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ABSTRACT
We propose a method for detecting a Guttman effect in a complete
disjunctive table U with Q questions. Since such an investigation is
a nonsense when the Q variables are independent, we reuse a pre-
vious unpublished work about the chi-squared independence test
for Burt’s tables. Then, we introduce a two-steps method consisting
in plugging the first singular vector from a preliminary Correspon-
denceAnalysis (CA) ofU as a score x into a subsequent singly-ordered
Ordinal Correspondence Analysis (OCA) of U. OCAmainly consists in
completing x by a sequence of orthogonal polynomials supersed-
ing the classical factors of CA. As a consequence, in presence of a
pure Guttman effect, we should in principle have that the second
singular vector coincide with the polynomial of degree 2, etc. The
hybrid decomposition of the Pearson chi-squared statistics (resulting
fromOCA) used in associationwith permutation testsmakes possible
to reveal such relationships, i.e. the presence of a Guttman effect in
the structure of U, and to determine its degree - with an accuracy
depending on the signal to noise ratio. The proposedmethod is suc-
cessively tested on artificial data (more or less noisy), a well-known
benchmark, and synchrotron X-ray diffraction data of soil samples.
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1. Introduction

The Guttman effect (also named arch or horseshoe effect) is frequently met in displays
resulting fromCorrespondence Analysis (CA) [14,30], or other multivariate methods. The
characteristic of this phenomenon is that the second and sometimes higher factors have a
strong nonlinear relationship with the first factor. Theoretical models [14,18] show that in
this case the kth factor is an orthogonal polynomial of degree k in the first factor.

This phenomenon is an avatar of the scalogram analysis introduced in Psychometry by
L. Guttman (see Section 2), as Benzécri [14,17] noticed. Such a structure is of paramount
importance in Psychometry, because it corresponds to a latent (and desired) general factor
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(of intelligence, etc.), but it is considered as a nuisance in Ecology, where it often corre-
sponds to some well-known structure (depth or temperature gradient, etc.). Thus, while
psychometricians considered scalogram analysis as an important tool, Hill and Gauch [37]
surprisingly claimed that ‘the arch effect is simply a mathematical artifact, corresponding
to no real structure in the data’ and tried to remove it.

Hill and Gauch [37] therefore proposed an heuristic ‘detrending-by-segment’
algorithm, giving rise to the so-called ‘Detrended Correspondence Analysis’ (DCA). How-
ever DCA is a controversial method [38], because of the frequent instability resulting from
its ad hoc detrending procedure. More recently, Ter Braak [55] proposed an alternative
‘detrending-by-polynomials’ method, which does not seem to work much better than the
original DCA [42]. However, postulating the existence of such nonlinear relationships
between principal axes before erasing them is far from being innocent: if such a struc-
ture is absent from the data, this can lead to artifacts (think to the Slutsky-Yule effect in
time series analysis), or loss of information [18].

So, it seems that preliminary questions to answer to are: ‘Is there really a Guttman effect
in the data? What is the order of this phenomenon (degree of the polynomial)?’

In this paper, we tackle these questions by combining CAwith Ordinal Correspondence
Analysis (OCA) to produce tests and graphical tools designed for this purpose. The pro-
posed method is successively tested on artificial data, a well-known benchmark (Chinese
vases data from [24]), and a dataset synchrotron X-ray diffraction pattern obtained on soil
features.

2. Scalogram analysis

This term was coined in 1944 by Louis Guttman [32], as ‘a procedure for testing the
hypothesis that a universe of qualitative data is a scale for a given population of people’.

Definition 2.1 ([32]): The universe of content is said to be scalable for the population if it
is possible to rank the people from high to low in such a fashion that from a person’s rank
alone we can reproduce his response to each of the items in a simple fashion.

Guttman’s method for elaborating such a scale consisted in ranking people thanks
to weights assigned to the categories associated with each question. Adding up these
weights, one obtains a score for each person, depending on her opinion (typically: favor-
able/unfavorable). In a (possible) second step, categories could be combined, and people
be ranked again, giving rise to the scale and the sorted table of observations. In addition
to the scale, which typically ranks people from unfavorable to favorable, Guttman defined
the intensity, which codes the strength of opinions, and noticed that, plotting the intensity
against the scale, one generally obtains a more or less parabolic curve [32,33], which could
be reasonably fitted by a polynomial of degree 2. Furthermore, analyzing the sorted table
through Principal Components Analysis (PCA), Guttman observed that when the universe
of content is scalable, the nth component looks like a polynomial of degree n.

A bit later, Benzécri [14,17] showed that scalograms can be easily built from a contin-
gency table T by ranking its I rows and J columns along the first factor of the Correspon-
dence Analysis of T (if the universe of content is scalable, of course). More precisely, he
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demonstrated [14, pp. 192–196.] that the factors {ϕJ
k : k ≥ 1} associated with the ques-

tions, issued from CA of a perfect scalogram, converge towards the family of Legendre
polynomial when the number of questions becomes infinite. In addition, Benzécri demon-
strated that in the case of normal correspondences, the factors converge towards Hermite
polynomials. For an illustration, see [14, pp. 481–486]; see also [18].

3. Variants of correspondence analysis (CA)

3.1. Simple CA

Consider some frequency tableT of size I × J and of grand totalN, where I (resp. J) denotes
the modalities of a single nominal variable (a question). Let’s denote P := T/N the asso-
ciated probability table, Pi :=

∑
j≤J

Pi,j (resp. Pj :=
∑
i≤I

Pi,j ), and PI := (P1, . . . , Pi, . . . , PI)

(resp. PJ := (P1, . . . , Pj, . . . , PJ)) the marginal column (resp row) profiles.The aim of sim-
ple CA is to highlight the ways P differs from the I × J matrix PI ⊗ PJ of general entry
Pi Pj (independence of the rows and columns). Practically, it consists in performing the
Generalized Singular Value Decomposition [30] of the matrix � of general entry θi,i :=
(Pi,j)/(Pi Pj), giving rise to a system of singular values and singular vectors (λm;ϕI

m,ϕ
J
m) :

0 ≤ m ≤ M∗ := min(I − 1, J − 1) − 1, with the trivial factor (λo;ϕI
0,ϕ

J
0) = (0, 1I , 1J).

