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Abstract

We present a deep neural network architecture that combines multi-scale spatial attention with 

temporal attention to simultaneously localize the language and motor areas of the eloquent 

cortex from dynamic functional connectivity data. Our multi-scale spatial attention operates on 

graph-based features extracted from the connectivity matrices, thus honing in on the inter-regional 

interactions that collectively define the eloquent cortex. At the same time, our temporal attention 

model selects the intervals during which these interactions are most pronounced. The final stage 

of our model employs multi-task learning to differentiate between the eloquent subsystems. Our 

training strategy enables us to handle missing eloquent class labels by freezing the weights in 

those branches while updating the rest of the network weights. We evaluate our method on resting-

state fMRI data from one synthetic dataset and one in-house brain tumor dataset while using 

task fMRI activations as ground-truth labels for the eloquent cortex. Our model achieves higher 

localization accuracies than conventional deep learning approaches. It also produces interpretable 

spatial and temporal attention features which can provide further insights for presurgical planning. 

Thus, our model shows translational promise for improving the safety of brain tumor resections.
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1 Introduction

The eloquent cortex consists of regions in the brain that are responsible for language and 

motor functionality. Neurosurgical procedures are carefully planned to avoid these regions 

in order to minimize postoperative deficits [1]. However, it can be difficult to accurately 

localize the eloquent cortex due to its varying anatomical boundaries across people [2]. 

The language network has especially high interindividual variability and can appear on 

one or both hemispheres [3]. The gold standard for preoperative mapping of the eloquent 

areas is intraoperative electrocortical stimulation (ECS) [1]. While reliable, ECS requires the 

patient to be awake and responsive during surgery and it carries much greater risk when 

performed on obese patients or individuals with respiratory problems [4]. For these reasons, 

task-fMRI (t-fMRI) has emerged as a noninvasive complement to ECS [5]. However, t-fMRI 

activations are unavailable for certain populations, like young children, the cognitively 

impaired, or aphasic patients, due to excessive head motion or an inability to perform the 

task protocol [6]. Resting-state fMRI (rs-fMRI) is an alternative modality that captures 

spontaneous fluctuations in the brain when the subject is awake and at rest. In contrast 

to t-fMRI paradigms, which are designed to activate an isolated cognitive region, rs-fMRI 

correlations can be used to simultaneously identify multiple cognitive systems [7]. Thus, 

rs-fMRI is an exciting alternative to t-fMRI activations for localizing sub-regions associated 

with the eloquent cortex [6,8,9].

Prior work that uses rs-fMRI for eloquent cortex localization can be broadly divided into 

three categories [10]. In the simplest case, a seed region of interest (ROI) is used to identify 

highly-correlated voxels in the eloquent cortex [11,12]. A more sophisticated method uses 

independent component analysis (ICA) to delineate functionally coherent systems in the 

brain, from which the eloquent networks can be identified [13,14]. While promising, these 

methods require expert intervention, either via the choice of seed ROI or the component 

selection. Furthermore, early studies are limited by the tremendous variability of rs-fMRI 

data. In fact, the works of [13,14] reveal highly variable accuracies across a large patient 

cohort (N > 50), particularly when mapping the language network.

The use of deep learning has fueled interest in end-to-end methods for eloquent cortex 

localization. For example, the work of [15] has proposed a multilayer perceptron that 

classifies voxels of the rs-fMRI data into one of seven functional systems based on seed 

correlation maps; this method was extended in [16] to handle tumor cases. While the 

perceptron has high sensitivity across several patients, its specificity is not quantified. 

