nutrition Examination Survey (NHANES) data

Laboratory data for continuous variables were downloaded from the NHANES website 

(https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Laboratory) in the 

SAS export format (.XPT). Variables that reflected a chemical entity were used for 

calculating the inter-chemical correlation data (Table S1). Data files were imported in 

the R programming language and merged using the NHANES SEQN number as the 

linking identifier. NHANES data were used for computing correlation statistics without 

any transformation, normalization and scaling. Survey design weights do not affect the 

inter-chemical correlations, so they were not taken into account.

2.4. Processing of datasets generated by Metabolon Inc. platform

Metabolomics datasets generated by the Metabolon Inc. company available in the 

supplementary section of a published article (Germain et al., 2020) or via metabolomics 

repositories were included in CCDB. The company provides datasets with up to 2,000 

high-confidence chemicals reported for blood and urine specimens. If these data were not 

scaled or normalized, we applied a log2 transformation before computing the correlation. 

For the CCDB input format, only metabolite names reported in the table were used in the 

“data dictionary” tab of the CCDB format.

2.5. Correlation calculation

The Pearson correlation coefficient was used for computing a pairwise correlation among 

reported peaks within each study using the cor function available in the WGCNA R package 

(Langfelder and Horvath, 2008). A correlation between two intensity vectors was computed 

only if they had at least 10% non-zero values. We did not compute any p-values for 

the correlation statistics given that our goal was to create a database of inter-chemical 

correlations, not to find a biomarker of phenotype. Therefore, the application of a false 

discovery rate correction was not required. If p-values were computed, they would be 

expected to be extremely small considering the large sample sizes of the selected studies.

Overall average detection rate across all studies were 60% of above (Table S2). However, 

it is common for human biospecimen studies that several compounds, especially exposure-

related are detected only in a fraction of samples in a study. For example, Fluoro-

phenoxybenzoic acid was found only in 170/2694 (6.3%) samples (https://wwwn.cdc.gov/

Nchs/Nhanes/2007-2008/UPHOPM_E.htm#URD4FPLC). Therefore, for NHANES we have 
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used a criteria that a compound must be detected in at least 100 samples to be included in 

the computation of inter-chemical correlations.

2.6. CCDB indexing

For each selected study, a unique name directory was created in a webserver’s filesystem 

and the pairwise correlation data were saved inside the corresponding directory. For each 

compound, a vector of correlation against all other chemicals in the study were computed 

and then stored in the file system. For the naming convention, a distinct study-specific 

identifier was assigned to each reported chemical. Linux operating system Ubuntu 20.04 was 

used for the webserver.

2.7. Online interface and querying the CCDB

The online front interface was developed using the AngularJS 1.5 javascript framework 

and bootstrap. On the backend, a nginx proxy server was used to route the web requests 

to the data indexed in the CCDB. The opencpu framework (https://www.opencpu.org/) in 

R was used as a middleware to process each web request. For biomonitoring (NHANES), 

Metabolon Inc’s datasets and untargeted full-scan datasets, three separate types of web-

interfaces were developed. For visualizing the correlation data online, Vis.JS javascript 

library was utilized. If there are more than 100 hits that pass the correlation threshold only 

the first hundred hits are visualized in the compound centric network and full data were 

provided as Cytoscape network file.

For each study, a specific web-address was created (Table S3). For NHANES data, the query 

parameter is a variable identifier provided in the Table S1. For Metabolon Inc’s datasets, 

chemical names were utilized. For full-scan untargeted datasets, m/z with a mass tolerance 

was used to retrieve the matched peaks in the database. To obtain putative annotation hits, 

m/z values were matched against a list of compounds that have been associated with a 

published paper.