The singular vectors are centered and normed:

∀ (
m, p

) ∈ M∗ × M∗,
∑
i≤I

Pi ϕI
m,i ϕ

I
p,i =

∑
j≤J

Pj ϕJ
m,j ϕ

J
p,j = δ

p
m (1)

were δ
p
m :=

{
1 if m = p
0 if m �= p

is the usual Dirac symbol.

In addition, they fulfill

∀ (
m, p

) ∈ M∗ × M∗,
∑

(i,j)∈I×J

Pi,j ϕI
m,i ϕ

J
p,j = λmδ

p
m. (2)

One obtains this way a first decomposition of the Pearson chi-squared statistics X2 along
the singular vectors:

X2

n
=

M∗∑
m=1

λ2m. (3)

Remark 3.1: Other kinds of tables (similarity measures, ratings, etc) can be submit-
ted to CA [14]; they are not considered in this study, which focuses exclusively on true
contingency and indicator tables.

3.2. A natural extension: multiple correspondence analysis (MCA )

The above contingency table T can be constructed from the complete disjunctive table
U = (U1 | U2) ∈ N × (I + J) with N rows and (I + J) columns, assigning to the rth indi-
vidual the row r of U obtained by concatenation of the pair of logical vectors describing
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this individual. It is well-known [15,16,43] that the CA ofU is equivalent (with slightly dif-
ferent eigenvalues and eigenvectors [5, Section 6.2]) to the CA of the Burt tableBU := UtU
or to the CA of T, which is the sub-table Ut

1U2 of BU. Consequently, classical CA can be
straightforwardly generalized to the analysis of Q>2 questions (MCA). MCA consists in
analyzing the complete disjunctive tableU = (U1 | U2 | · · · | UQ) ∈ N × |W(Q)| of width

|W(Q)| :=
Q∑

q=1
wq, where wq denote the number of modalities (width) of the qith question.

We will denoteW(Q) = W1 ⊕ W2 ⊕ · · ·WQ (where⊕ is the concatenation operation) the
direct sum of all the possible answers to the Q questions.

Any Burt’s table issued from an experience can be considered as a realization of a
multinomial distribution, whose parameters consist in some probability matrix PW(Q),W(Q)

equipped with a special blocks structure exclusively depending on (w1, . . . ,wQ).
Due to the special structure of U , issues from the associated MCA have several

characteristics [43]:

• the rank of the analysis is less thanMU := |W(Q)| − Q ≤ M∗
• the total variance is ((|W(Q)|)/Q) − 1
• the part of variance associated with the qth question is (wq − 1)/Q.

Remark 3.2: Lebart and Saporta [44] reported that the foundations ofMCAwere also laid
by Guttman, in 1941!

4. Significance of eigenvalues in PCA, CA andMCA

4.1. Inference about eigenvalues in PCA, in connectionwith the bootstrap
approach

Theoretically, the distribution of the sample covariance matrix of a random vector of size J
obeyingN (0,�) is known: it is a Wishart distribution, whose eigenvalues are also known
[4]. When � = IJ , the expression of these eigenvalues is less complicated [43] but it is still
very complex and, above all, this case is quite unrealistic, with very little practical utility.
Consequently, researchers used instead simulations, or resampling methods such as the
bootstrap.

Practically, in the large sample case (N 
 J), the sample covariance �̂ can be considered
as a good estimate of � and one can accept that λk(Σ) ≈ λk(�̂), but things change in the
case of high dimension, when J/N �−→

N→∞ γ > 0. Then, if γ is not close to zero, the standard

estimate λ1(�̂) of the first eigenvalue λ1(Σ) overestimates it, and the bootstrap estimate
of the bias λ1(Σ) − λ1(�̂) is itself highly biased [23]! Indeed, according to El Karoui
and Purdom [23], the bootstrap completely changes the geometry of the dataset by re-
weighting the observations, giving rise to an important bias. In the same high-dimensional
setting, Hendrikse et al. [35] considered an iterative bootstrap approach to diminish the
bias ‖λ(Σ) − λ(�̂)‖, but obtained better results with another method, also based on the
Marcenko–Pastur theorem [36]. Consequently, bootstrap methods do not work well for
obtaining good estimates of the eigenvalues in PCA, except when N 
 J. Since CA can
be considered as a special case of PCA, the situation is similar for the eigenvalues of CA.
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For instance, studying two different textual datasets, [1,2] found that bootstrap eigenvalues
estimates were highly positively biased.

To sum up, the bootstrap is much better-suited for studying the stability of principal
axes [1–3,43] than for estimating eigenvalues or testing their significance. Consequently,
we will give in Section 6 preference to randomization methods for testing the significance
of eigenvalues.

4.2. Inference about eigenvalues in CA andMCA

4.2.1. The independence trace test
Let’s remind first the relationships between the eigenvalues {λi : 1 ≤ i ≤ MU} issued from
the CA of the binary table U = (U1 | U2), those issued from the CA of T = Ut

1U2:
{(2λi − 1)2 : 1 ≤ i ≤ M∗} and those issued from the Burt table BU := UtU [15,16,30,43]:
{λ2i : 1 ≤ i ≤ MU}. Thus, the eigenvalues issued from the analysis of U or BU can be
obtained from those of T and all the eigenvectors too, up to simple symmetries [30, pp.
130–133]. In classical (binary) CA, the unique rigorous test (trace test) is based on the
Pearson chi-squared statistics X2 defined by (3) which is the trace of the operator associ-
ated with BU. Under the hypothesis of independence of the columns and rows of T, X2

asymptotically obeys χ2((I − 1)(J − 1)) [14]. It is possible to build a similar trace test in
the general case of Q questions, based on the set � := 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λMU ≥ 0 of
nontrivial eigenvalues issued from theCAofU = (U1 | U2 | · · · | UQ). This has been done
by the first author, in an unpublished document [48].