Also, since the perceptron is trained on healthy subjects, it cannot account for neural 

plasticity effects from to the tumor. The authors of [8] propose the first end-to-end graph 

neural network (GNN) that leverages functional connectivity to localize a single eloquent 

subsystem. While the GNN outperforms a perceptron architecture, separate GNNs must be 

trained and evaluated for each eloquent area, which requires more data and longer training 

times. In addition, the GNN specificity is quite low, particularly for language. Finally, the 

work of [9] extends the original GNN to track dynamic connectivity changes associated with 

the eloquent cortex. However, the language localization accuracy and specificity are too low 

for clinical practice.
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Recent work in the deep learning literature has introduced the idea of spatial attention, 

which mimics information processing in the human visual system. For example, a 2D 

spatial attention model learns where in the image to focus, thus improving the quality of 

the learned representations [17]. The notion of attention has been extended to the time 

domain in applications such as video processing [18]. In line with these works, we develop 

a spatiotemporal attention model to localize eloquent cortex from dynamic whole-brain 

rs-fMRI connectivity matrices. Unlike a 2D image, our “spatial” field corresponds to 

salient interactions in connectivity data, captured via graph-based convolutional filters. Our 

multi-scale spatial attention model pools three levels of granularity to amplify important 

interactions and suppress unnecessary ones. Then, our temporal attention mechanism selects 

key intervals of the dynamic input that are most relevant for either language or motor 

localization. Our model operates on a fine resolution parcellation and can handle missing 

training labels. We use t-fMRI activations as ground truth labels and validate our framework 

on rs-fMRI data from 100 subjects in the publicly available Human Connectome Project 

(HCP) [19] with artificially-inserted tumors as well as 60 subjects from an in-house dataset. 

Our model uniformly achieves higher localization accuracies than competing baselines. Our 

attention mechanisms learn interpretable feature maps, thus demonstrating the promise of 

our model for preoperative mapping.

2 A Multi-Scale Spatial and Temporal Attention Network to Localize the 

Eloquent Cortex

Our framework assumes that while the anatomical boundaries of the eloquent cortex may 

shift across individuals, its resting-state functional connectivity with the rest of the brain will 

be preserved [14]. Adding a layer of complexity, the eloquent cortex represents a relatively 

small portion of the brain. This is the motivation for our spatial attention mechanism, i.e., 

to zone in on the key connectivity patterns. Furthermore, the networks associated with the 

eloquent cortex will likely phase in and out of synchrony across the rs-fMRI scan [9]. Our 

temporal attention mechanism will track these changes. Fig. 1 shows our overall framework. 

As seen, we explictly model the tumor in our dynamic similarity graph construction and feed 

this input into a deep neural network which uses specialized convolutional layers designed to 

handle connectome data [20].

2.1 Input Dynamic Connectivity Matrices

We use the sliding window technique to construct our dynamic inputs [21]. Let N be the 

number of brain regions in our parcellation, T be the total number of sliding windows (i.e., 

time points in our model), and Wt
t = 1
T ∈ ℝN × N be the dynamic similarity matrices. Wt is 

constructed from the normalized input time courses, Xt
t = 1
T ∈ ℝG × N where each Xt is a 

segment of the rs-fMRI obtained with window size G. Formally, the input Wt ∈ ℝN × N is

Wt = exp Xt TXt − 1 . (1)
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Our setup must also accomodate for the presence of brain tumors that vary across patients 

and are generally believed to represent non-functioning areas of the brain. Therefore, we 

follow the approach of [8,9] and treat the corresponding rows and columns of the simlarity 

matrix as “missing data” and fixing them to zero (shown by black bars in LHS of Fig. 1).

2.2 Multi-scale Spatial Attention on Convolutional Features

Our network leverages the specialized convolutional layers developed in [20] for feature 

extraction on each of the dynamic inputs. The edge-to-edge (E2E) filter (pink in Fig. 1) 

acts across rows and columns of the input matrix Wt. This cross-shaped receptive field can 

accommodate node reordering, and it mimics the computation of graph theoretic measures. 

Mathematically, let d ∈ {1,···,D} be the E2E filter index, rd ∈ ℝ1 × N be the row filter d, 

cd ∈ ℝN × 1 be the column filter d, b ∈ ℝD × 1 be the E2E bias, and φ(.) be the activation 

function. For each time point t the feature map Ad, t ∈ ℝN × N is computed as follows:

Ai, j
d, t = ϕ Wi, :

t rd T + cd TW: , j
t + bd . (2)

The E2E filter output Aij
d, t for edge (i, j) extracts information associated with the 

connectivity of node i and node j with the rest of the graph. We use the same D E2E 

filters {rd, cd} for each time point to standardize the feature computation.