2.8. Chemical similarity enrichment (ChemRICH) analysis

ChemRICH is a database independent and p-value distribution-based approach to rank 

the chemical sets that are associated with an exposure (Barupal and Fiehn, 2017). As an 

example, cor.test function in R was used to obtain p-values and estimates for the correlation 

between Perfluorooctanoic acid (PFOA) intensities and other chemicals from the study 

IDSLCCDB0001 (Needham et al., 2021). These results and the subpathway information 

made available by the Metabolon Inc’s report were used as an input for the chemical 

similarity enrichment analysis using the ChemRICH software (Barupal and Fiehn, 2017).

2.9. Data and code availability

All data and resources are available at www.ccdb.idsl.me site. Core scripts to compute the 

inter-chemical correlation data from biomonitoring and metabolomics studies have been 

provided at https://github.com/idslme/CCDB.
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3. Results

3.1. CCDB is a comprehensive database of inter-chemical correlations for human 
biospecimens

To build a comprehensive database of inter-chemical correlations in human biospecimens, 

we found three types of chemical analyses that should be covered. These included 

1) biomonitoring surveys that have used a targeted analysis for chemical panels 2) 

metabolomics datasets having structurally annotated peaks 3) untargeted LC/GC-HRMS 

datasets having primarily unannotated peaks. In the first version of the CCDB, 35 studies 

were included (Table 1). The coverage for specimen types was 28 (blood), 3 (urine), 

4 (stool). The number of individual participants was 107,258 for NHANES with 607 

laboratory measurement variables. For 18 datasets that were generated by Metabolon Inc, 

the sample size ranged from 52 to 1,336 with the reported peak count ranging between 517 

and 1989. For 16 full-scan untargeted LC-HRMS studies, the sample size ranged between 

51 and 781 with a reported peak count of 459 to 81867, and 8 studies had reported only 

unannotated peaks that were referenced using m/z and retention time values. To update 

the database, we plan to regularly screen publicly available datasets in the Metabolomics 

Workbench, EBI MetaboLights, GNPS-Massive and consortium/cohort specific repositories 

and supplementary tables for published papers and include the relevant studies in the CCDB 

database. By covering three types of chemical measurement datasets, CCDB can provide 

unique opportunities to not only learn about the biological relationships among metabolites, 

but also prioritize chemicals that are yet to be annotated in untargeted LC/HRMS datasets.

3.2. A large number of inter-chemical correlations were observed in the catalogued 
studies

To populate the database, pair-wise correlations among reported chemicals were computed 

for each selected study. A computational pipeline has been established for an efficient 

indexing of a new dataset in the database. For that, a minimal level of manual curation 

was needed to prepare the dataset in the required format (See methods). We investigated 

the prevalence of strong inter-chemical correlations across the catalogued studies. A total 

of 121.4 million inter-chemical correlations across the studies passed a threshold of 0.6 

Pearson coefficient, indicating the large-scale and magnitude of strong correlation patterns 

that exists among chemical compounds measured for human biospecimens (Fig. 2). More 

of these correlations were observed for untargeted datasets which had thousands of mostly 

unannotated peaks. We noticed that endogenous compounds tend to show a higher number 

of significant correlations in comparison to exogenous and xenobiotic compounds (Fig. S1). 

This suggested that at a lower correlation threshold level, we can capture new relationships 

among chemicals that would otherwise be missed if the correlation data is visualized as a 

network graph created using a stringent threshold.

For example, by a Pearson coefficient cutoff of 0.4, we have noticed a relationship among 

blood glucose and acyl-choline lipids (Fig. S2) in the study MTBL136 (Stevens et al., 2018) 

which will be missed on a cutoff of 0.6. This association has been linked with energy 

disturbance and implicated in diabetes and chronic fatigue disease related studies. This 

underscores the need to access the correlation data in a flexible and interactive approach so 
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we can capture both the known and novel types of functional and biological relationships 

among reported chemicals.