Notice first that any Burt’s table BU issued from an experience with N individuals can
be considered as a realization of a multinomial distribution, whose parameters depend on
some unknown probability matrix PW(Q),W(Q) , whose estimation P̂W(Q),W(Q) by empirical
proportions is the maximum likelihood one. Consequently, under the classical hypothesis
of independent sampling, the Pearson statistics

∣∣W(Q)
∣∣∑

i=1

∣∣W(Q)
∣∣∑

j=1

(
BUi,j − N Pi,j

)2
N Pi,j

tightly associate with the trace of the CA of BU should (naively) obey χ2
DF(Q,W(Q))

(asymp-
totically), where DF(Q,W(Q)) denotes the number of free parameters of the considered
space of Burt’s tables. But, due to the special blocks structure of such tables, this is a bit
more complicated.

Proposition 4.1 ([48]): Under (H), the distribution of N (
∑M

m=1 λ2m − (W − Q)/Q2)

obeys χ2(ΓQ − (Q − 1)W + Q(Q−1)
2 ), where ΓQ :=

∑
1≤q1<q2≤Q

wq1 wq2 .

Remark 4.1: The term (W − Q)/Q2 stems from the contribution of all the diagonal block
matrices of P̂ to the trace of CA: it’s a natural correction of the total inertia. Consider now
the probability P̂ associated with BU , and two questions i and j. The test proposed in [48]
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was based on the following modified probability:

P̃qi qj :=
{
P̂qi qj if i �= j
P̂qi P̂qj if i = j

.

But Manté [48] didn’t analyze P̃, while Greenacre went further with Joint Correspondence
Analysis [19,31], analyzing only the off-diagonal part of P̂ (or P̃ as well).

Remark 4.2: One can find in the literature [10,45] an apparently different formulation for
the number of d.f. in the independence test: ((−Q + ∑

q≤Q wq)2 − ∑
q≤Q(wq − 1)2)/2;

this value comes from a paper of Bekker and de Leeuw [11], and indeed matches with
ours.

4.2.2. Confidence intervals
Benzécri [16] highlighted the typical value λ̄ := 1/Q, as the ‘average eigenvalue’ issued
from theMCA ofU. Consequently, he proposed to discard all the eigenvalues smaller than
λ̄ and to supersede the classical part of variance λ2 apportioned to each eigenspace by

ρ (λ) :=
(

Q
(Q − 1)

(
λ − λ̄

))2
. (4)

More recently, Ben Hammou and Saporta [12,13] reported that under (H), λ̄ is the unique
nontrivial eigenvalue issued from the theoreticalMCAofU, withmultiplicityQ. They also
showed that, under the same hypothesis, the dispersion of nontrivial eigenvalues around λ̄

is given by

S2 := 1
Q2N MU

∑
i�=j

(wi − 1)
(
wj − 1

)
.

In addition, they showed that

√
N

(
1
Q

− λk
(
�̂

)) −→
N→∞ N (0,S)

and reported that this convergence in distribution is very slow for largest and smallest
eigenvalues. Thus the confidence interval [λ̄ − 2S, λ̄ + 2S] should contain about 95% of
the eigenvalues in the case of pairwise independence of the questions (see Figures 2, 4, 6, 8
and 10).

5. Ordinal correspondence analysis (OCA)

Suppose now the categories I and/or J are ordered: this is not taken into account by CA.
That is why Beh [6] developed Ordinal Correspondence Analysis (OCA), resulting in
a decomposition of the Pearson chi-squared statistics X2 different from (3). In [6], this
author proposed two variants of OCA, corresponding to the cases of singly-ordered or
doubly-ordered contingency tables. We will focus on the first one, which gives rise to the
hybrid decomposition [8,9] of X2. Since both Beh’s methods require to compute orthogonal
polynomials, we will focus in the next section on this important topic.
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Figure 1. Three functions with added noise.

5.1. Computation of orthogonal polynomials

Classically [26,28], one consider the real line equipped with a nonnegative (absolutely con-
tinuous, discrete, or a mixture of these categories) measure λ, such that all its moments μk
defined by

μk :=
∫

R

tk dλ (t)

exist. Then, there exist an Hilbertian basis {b0(t), b1(t), . . . , bk(t), . . .} of L
2
λ consist-

ing of orthogonal polynomials. That is how classical orthogonal polynomials (Legendre,
Chebyshev, Laguerre, Hermite, Krawtchouk, etc) are defined, with respect to various
measures.

Despite of its apparent simplicity, the construction of such bases is delicate. One could
try to use the Gram–Schmidt method, but it is lengthy and the orthogonality between the
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Figure 2. Random data. Upper plots: statistical significance of eigenvalues and polynomials coordi-
nates. Lower plots, left panel: complete table of significant interactions (in black) issued from the
permutation test; right panel: no interaction was strongly significant (see Definition 6.2).