Fig. 2 illustrates our multi-scale spatial attention model. The attention model acts on 

the E2E features and implicitly learns “where” informative connectivity hubs are located 

for maximum downstream class separation. The multi-scale setup uses filters of different 

receptive field sizes to capture various levels of connectivity profiles within the E2E 

features [22]. Following [17], we apply an average pooling and max pooling operation 

along the feature map axis and concatenate them to generate an efficient feature descriptor. 

Mathematically,

Havg = 1
DT ∑

d = 1

D
∑
t = 1

T
Ad, t

(3)

is the N × N average pool features and

Hmax
i, j = max

d, t
Ai, j

d, t
(4)

is the N × N max pool features. Note that we extract the maximum and average activations 

across all feature maps and time points simultaneously. We then apply a multi-scale 

convolution to this feature descriptor, which implicitly identifies the deviation of the 

maximum activation from the neighborhood average, thus highlighting informative regions 

to aid in downstream tasks [23].

We apply three separate convolutions with increasing filter sizes to the concatenated feature 

descriptor to obtain different scales of resolution of our analysis. The convolution outputs 

S1, S2 and S3 ∈ ℝN × N are computed using a 3 × 3, 7 × 7, and 11 × 11 kernel, respectively, 
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on the concatenated maps [Havg;Hmax]. The convolutions include zero padding to maintain 

dimensionality. Each successive convolutional filter has an increasing receptive field size to 

help identify various connectivity hubs within the E2E layer. We obtain our spatial attention 

map S ∈ ℝN × N with an element-wise softmax operation on the weighted summation, 

derived using a 1×1 convolution with bias b, across the three scales;

S = Softmax ∑
i = 1

3
wiSi + b . (5)

This weighted combination is designed to highlight salient hubs in the network which appear 

across different spatial scales. The softmax transforms our attention into a gating operation, 

which we use to refine our convolutional features Ad,t by element-wise multiplication with 

S. Let ☉ denote the Hadamard product. The refined features Ad, t ∈ ℝN × N are computed as

Ad, t = Ad, t ⊙ S . (6)

Finally, we condense our representation along the column dimension by using the edge-

to-node (E2N) filter [20]. Our E2N filter (brown in Fig. 1) performs a 1D convolution 

along the columns of each refined feature map to obtain region-wise representations. 

Mathematically, let gd ∈ ℝN × 1 be E2N filter d and p ∈ ℝD × 1 be the E2N bias. The E2N 

output ad, t ∈ ℝN × 1 from input Ad, t
 is computed as

ai
d, t = ϕ Ai, :

d, tgnd + pd . (7)

Again, we apply the same E2N filters to each time point. At a high level, the E2N 

computation is similar to that of graph-theoretic features, such as node degree. The E2N 

outputs are fed into both the temporal attention model (bottom branch of Fig. 1) and the 

multi-task node classifier (right branch of Fig. 1).

2.3 Temporal Attention Model and Multi-task Learning

We use a 1D convolution to collapse the region-wise information into a low dimensional 

vector for our temporal attention network. Let kd ∈ ℝN × 1 be the weight vector for filter d 

and j ∈ ℝD × 1 be the bias across all filters. A scalar output qd,t for each input ad,t is obtained

qd, t = ϕ kd Tad, t + jd . (8)