3.3. Dataset type specific web-interfaces provided access to correlation data for both 
annotated and unannotated compounds

Because a large number of inter-chemical correlations were observed in the selected studies, 

it was not practical to visualize them all as a global network in Cytoscape network 

visualization (Shannon et al., 2003) or any other network graph visualization software unless 

the network graph is created using very stringent correlation thresholds, which will likely 

miss biological insights. Therefore, we stored all the correlation data for each compound 

from each study in a web-server’s file system. This allows us to readily load the correlation 

vector in the computer memory without the need to re-calculate them and enabled a faster 

response time for the online visualization. A network-based visualization highlighted a 

compound centric view of inter-chemical correlations, which can be updated by different 

correlation thresholds. A compound centric view was found to be a cleaner, readable and 

meaningful visualization than creating a network graph of all compounds reported in a study. 

It enables a focused investigation of a single compound and its chemical and biochemical 

relationships with other chemicals in a study. Three types of web interfaces were developed 

to provide a tailored access inter-chemical correlation data for biomonitoring, annotated 

peaks and unannotated data in metabolomics and exposomics assays (Fig. S3–5). These 

interfaces enabled queries by chemical names, CAS numbers, NHANES identifiers and 

mass to charge (m/z) ratio. For untargeted assays, data from different analysis modes were 

stacked which allowed to find peaks from the same compound in two analysis modes 

such as an ESI positive and negative or HILIC (+) or RP (+) (Fig. S6). Network data 

were also provided as Cytoscape network files to enable additional visualization strategies. 

These simple and flexible web-interfaces allowed a seamless and interactive access to the 

inter-chemical correlation data for a chemical from a study.

3.4. Compounds from a chemical class correlated strongly with each other in the 
NHANES biomonitoring dataset

First, we asked if compounds from a known chemical class correlate with each other and 

can be retrieved by querying a single chemical. We have observed that chemicals from 

well-recognized environmental exposures PCB, PFC and PAH groups indeed correlated with 

a representative chemical from these classes (Fig. 3). This probably suggested a common 

source of exposure for these chemicals. When cotinine, a biomarker of tobacco smoke 

was queried, it retrieved many other tobacco smoke related chemicals, providing a quick 

overview of biomarkers of smoke exposures.

This compound-centric retrieval of inter-chemical correlations in the NHANES 

biomonitoring dataset suggested that chemical exposures with similar structure and origin 

correlates strongly with each other.
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3.5. Stronger correlations among compounds belonging to a chemical class in 
metabolomics datasets

Next, we investigated if endogenous metabolites from a chemical class correlated with each 

other in a metabolomics dataset. We queried a ubiquitous endogenous blood metabolite, 

C-16 carnitine and retrieved its neighbors in the ST002089 study. At the Pearson correlation 

cutoff of 0.5, we retrieve mostly other saturated and unsaturated carnitines (Fig. 4). 

However, at the 0.4 Pearson correlation cutoff, we found that carnitines have biochemical 

relationships with fatty acids and acylcarnitines.

We learned that structurally similar compounds from an endogenous chemical class can 

have a high correlation coefficient among them, suggesting an enzyme activity that can 

react on any member of a chemical class, for instance the carnitine palmitoyltransferase I 

enzyme. As the Pearson correlation cutoff was lowered, we found long-distance biochemical 

relationships suggesting different chemical classes that may belong to a metabolic pathway, 

for instance, fatty acids and acylcarnitines. It also highlighted the unidentified metabolites 

that correlated strongly with C16-carnitine in the Metabolon Inc’s report may belong to 

the acyl-carnitine chemical class. In summary, by modifying the correlation cutoff, the 

CCDB interface enables retrieval of short and long-distance biochemical relationships in 

a metabolic network around a single chemical. This can be used for hypothesizing novel 

biochemical relationships in untargeted metabolomics datasets.