Figure 3. Moderately noisy data: σ = 0.1. Plot of the five first column orthonormal polynomials, in
accordance with Emerson’s paper [25]. abscissas correspond to the 21 values of the score (first factor
of the preliminary CA.
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Figure 4. Moderately noisy data: σ = 0.1. Same structure as in Figure 2. Upper plots: statistical signifi-
cance of eigenvalues and polynomials coordinates. Lower plots, left panel: complete table of significant
interactions (in black) issued from the permutation test; right panel (in black): strongly significant inter-
actions (see Definition 6.2). The right lower panel indicates the existence of a strong Guttman effect of
order 3.

bk(t) rapidly deteriorates [25]. Consequently, for computing discrete orthogonal polyno-
mials, Emerson [25] used the Christoffel–Darboux method (named Stieltjes procedure by
Gautschi [26]). Contrary to the Gram-Schmidt one, it only applies to polynomials; it is
based on the following three-term recurrence relation (in the notations of Beh [7]):

bk
(
j
) = Sk

((
s
(
j
) − Tk

)
bk−1

(
j
) − Vk bk−2

(
j
))

(5)

where s(j) is the value of the score associated with the jth modality of the ordinal vari-
able. Notice that, in the Emerson’s terminology, s(j) is the jth sampled abscissa xj. The
coefficients in (5) are given by

Tk :=
J∑

j=1
λj s

(
j
)
b2k−1

(
j
)

Vk :=
J∑

j=1
λj s

(
j
)
bk−1

(
j
)
bk−2

(
j
)
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Figure 5. Moderately noisy data: first plane of CA. (the 21 variables are plotted in green/gray).

Sk: :=
√√√√−T2

k − V2
k +

J∑
j=1

λj s2
(
j
)
b2k−1

(
j
)

(6)
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Figure 6. Very noisy data: σ = 3. Same structure as Figure 2. Upper plots: statistical significance of
eigenvalues and polynomials coordinates. Lower plots, left panel: complete table of significant interac-
tions (in black) issued from the permutation test; right panel (in black): strongly significant interactions
(see Definition 6.2).

where λj = Pj is the weight assigned to the position xj := s(j) in the interval [s(1), s(J)].
Clearly, one can infer from formulas (5),(6) that Emerson’s polynomials are totally data
dependent. Since any linear transformation of the score does not change the values
of the orthogonal polynomials [7], we can indeed suppose that the common support
of all scores is [s(1), s(J)] (fixed). Then, changing of score merely changes the position
of the abscissas ‘sampled’ in this interval. Notice now that formulas (6) are discrete
approximations of integrals corresponding to true moments, and that these formulas
can be seen (roughly speaking) as quadrature rules [28] for computing the coefficients
involved in (5). This fact explains that ‘when comparing different types of scores, most
of them will give similar results’ [7]. Furthermore, if the discretization associated with
the pairs {(λ1, s(1)), . . . , (λj, s(j)), . . . , (λJ , s(J))} has been ill-designed, the construction of
{b0(t), b1(t), . . . , bk(t), . . .} will more or less severely fail.

From another side, the recurrence formula (5) itself can exhibit some kind of ‘pseu-
dostability’, even in well-known theoretical condition [27,28], particularly if the sampled
points are equally, or nearly equally, spaced. This is the case of the ‘natural score’ proposed
by Beh [7]. In such cases, the accuracy of the bk(•) computed from (5) may severely deteri-
orate as k approaches J. Fortunately, this is not very handicapping for us, since high degree
bk(•) are of no practical importance because of their very high variance estimation (Rayner
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Figure 7. Very noisy data: first plane of CA. (the 21 variables are plotted in green/gray).

and Best [51] recommended to rule out polynomials of degree > 4). For more insights on
orthogonal polynomials, see the nice paper of Gautschi [28].

5.2. The OCA procedure

From now, we will suppose that the ordered set of categories is J, while the row set I is
merely nominal. We will denote {Pp, 1 ≤ p ≤ J − 1} the system of column orthonormal
polynomials (in the terminology of Beh [9]), sampled on {1, . . . , J}, which play in OCA
the role that principal axes play in CA; for an example, see Figure 3. They only depend on
the marginal distribution PJ and on some user-assigned score s (i.e. a positive monotone
function on J, which codes the ordinal structure of modalities [7]). Like in CA, the rank
of the analysis isM∗ = min(I − 1, J − 1) − 1. These polynomials are characterized by the
relationship:

∀ (
m, p

) ∈ M∗ × M∗,
∑
j≤J

Pj Pm,j Pp,j = δ
p
m (7)

which is quite similar to (1), but note that they are not orthogonal to the factors issued
from CA (in other words, there is no relationship like (2)). Denoting � the I × M∗ matrix
of nontrivial singular vectors issued from CA, and P∗ the matrix of column orthonormal
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Figure 8. The archaic Chinese vases data. Same structure as Figure 2. Upper plots: statistical significance
of eigenvalues and polynomials coordinates. Lower plots, left panel: complete table of significant inter-
actions (in black) issued from thepermutation test; right panel (in black): strongly significant interactions
(see Definition 6.2).

Figure 9. The archaic Chinese vases data: representation of the table of similarities between the sorted
factorsπ � ϕf and thePk . On the left panel, black cells correspond to similarities greater than the fixed
threshold (0.1). On the right panel, we plotted the values extracted from the diagonal of this table.



304 C. MANTÉ ET AL.

Figure 10. The X-rays diffraction data. Same structure as Figure 2. Upper plots: statistical significance of
eigenvalues and polynomials coordinates. Lower plots, left panel: complete table of significant interac-
tions (in black) issued from the permutation test; right panel (in black): strongly significant interactions
(see Definition 6.2).

polynomial with the first (trivial, constant) column vector omitted, Beh [8,9] considered
the matrix of interactions

Z := �t PP∗ ∈ M∗ × (J − 1)

associated to the following decomposition of X2:

X2

n
=

M∗∑
f=1

J−1∑
p=1

Z2
f , p (8)

where Z2
f , p (square of the entry of Z of row f and columm p ) measures the intensity of

the relationship between the polynomial of degree p , Pp, and the f th factor ϕ
J
f (hybrid

moment; for further details, see [8]).
The information bore by ϕ

J
f can be partitioned [9] in function of the polynomials:

λ2f = 1
n

J−1∑
p=1

Z2
f , p. (9)
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We can measure the overall information bore by Pp by the positive number μp:

μp := 1
n

M∗∑
f=1

Z2
f , p (10)

obtaining this way a supplementary partition of X2:

X2

n
=

J−1∑
p=1

μp. (11)

Notice that Formula (9) shows that Z2
f , p/nλ

2
f is the relative contribution of Pp to the

variance of ϕJ
f .