The resulting T × D matrix [qd,t]T is fed into a fully-connected layer of two perceptrons with 

size D to extract our temporal attention weights. We obtain one language network attention 

vector zl ∈ ℝT × 1 and one motor network attention vector zm ∈ ℝT × 1, which learn the time 

intervals during which the corresponding eloquent subnetwork is more identifiable. The FC 

attention model is more flexible than a recurrent architecture and can be easily trained on 

small clinical datasets (<100 subjects). We observed that the FC attention shows a good 

trade-off between representation and robustness to training with a limited sample size.
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In parallel, the top branch of Fig. 1 applies a cascade of two FC layers to the E2N 

topological features for our downstream multi-task classification. In this work, we are 

interested in identifying four separate sub-regions of the eloquent cortex, as depicted by the 

multi-task FC (MT-FC) layers in Fig. 1. Let Lt, M1
t , M2

t , and M3
t ∈ ℝN × 3 be the output of 

the language, finger, foot, and tongue MT-FC layers, respectively, at time t. We consolidate 

information along the time axis using an element-wise multiplication with our temporal 

attention vectors, as shown in our loss function below. The N × 3 matrix represents the 

region-wise assignment into one of three classes; eloquent, tumor, and background, where 

the tumor class is introduced to disentangle the effect that the zero entries have on learning 

the eloquent class.

We use a weighted cross-entropy loss function which is designed to handle membership 

imbalance in multi-class problems. Let δc be the risk factor associated with class c. If δc 

is small, then we pay a smaller penalty for misclassifying samples that belong to class c (c 
= 1, 2, 3). Since the language network is generally smaller than the motor network, we set 

different values for the language class δc
l  and motor classes δc

m  respectively. Let Yl, Ym1, 

Ym1, and Ym3 ∈ ℝN × 3 be one-hot encoding matrices for the ground-truth class labels of the 

language and motor subnetworks. Our loss function is the sum of four terms:

ℒΘ Wt
t = 1
T , Y = ∑

n = 1

N
∑

c = 1

3
[−δc

llog σ ∑
t = 1

T
Ln, c

t ⋅ zl, t Yn, c
l

LanguageLossℒl

−δc
mlog σ ∑

t = 1

T
M1n, c

t ⋅ zm, t Yn, c
m1

Finger Lossℒm1

−δc
mlog σ ∑

t = 1

T
M2n, c

t ⋅ zm, t Yn, c
m2

Foot Lossℒm2

−δc
mlog σ ∑

t = 1

T
M3n, c

t ⋅ zm, t Yn, c
m3

TongueLossℒm3

(9)

where σ(·) is the sigmoid function. Our loss in Eq. (12) allows us to handle missing 

patient training labels for the eloquent subsystems across patients. Specifically, we freeze 

the branches corresponding to missing data and backpropagate the known loss terms. This 

backpropagation technique will refine the shared layers prior to the MT-FC layer, thus 

maximizing the information used from our training data. Our model is flexible to handle any 

number of functional systems by changing the number of MT-FC layers and kernels in the 

temporal attention.

Implementation details.—We implement our network in PyTorch using the SGD 

optimizer with weight decay = 5 × 10−5 for parameter stability, and momentum = 0.9 to 

improve convergence. We train our model with learning rate = 0.005 and 140 epochs, which 

provides for reliable performance without over-fitting. We specified D = 50 feature maps in 

the convolutional branch. The LeakyReLU with slope = −0.1 was used for φ(.).

We compare the performance of our model against three baselines:
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1. Random forest on dynamic connectivity matrices (RF)

2. A fully-connected network with temporal attention (FC-tANN)

3. Same as proposed without spatial attention (w/o sp. attn.)

The first baseline is a traditional machine learning RF approach to our problem. The FC-

tANN maintains the same number of parameters as our model but has fully-connected layers 

instead of convolutional layers. Finally, we compare against our same architecture without 

spatial attention to observe the performance gain of focusing on different neighborhoods. To 

avoid biasing performance, we selected the hyperparameters using a development set of 100 

subjects downloaded from the Human Connectome Project (HCP). The final settings are: δm 

= (1.48, 0.44, 0.18), δl = (2.16, 0.44, 0.18) for proposed, δm = (1.57, 0.42, 0.22), δl = (2.31, 

0.42, 0.22) for FC-tANN and δm = (1.51, 0.46, 0.19), δl = (2.22, 0.46, 0.19) for w/o sp. attn.