3.6. Products of xenobiotic metabolism

Next, we checked if metabolites of a xenobiotic compound correlate with the parent 

compound’s levels. In the NHANES biomonitoring survey, several metabolites of caffeine 

strongly correlated with caffeine levels (Fig. 5, upper panel). The same pattern was found 

in a metabolomics dataset (Fig. S7). Similarly, metabolites of mono-n-butyl phthalate 

(MnBP), a commonly used plasticizer correlated with structurally and metabolically related 

chemicals. MnBP also correlated with other phthalate molecules (Fig. 5 lower panel), 

indicating common exposure sources. It was expected that people exposed to dibutyl 

phthalates will excrete MnBP and mono-isobutyl phthalate in their urine (Qian et al., 

2015). For acetaminophen, a commonly used over the counter pain-reliever drug, its sulfate 

metabolite was found to be correlating with other acetaminophen metabolites (Fig. S8).

3.7. Putative annotation of peaks in untargeted data by correlation patterns

So far, we have learned from the NHANES and other high quality metabolomics dataset 

that chemicals within a chemical class or having the same origin or similar pathway 

tends to show strong correlations. Relying on this information, we explore the untargeted 

metabolomics datasets to test if m/z values for chemicals from a chemical class show 

inter-chemical correlations. To test this, we have queried the m/z value 498.9291 for the 

M–H adduct of perfluorooctanesulfonic acid (PFOS) in reverse phase chromatography data 

for the ST001430 study. It retrieved three other chemicals on in the correlation cutoff of 0.3, 

which matched to the M–H adducts for other common PFCs - PFOA and PFHxS (Fig. 6). In 

another untargeted study ST001231, we found that PFOS correlated with many more PFCs 

compounds (Fig. 6).
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3.8. Metabolic effect of a hazardous chemical - PFOA

Finally, we asked if we could utilize the inter-chemical correlation data to understand 

metabolic effects of a chemical exposure. Perfluorochemicals (PFCs) are concerning 

chemicals for public health. They are exclusively synthetic and accumulate in human body 

overtime. The ubiquitous exposures to them have been under high priority investigations 

since they may have contributed to the etiology of a range of chronic diseases. Endogenous 

metabolites that correlate with PFCs exposures may reflect the biological response to these 

hazardous chemicals. In several of Metabolon Inc’s reports, Perfluorooctanoic acid (PFOA) 

peak was annotated and found to be correlated with many chemicals when we indexed these 

reports in the CCDB.

Many metabolites that correlated with PFOA levels may belonged to the same pathway or 

chemical class. Identifying these chemical sets can assist in understanding the systematic 

metabolic effect of PFOA exposure which can span over multiple metabolic pathways 

(Fig. 7). Therefore, we have utilized ChemRICH analysis (Barupal and Fiehn, 2017) to 

identify the PFOA associated chemical sets, which suggested that PFOA exposure has a 

negative effect on most of the lipid sets except triglycerides (Sen et al., 2022; Sinisalu et al., 

2020). PFOA exposure may have also induced the amino acid and tocopherol metabolism 

pathways. This analysis highlighted that CCDB correlation data can also be used for 

investigating the metabolic hazardous effect of a chemical exposure of public health concern 

using a chemical set analysis approach.

4. Discussion

Inter-chemical correlations in biomonitoring, metabolomics and exposomics datasets is a 

useful source of information to expand our understanding about the relationships between 

different metabolites, metabolic pathways and the chemical exposures. There is a need to 

systematicaly catalogue and preserve these correlation patterns in a database to support 

useful queries. In this paper, we have presented the CCDB database which aims to build a 

catalogue of inter-chemical correlation in chemical measurement datasets and then provide 

users access to the correlation data using a web-interface. As of March 2022, the database 

includes data from from 35 studies covered. We plan to regularly screen literature as 

well as metabolomics and exposomics repositories to identify additional studies that can 

be catalogued in the CCDB. The database currently only hosts studies related to human 

specimens, however given the generic nature of the catalogued data and indexing pipelines, 

it will be able to incorporate studies of other species or sources as long as data are 

provided in the required format. We foresee a regular use of the database in the field of 

metabolomics and exposomics to explore about the biochemical and chemical relationships 

around a chemical that has been prioritized by a researcher using statistical or by text mining 

approaches. We believe the CCDB will be a core database resource in these fields where the 

interpretation of multi-analyte datasets remains a major challenge.