Definition 5.1: Let us fix some 0 < ρ ≤ 1; we will write out that ϕ
J
f

ρ
≈ Pk if (Z2

f , k/

nλ2f ) ≥ ρ.

5.3. Choosing the score

As we saw in Section 5.1, the choice on the score in OCA can have an influence on the
polynomial basis used in the analysis and consequently on its results.

This topic has been investigated from other points of view by Beh [7], Sarnacchiaro
et al. [53], either for classical a priori scores, or a posteriori scores issued from a prelimi-
nary multivariate analysis (CA in the case of Beh [7], NSCA in the case of Sarnacchiaro
et al. [53]). More precisely, Beh [7] noticed that, in the case of a doubly-ordered table
(DOCA in the terminology of [45]) ‘the correlation between two scoring schemes is
equivalent to the correlation of their associated first nontrivial orthogonal polynomials’;
consequently, the similarity between the results associated with various a priori scoring
schemes can be roughly predicted. In addition, Beh [7, pp. 419–421] suggested to use sin-
gular vectors resulting from a preliminary classical CA as scores for DOCA; we will indeed
adopt this strategy.

5.4. Significance tests in OCA

In the singly-ordered case, OCA gives rise to several significance tests since, asymptot-
ically, each column component nμp ∼ χ2(M∗) because the user-assigned score s is not
estimated [52]. For the same reason, in the doubly-ordered case, a three-level battery of
tests is available [6,51] : at each (m, p) cell level, at each column component level, at each
row component level, and of course at the global level (see [49] for an application inmarine
ecology).

But here, the situation will be different, because the chosen score will highly depend on
the data! Consequently, we will have to perform permutation tests.

Remark 5.1: A similar approach for processing ordinal data with the help of discrete
orthogonal polynomials was adopted byHaberman [34] in the setting of Log-linearmodels
(see also [13]).
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5.5. Extension toMCA

Lombardo andMeulman [46], Lombardo and Beh [45], Beh and Lombardo [10] proposed
an extension of MCA to ordinal variables (OMCA). It generalizes the singly-ordered CA
proposed by Beh [8], where the columns (say) of the studied table are ordered while the
columns are not, to the case where the columns consist ofQ ≥ 2 blocks associated to ordi-
nal variables (in other words, the complete disjunctive table U equipped with an order for
each block). In OMCA, to the qth block is associated a family P

q := {Pq
0, . . . ,P

q
wq−1} of

orthogonal polynomials associated with some a priori score, and each individual (row)
belongs to the direct sum space generated by the orthogonal basis ⊕Q

q=1P
q. These authors

stress that the position of the column categories in OMCA and classical MCA are the same,
while the position of the individuals in OMCA greatly differ from those issued fromMCA.

6. The proposedmethod

Since simple CA is a special case of MCA (see Section 4.2.1), we directly considered some
complete disjunctive tableU = (U1 | U2 | · · · | UQ) ∈ N × |W(Q)| . The first factor issued
from MCA of U is ϕ1 = (ϕ1,1, . . . ,ϕ1,|W(Q)|); let us denote π the permutation of W such
that ϕ1,π(1) ≤ ϕ1,π(2) ≤ · · · ≤ ϕ1,π(|W(Q)|), and consider the sorted first factor(

x1, . . . , x|W(Q)|
)

=
(
ϕ1,π(1),ϕ1,π(2), . . . ,ϕ1,π(|W(Q)|)

)
:= π � ϕ1. (12)

Suppose now the Guttman effect is present; we should have: ϕ2,π(w) = π � ϕ2(w) =
P2(xw), where P2 is some polynomial of degree 2 such that

∑
w≤|W(Q)|

xw Pw ϕ2,π(w) =

0 while
∑

w≤|W(Q)|
xw Pw xw = 1 and

∑
w≤|W(Q)|

ϕ2,π(w) Pw ϕ2,π(w) = 1, because of (1). After-

wards, if the scalogram associated with U is perfect, we will have π � ϕ3 = P3 for some
degree 3 polynomial, etc. This is exactly the construction of Emerson [25], which is the
basis of Beh’s method [6]! Thus, the hybrid decomposition of X2 will enable us to infer the
order of the Guttman effect. Indeed, since in both cases (CA and OCA) the orthogonal-
ization process starts withP0 = C0 andP1(x) = C1,0 + C1,1x (with suitable constants), if
the next factors are polynomials too, they shouldmatchwith Emerson’s polynomials. Thus,
the proposed method consists in

(1) performing MCA of U, obtaining ϕ1 and sorting its coordinates, changing the same
way the order of the variables in the table (individuals can be processed the sameway):
U → π � U

(2) perform OCA of the singly-ordered table π � U, using the variable x defined in (12)
as the score

(3) investigate the similarity between π � ϕk and Pk, for each k ≥ 2.

Remark 6.1: It is well-known that (M)CA can be considered as an optimal scalingmethod
[54] (see also Section 2 and [29]): this is even the ‘Dutch approach’ of multivariate analysis
[47,50]! We will follow this approach, using the optimal scaling of the columns resulting
from MCA of U as a score for OCA of this singly-ordered multiple indicator table; thus,
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we consider a unique family {P0, . . . ,P|W(Q)|} of polynomials. One should obtain quite
different results with OMCA (see Section 5.5), but our goal is different too···

In reference to Equation (9), we now use Definition 5.1 to lay a first definition of the
order of the Guttman effect.