3 Experimental Results

3.1 Dataset and Preprocessing

We evaluate the methods on rs-fMRI data from an additional HCP cohort [19] in which 

we artificially insert “fake tumors” by zeroing out entries of the connectivity matrix, and 

an in-house brain tumor dataset. All subjects underwent t-fMRI scanning, which we use to 

derive pseudo ground-truth labels for the language, finger, tongue and foot subnetworks. Fig. 

3 shows each of the cognitive networks of interest. Details on the acquisition paramters, 

sequencing, and preprocessing of the HCP dataset can be found in [19].

Our in-house tumor dataset contains 60 patients. Since the t-fMRI data was acquired for 

clinical purposes, not all patients in the in-house dataset performed each task. The number 

of subjects that performed the tasks are displayed in the left column of Table 1. The fMRI 

data was acquired using a 3.0 T Siemens Trio Tim (TR = 2000 ms, TE = 30 ms, FOV = 24 

cm, res = 3.59 × 3.59 × 5 mm). Preprocessing steps include slice timing correction, motion 

correction and registration to the MNI-152 template. The rs-fMRI was further bandpass 

filtered from 0.01 to 0.1 Hz, spatially smoothed with a 6 mm FWHM Gaussian kernel, 

scrubbed using the ArtRepair toolbox [24] in SPM8, linearly detrended, and underwent 

nuisance regression using the CompCor package [25]. A general linear model implemented 

in SPM8 was used to obtain t-fMRI activation maps.

We used the Schaefer atlas to obtain N = 1000 brain regions [26], which is on par with 

the resolution of eloquent areas we are trying to detect. Tumor boundaries for each patient 

were manually delineated by a medical fellow using the MIPAV software package [27]. 

The fake tumors added to the HCP dataset are randomly positioned but created to be 

spatially continuous with the same size as the real tumor segmentations we obtained from 

the in-house dataset. An ROI was determined as belonging to the eloquent class if a majority 

of its voxel membership coincided with that of the t-fMRI activation map. Tumor labels 

were determined in a similar fashion according to the MIPAV segmentations.
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3.2 Localization Results

We use 10-fold cross-validation to evaluate each method. Table 1 shows the performance 

metrics for detecting the eloquent class. In the second column, the number next to the task 

refers to the number of subjects whom we have training labels. As highlighted in bold, our 

proposed method outperforms the baseline algorithms in nearly all cases. We observe that 

the spatial attention model improves the specificity by improving the ratio of true negatives 

to false positives. Our performance gains are most notable regarding the language network, 

which is arguably the most challenging rea to localize during preoperative mapping. Fig. 4 

shows the ground truth (blue) and predicted (yellow) for all four systems in a challenging 

bilateral language subject, with both the proposed and w/o spatial attention methods. The 

model without spatial attention overpredicts the right-hemipshere language nodes, and 

misses various parts of the motor strip. Our model can localize functional regions right 

on the tumor boundary that the baseline method misses as well, which is relevant for clinical 

practice.

3.3 Feature Analysis

To better understand how the attention models improve the localization performance, Fig. 5 

illustrates the spatial attention (left) and temporal attention weights (right) for our in-house 

dataset. These plots are generated by summing across the rows of the attention map S
and plotting the top ten nodes in one unilateral language and one bilateral language case. 

The spatial attention model is accurately able to capture right hemisphere activation in the 

bilateral case while correctly omitting this region in the unilateral case. This lateralization 

ability may be why localization performance increases for the language network. On the 

right-hand side of Fig. 5, we show the temporal attention weights for both language and 

motor networks across all patients and time. The language and motor networks phase in and 

out at different times, which improves localization by identifying important time intervals 

within the scan for each network.

4 Conclusion

We present a novel deep learning framework that leverages specialized convolutional layers, 

multi-scale spatial attention, temporal attention, and multi-task learning to identify critcal 

regions of the eloquent cortex in tumor patients using dynamic resting-state connectivity. 