A large number of significant inter-chemical correlations are ubiquitously observed in these 

core datasets. An obvious question is “what are the reasons behind these correlations”? 

At present this is a challenging question because these correlations can be interpreted 

only in the context of known exposure sources, biochemical absorption pathways and 
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transformation reactions (Barupal et al., 2018). With time, and additional cataloguing of 

the exposome, the reasons behind these correlations will become more evident. Pathway-

centric approaches do not cover many high-priority exposome chemicals, including their 

chemical classes, source origin and transformation products. The CCDB is designed to 

address this issue by curating and interpreting inter-chemical correlations in exposomics and 

metabolomics core datasets while integrating information about functional and structural 

relationships among chemicals.

In the transcriptomics field, gene correlation or co-expression databases (Lee et al., 2020; 

Obayashi et al., 2019) have been developed for multiple species and disease conditions. 

These databases allow the identification of gene function(s) based on the similarity between 

two gene’s expression levels. They have shown that the similarity in expression levels reflect 

a shared function or regulation in the genetic networks. CCDB is in line with these databases 

to provide similar resource for chemicals. For the first time, we developed an inter-chemical 

correlation database to be used for metabolomics and exposomics hypothesis generation and 

characterization.

Due to the large number of analytes in targeted and untargeted assays, a traditional 

correlation network graph of all analytes (Kitagawa et al., 2019; Lau et al., 2018) using 

Cytoscape (Shannon et al., 2003) or similar software would not be meaningful to explore 

inter-chemical correlation data because the network graphs would be over-crowded requiring 

a stringent correlation threshold to draw the edges. Instead, we propose to use a single-

compound centric network to generate clear and readable networks that are easy to deploy 

in online interfaces. We suggest that investigators can explore correlation data in this 

interactive, compound centric way so that novel relationships among chemicals can be 

readily explored. In this way, CCDB fullfills critical gaps in the mining of metabolomics 

correlation data.

CCDB can play a role in peak annotation in untargeted metabolomics, because compounds 

belonging to the same class, metabolic pathway or source origin tends to correlate with each 

other. By querying a single compound’s m/z, we will be able to estimate the chemical class 

or in some cases the exact identity of a peak, although it will be only based on the MS match 

against a priority list of chemicals from a database. There is a need to develop further tools 

to utilize the isotope patterns, MS2 spectra to refine the annotation patterns. For full-scan 

untargeted datasets, m/z with a mass tolerance will be used to retrieve matched peaks in 

the database. In untargeted chemical analyses, many inter-chemical correlations are often 

observed due to non-biological causes. They are useful in annotating peaks in the untargeted 

dataset with isotope information (Semente et al., 2021), chemical fragments (J Guo et al., 

2021), and errors during data processing, such as duplicate peaks. These annotations can be 

transferred to other untargeted studies with many unidentified peaks, with the logic that pairs 

of the same compound will show similar inter-chemical correlation irrespective of analysis 

platform. It was shown in the example for PFCs and caffeine metabolites (Figs. 7 and S8). 

It is expected that some of the inter-chemical correlations may not be found across multiple 

studies or may not have the same strength, which can suggest that the underlying regulatory 

or source mechanisms are operating differently in two studies. These differences can be 

considered high priority hypothesis.
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In the future version of the CCDB, we may include with more tissue types and clinical 

outcome datasets (open-access) from the HHEAR program and other NIH supported 

consortiums. This may enable us to highlight the biomedical relevance of a compound-

centric correlation network that is created for a phenotype or outcome. Applications of 

text mining (Barupal et al., 2021b), chemoinformatics and other bioinformatics resources 

(Barupal et al., 2018) can also be explored to aid in the interpretation of inter-chemical 

correlations.