Definition 6.1: The Guttman effect is of order K ≥ 1 for some fixed 0 < ρ ≤ 1 if

K = argmax
k≤MU

(
π � ϕk

ρ
≈ Pk

)
.

In reference to Equations (3, 8, 11), we laid supplementary definition requiring some
inference.

Definition 6.2: The interaction Zf , k is strongly significant if

Zf , k
α

�= 0 ∧
(

λf
α

�= 0 ∧ μk
α

�= 0
)

where the expressionZf , k
α

�= 0 (resp. λf
α

�= 0 orμk
α

�= 0)means that the interaction between
π � ϕf and Pk (resp. the role of this eigenvalue or this polynomial) is statistically
significant at some fixed level 1 − α.

Definition 6.3: The Guttman effect is strongly of order K if

K = argmax
k≤MU

(
Zk, k

α

�= 0 ∧
(

λk
α

�= 0 ∧ μk
α

�= 0
))

.

Remark 6.2: Since the chosen score is highly dependent on the data, the tests proposed
in [6,8] are inapplicable in our case: we will have instead to perform the permutation tests
detailed hereunder.

6.1. Randomization

Permutation tests (or sometimes cross-validation [21,40]) are frequently used in Multi-
variate Analysis [22,39,41], because of the complexity of the distributions involved (see
Section 4). Here, we build from the original table U a convenient number K of random
tables Uτ := (Uτ1

1 | Uτ2
2 | · · · | UτQ

Q ) ∈ N × |W(Q)| , such that the block Uτq
q is obtained

from Uq by permuting all the wq columns of each row r with some random permutation
τq(r). The random matrix Uτ is similar to U: it has the same dimensions, the same grand
total and the same marginal probability 1/N Q1N , and it is a complete disjunctive table.
But relationships between the Q variables are completely destroyed.

The hybrid decomposition of π � U simultaneously give rise to the spectra � :=
(λ1, . . . , λMU), the vector of moments � := (μ1, . . . ,μ|W(Q)|−1) and the table of inter-
actions � := (Zf , p, 1 ≤ f ≤ MU, 1 ≤ p ≤ |W(Q)| − 1) associated with the sorted data.
Consider now the K randomized tables {π1 � Uτ

1 , . . . ,πK � Uτ
K}, associated with the

hypothesis (H) of pairwise independence of the variables. Since the analysis of each one
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of these tables (πr � Uτ
r , say) give rise to some (�r, �r, �r), the inference on eigenvalues

(resp. moments, interactions) will consist in comparing each λf (resp. μp, Zf , p) with the
distribution of the randomized analogues, recorded in the series {(�r, �r, �r) : r ≤ K}.
Then, we will be able to draw box-plots of these quantities and/or decide with respect to
some fixed threshold α, whether or not each interaction Zf , p is significant, and whether or
not the eigenvalue λf (resp. moment μp) is significant.

After a few trials, we systematically fixed the number of permutations to K = 100, and α

to 0.1.

7. Application to artificial data

First, we tested the method on artificial data, either totally random or presenting
by construction the Guttman effect. The latter dataset consisted of three functions
supported by [−a, a] with a = 1.23758, corrupted by a uniformly distributed noise
of increasing level σ . For each one of these functions, f (x) say, we calculated f̄ :=
max

x∈[−a,a]
f (x), f := min

x∈[−a,a]
f (x) and divided R into a family F of seven disjointed intervals:

F =
{]

−∞, f + (f̄−f )
3

]
, . . . ,

]
f̄ − (f̄−f )

3 ,+∞
[}

.

Then, we generated the data{
yk = f (xk) + Dσ , 1 ≤ k ≤ 200

}
(13)

where Dσ denotes the uniform distribution on [−(σ (f̄ − f ))/6, (σ (f̄ − f ))/6], with σ ∈
{0, 0.1, 0.5, 1, 1.5, 3} and xk denotes the kth Chebyshev point on [−a, a]. The chosen
functions were:

� (x) := 20 arcsin
(x
a

)
f (x) := (5(x + 1) − 3)(5(x + 1) − 6)(5(x + 1) − 9)/5

g(x) := −50 x exp
(−√

a + x
)

and the obtained data are plotted in Figure 1.
Each yk was then assigned to the right interval ofF (logical coding), giving rise to some

binary table, and the complete tableU = (U1 | U2 | U3) ∈ 200 × 21 was submitted to CA.
The 21 characters associated with the three functions and the seven intervals were labeled
{�1, . . . ,�7}, {f1, . . . , f7} and {g1, . . . , g7}.

7.1. Analysis of a randomdataset

It consisted in a purely random table U = (U1 | U2 | U3) ∈ 200 × 21. At the level 0.9, the
trace test of Section 4.2.1 didn’t indicate any structure in these data. This is confirmed by
Figure 2: none of the eigenvalues (except the fifth one, by chance) was significant, and all
of them were situated in the confidence band given by Ben Hammou and Saporta [12] (see
Section 4.2.2). More precisely, on the left upper panel of Figure 2, one can find:

• the plot of eigenvalues (black stars and dashed curve)
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Table 1. Artificial data: summary of the obtained results.

Guttman effect order Strong order Significant λk Significantμk
σ ρ = 0.4(ρ = 0.8) (α = 0.1) (α = 0.1) (α = 0.1)

0 3 (3) 3 7 5
0.1 3 (3) 3 7 6
0.5 3 (2) 2 6 6
1 5 (3) 5 6 5
1.5 3 (2) 3 4 3
3 1 (1) 1 1 1
Rnd 1 (1) 0 0 0

• the typical value λ̄ and the confidence band given by Ben Hammou and Saporta [12,13]
(gray horizontal lines)

• the box-plot of eigenvalues issued from randomization, and the associated quantiles of
order 0.9 (green curve).