We validate our method on a real in-house dataset and a synthetic dataset to show 

generalizability of our method. We outperform machine and deep learning baselines by a 

large margin. Finally, we show the spatial and temporal attention features, which can be 

important biomarkers for simultaneous language and motor network identification. Future 

work includes exploring different pooling operations to improve atlas selection. Taken 

together, our results show promise for using rs-fMRI for presurgical planning of resection 

procedures.
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Fig. 1. 
Top: Convolutional features extracted from dynamic connectivity are refined using a multi-

scale spatial attention block. Bottom: The dynamic features are input to an ANN temporal 

attention network to learn weights zl (language) and zm (motor). Right: Multi-task learning 

to classify language (L), finger (M1), tongue (M2), and foot (M3) subnetworks, where each 

subnetwork is a 3-class classification which is shown in red, white, and blue respectively on 

segmentation maps.
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Fig. 2. 
Our multi-scale spatial attention model extracts features from max pool and average pool 

features along the channel dimension. We use separate convolutional filters with increasing 

receptive field size to extract multi-scale features, and use a 1 × 1 convolution and softmax 

to obtain our spatial attention map S. This map is element-wise multiplied along the channel 

dimension of the original E2E features.
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Fig. 3. 
Left: One sagital and axial view of a language network. Right: Coronal views of the motor 

sub-networks for one patient.
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Fig. 4. 
Ground truth (blue) and predicted (yellow) for a bilateral language subject.
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Fig. 5. 
Left: Heat map for the nodes with highest total spatial attention for a unilateral and 

a bilateral language subject. Right: Temporal attention weights for language and motor 

networks. The black arrows indicate networks phasing in and out with each other.
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Table 1.

Overall accuracy, and ROC statistics. The number in the second column indicates number of patients who 

performed the task.

Dataset Task Method Accuracy Sens. Spec. F1 AUC

HCP

Language (100) RF 0.58 0.32 0.55 0.42 0.5

FC-tANN 0.65 0.61 0.58 0.59 0.64

w/o Sp. Attn. 0.77 0.73 0.68 0.69 0.72

Proposed 0.83 0.79 0.81 0.82 0.80

Finger (100) RF 0.70 0.53 0.67 0.64 0.56

FC-tANN 0.76 0.70 0.72 0.73 0.72

w/o Sp. Attn. 0.87 0.83 0.78 0.80 0.86

Proposed 0.91 0.86 0.85 0.85 0.88

Foot (100) RF 0.67 0.48 0.65 0.62 0.53

FC-tANN 0.79 0.77 0.69 0.73 0.76

w/o Sp. Attn. 0.86 0.86 0.83 0.84 0.85

Proposed 0.90 0.87 0.86 0.86 0.88

Tongue (100) RF 0.70 0.46 0.68 0.63 0.53

FC-tANN 0.75 0.72 0.68 0.72 0.73

w/o Sp. Attn. 0.81 0.83 0.80 0.81 0.81

Proposed 0.89 0.87 0.85 0.85 0.86

In-house

Language (60) RF 0.65 0.40 0.66 0.59 0.53

FC-tANN 0.78 0.76 0.70 0.71 0.73

w/o Sp. Attn. 0.84 0.85 0.74 0.79 0.82

Proposed 0.93 0.91 0.85 0.87 0.91

Finger (36) RF 0.67 0.43 0.67 0.61 0.55

FC-tANN 0.76 0.75 0.69 0.71 0.77

w/o Sp. Attn. 0.88 0.88 0.79 0.82 0.85

Proposed 0.91 0.88 0.85 0.84 0.89

Foot (17) RF 0.68 0.49 0.65 0.60 0.56

FC-tANN 0.79 0.73 0.68 0.72 0.75

w/o Sp. Attn. 0.86 0.86 0.78 0.80 0.82

Proposed 0.89 0.87 0.83 0.84 0.86

Tongue (39) RF 0.69 0.38 0.70 0.64 0.52

FC-tANN 0.79 0.78 0.71 0.74 0.76

w/o Sp. Attn. 0.86 0.85 0.77 0.81 0.84

Proposed 0.90 0.87 0.82 0.84 0.87
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