5. Conclusions

We describe CCDB, a new key database in the field of metabolomics and exposomics 

that provides access to fundamental information on the inter-chemical correlations among 

chemical signals derived from human specimens. The database has a potential to accelerate 

learning about the chemical and biochemical relationships among reported chemicals. It can 

be used for prioritizing chemicals, identifying new hypotheses, interpreting metabolomics 

datasets, annotating peaks in untargeted metabolomics datasets, and for investigating the 

metabolic effects of a known chemical exposures. Overall, CCDB will start a new wave of 

database types in the metabolomics and exposomics field that are more interpretive than just 

a catalogue of information.
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Fig. 1. 
Probable interpretations of correlation in targeted and untargeted GC/LC-HRMS datasets.
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Fig. 2. 
Prevalence of strong inter-chemical correlations across 35 studies in the CCDB. These 

are unique correlations. See the Table 1 for the description of each study and number of 

compounds. Table S3 shows the chemical detection rate across the indexed studies.
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Fig. 3. 
Correlations among chemicals within a class or having same source origin in the NHANES 

dataset. The correlation cutoff was 0.3 for PCB, PFC and Tobacco compounds, and 

0.4 for PAHs. Online network can be accessed at the site - https://chemcor.idsl.site/

originaldata/biomonitoring/#?studyid=NHANES. Edge thickness shows the correlation 

strength, by only the minimum and maximum correlation values are labelled on the 

edges for clarity. Thickness of edges are not comparable in two network figures. 

Abbreviations: Perfluorodecanoic acid (PFDeA), Perfluorohexane sulfonic acid (PFHxS), 

Perfluorononanoic acid (PFNA), Perfluoroundecanoic acid (PFUA), n-perfluorooctanoic 

acid (n-PFOA), n-perfluorooctane sulfonic acid (n-PFOS), Perfluoromethylheptane sulfonic 

acid isomers (SmPFOS), Polychlorinated Biphenyls (PCB); polyaromatic hydrocarbons 

(PAH), Perfluorinated compounds (PFC).
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Fig. 4. 
Compounds correlation with acylcarnitine 16:0 in the study ST002089. Edge thickness 

shows the correlation strength, by only the minimum and maximum correlation values are 

labelled on the edges for clarity. Thickness of edges are not comparable in two network 

figures. Abbreviations: acyl-carnitines (AC). Fatty acid (FA), glycerophosphoethanolamine 

(GPE), glycerophosphocholine (GPC).
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Fig. 5. 
Caffeine and phthalate metabolites in the NHANES survey data. Variable id 

URXMBP_PHTHTE_D (year 2005–2006) was used for mono-n-butyl phthalate (MnBP). 

Variable id URXMX7_CAFE_H (year 2013–2014) was used for caffeine. Label on 

the edges show the Pearson coefficient. Edge thickness shows the correlation strength, 

by only the minimum and maximum correlation values are labelled on the edges for 

clarity. Thickness of edges are not comparable in two network figures. Abbreviations: 

acetylamino-6-formylamino-3-methyluracil(AAMU).
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Fig. 6. 
Inter-chemical correlation among PFCs in the untargeted metabolomics datasets. Correlation 

threshold for ST001430 was 0.3 and for 0.6 for ST001231. White color node mean it was 

detected in by the reverse phase ESI (−) mode and a grey node means it was detected by 

a reverse phrase ESI (+) mode. Edge thickness shows the correlation strength, by only the 

minimum and maximum correlation values are labelled on the edges for clarity. Thickness of 

edges are not comparable in two network figures.
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Fig. 7. 
Chemical similarity enrichment analysis of PFOA and its correlation with other metabolites 

in the IDSLCCDB00001 study.
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