On the right panel, the reader will find the corresponding information (when it is avail-
able) for the polynomials: while none of the eigenvalues seemed significant, the coefficients
of polynomials of degree 1 and 3 were slightly above the corresponding quantiles of order
0.9.

In addition, Figure 2 shows that, even if a lot of interactions were significant at the
prescribed level, the Guttman effect was absent, since no interaction was compatible with
Definition 6.2, for α = 0.1.

7.2. Analyses of the functional datasets

We analyzed the six datasets associated with σ ∈ {0, 0.1, 0.5, 1, 1.5, 3} but, for sake of
brevity, we will only detail two cases; the complete results are summarized in Table 1.

Consider first amoderately noisy dataset, generated according to formula (13) with σ =
0.1 (see Figure 1).We plotted in Figure 3 the six first Emerson’s polynomials associatedwith
the first eigenvector of CA as a score (21 characters: 3 variables, seven intervals). Formulas
corresponding to the four first ones are: 0.999886x−0.000162283, 2.33877x2 + 2.40305x −
2.33969, 2.95361x3 + 5.83345x2 − 0.619064x − 2.79967 and 8.49825x4 + 18.6544x3 −
3.41594x2 − 13.9222x + 3.5578.

According to the trace test, (H) was clearly rejected while, according to the permutation
tests, 5 eigenvalues and 5 polynomials were significant (see the upper panels of Figure 4).

Furthermore, one can see on the lower right panel of Figure 4 that a Guttman effect
could be detected, which was strongly of order 3 (black cells on the diagonal of the table of
interactions). The first principal plane is represented in Figure 5; notice that both variables
and individuals are projected on a common parabola.

Consider now a much noisier dataset, with σ = 3 (see Figure 1). According to the trace
test, (H) was accepted; nevertheless, contrary to the purely random case (see Figure 4), a
single factor and a single polynomial could be detected on the upper panels of Figure 6;
this is confirmed on the lower right panel of the figure.

The first principal plane is represented on Figure 7. Notice that variables don’t exhibit
any particular structure, while individuals are projected yet on some ‘fuzzy parabola’. So, no
Guttman effect could be detected by the tests in this case. Nevertheless, thanks to CA, one
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can suspect its reality, although the functional nature of the data has been blurred by the
noise.

The main results are displayed in Table 1; one can see that the Guttman effect was of
order 3 (for ρ = 0.4), except for very noisy data; the strong Guttman order was similar,
with higher fluctuations.

When a stronger similarity was demanded (ρ = 0.8) the order of the Guttman effect
decreased, but it was still unveiled, except for data contaminated by some high level of
noise.

8. A toy dataset: the archaic Chinese vases data

We will exemplify a data set analyzed by Benzécri and his collaborators [14, pp. 323–325],
after Elisseeff [24] who used Guttman’s permutation methods. The original dataset [14,24]
was a contingency table: 17 types of vases (‘large Yeou’) described by 8 binary characters.
Notice there were indeed 112 vases assigned to these 17 types. Eliminating four charac-
ters, Benzécri and his collaborators [14, pp. 323–325] built a sub-table resulting in a perfect
scalogram.We built from this sub-table the complete disjunctive tableU = (U1 | U2 | U3 |
U4) ∈ 112 × 8, and analyzed it. According to the trace test, (H) was rejected (p-value:
10−5).

The reader can see on the upper panels of Figure 8 that, according to the permutation
tests, a single eigenvalue and two polynomials were statistically significant at the level 0.9,
while a single interaction was strongly significant (right lower panel of Figure 8). U could
be represented by a perfect scalogram, and the detected Guttman effect was of order two
(see the right panel of Figure 9).

Remark 8.1: Weplotted on the left panel of Figure 9 similarities between all the sorted fac-
tors π � ϕf and Pk (with 0.1 as a threshold), and similarities between the pairs (π � ϕk,
Pk), on the right panel. Both figures show a clear Gutmann effect of order two, but it is
worth noting (see the left panel of this figure) that further factors were similar to oth-
ers Beh’s polynomials··· More precisely, while the similarity between π � ϕ2 and P2
was 0.984977, we found that between π � ϕ3 and P4 it was 0.564397; π � ϕ3 and P5
corresponded to 0.380075, while the similarity between π � ϕ4 and P6 was 0.98357!

In conclusion, these archaic Chinese vases presented a Guttman effect of order two, but
not statistically significant (strongly of order one)···

9. Application to the synchrotron X-ray diffraction dataset

Lessivage is among the most widespread processes in soils and it has been described in
many soils types. This process is defined as a substantial vertical transfer of fine particles
from a horizon, called eluviated horizon to another horizon referred to illuviated horizon.
It was experimentally simulated in lab (i.e. simulation on a sequence of rainfall events) to
identify the processes and factors responsible for it. The lab experiment setup consists in a
sequence of 30 rainfalls on undisturbed and unsaturated soil columns of decimeter size. As
smectites were described as especially sensitive to eluviation, an experiment, designed to
simulate illuviation, consisted in columns made of two overlaid soil monoliths, the upper
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one contained smectite while the lower one did not (for more information, see [20]). Thin
sections weremade in the lowermonoliths for different amounts of rain and different rain-
fall intensities. Localizing and determining the mineralogical composition of these thin
sections by mapping them with a focused X-ray beam (for lateral resolution) would allow
to locate structural changes due to lessivage, thanks to the presence of eluviated smectite. X-
ray diffraction (XRD) is used for this purpose. For technical reasons (need of micron-sized
collimated intense X-ray beams), analyzing themwith a conventional lab X-ray diffraction
device is impossible in our case and synchrotron X-ray diffraction had to be considered.
However, with that technique, the main peaks classically used for clay identification were
not recorded, and the relative intensities of the different diffraction peaks are meaningless.
Indeed, with a probed sample volume of 10 × 10 × 30 μm3 and ‘large’ sizes of crystallites
(within the micron), the sample is very far from what a powder used in XRD experiments
would be. Consequently, depending on the size, number and orientation of the crystallites
present in the illuminated volume, the diffracted signal is, in the most favorable case, a
spotty one approximating the ring- shape (2θ = constant) of a diffraction peak. Even if
using an area detector (like in our experiment) and consider a random orientation of crys-
tallites, it is still possible that no crystallite will diffract in the detector (i.e. missing Bragg
peak) or, in a more favorable case, to detect intensity originating only from few crystal-
lites (i.e. only few spots on the area detector). Consequently, the corresponding detected
scattered intensity is not representative anymore to be used in a structure refinement pro-
cedure. This can be summarized as follows: if a Bragg peak is not detected, it does notmean
the corresponding lattice does not exist (possibly no crystallites oriented in Bragg condi-
tion). If a Bragg peak is detected, the corresponding inter-reticular distance is present and
fulfill Bragg law (but the corresponding detected intensity is meaningless, since not pro-
portional to the quantity of the corresponding crystalline phase in the investigated volume,
even after structure factor correction). The low number of crystallites in the probed sample
volume (due to the large grain sizes) is the origin of both of these issues.

Therefore the herunder preliminary analysis, consisting in investigating the feasibility
of identifying the minerals of interest by synchrotron X-ray diffraction mapping of soil
features, was unavoidable. More precisely, if each mineral was associated with a specific
group of ‘coding diffraction angles’, the minerals could be considered as independent: the
detection of angles associated with some mineral S, say, would bore no information about
the possible detection of S′ �= S. But it is not the case: many angles are paired with several
minerals! Moreover, as it will be shown later in this paper, there is co-localization / coexis-
tence of phases on particular lateral positions on the sample slab. That’s why it was relevant
to analyze the relationship between angles and minerals.

9.1. The coding used

The following list of minerals was selected: {Feldspars, Goethite, Illite, Kaolinite,
Maghemite, Quartz, Smectite}. All the minerals were characterized (in 0/1) by 228 diffrac-
tion angles, each angle making possible to detect one or several minerals. Each mineral S
was thus associated with a binary vector of length 228.

Notice that the masses (number of characteristic angles) of these 7 vectors were very
different from each other (see Table 2), and that each one of the minerals is associated with
a smaller number of exclusive angles. Consequently we split each S into S+ (detection of
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Table 2. The minerals characteristics.

Mineral: Feldspars Goethite Illite Kaolinite Maghemite Quartz Smectite

Angles: 148 14 17 52 5 12 6
Exclusive: 117 7 11 30 1 7 1

S) and the ‘anti-mineral’ S− (nondetection of S) in order that all the minerals, described
by both these variables, had the same weight: 228. In addition, any S, characterized by the
pair (S+, S−), will have 1/Q = 1

7 as part of variance (see Section 3.2). So, no mineral was
favored in the CA of the resulting 228 × 14 binary table.

9.2. Results of the tests

We displayed in Figure 10 issues from the analysis of this table, which are rather similar to
Figure 6. According to the trace test, the variables seemed independent, while according
to the permutation tests, two polynomials (of degree 1 and 13) and two factors were sig-
nificant. These factors were accounted for 23% and 18% of the total variance, respectively,
or 80% and 15% if we adopt the Benzécri’s correction for percentages of inertia (4) based
on the three first eigenvalues (see Figure 10). A number of interactions were retained by
the permutation test, but only Z1, 1 and Z1, 13 were strongly significant. It is worth noting
here, in connection with the considerations of Section 5.1, that the orthonormality rela-
tionship (7) between Beh’s polynomials gradually deteriorated for degrees greater than 11;
more precisely,

∑
j≤J Pj P13,j Pp,j ≈ 3. 10−5 for p ≤ 3. So, we cannot be sure that the three

last polynomials were determined with a satisfactory precision···
Thus, there was no Guttman effect in this case, and only the first factor was undoubt-

edly significant. It is displayed in Figure 11, together with the second factor (not sig-
nificant). Interestingly, none of the ‘anti-minerals’ (except Feldspars-) seems to play an
important part in the analysis. We can distinguish along the first factor six clusters of vari-
ables: Goethite+, Quartz+, {Kaolinite+, Feldspars–}, Feldspars+, {Maghemite+, Illite+},
{Smectite+, Goethite–, Illite–, Maghemite–, Quartz–, Smectite–} and Feldspars+.

In conclusion, only this common structure seems meaningful, while the remaining
variability is noise.

Remark 9.1: The fact that Smectite+ and Smectite– are very close to each other along
factor 1 means on the one hand that this mineral is rather hard to detect for us and, on the
other hand that the presence or absence of Smectite does not depend much on the other
minerals of interest. This is perhaps due to the fact that it possesses a single exclusive angle
(see Table 2), but Maghemite shares the same property.

10. Conclusion

We propose a method for detecting the existence of a Guttman effect in a complete
disjunctive table, with a given level of confidence.

Firstly, we recall results from the literature about the significance of eigenvalues result-
ing from the MCA of such tables, and about the χ2 independence test for associated Burt’s
tables. Thanks to the randomization method proposed afterward, we are able to test the
presence of this phenomenon and its order K (i.e. the maximum degree of the significant
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Figure 11. Coordinates of the minerals on the first plane of CA. Detection variables (+) are plotted
horizontally; non-detection ones (-) are plotted vertically. Remember that the second dimension is not
significant.

polynomials). The data could in this case be approximately represented by a paramet-
ric curve in R

K and, as a consequence, the original table could be roughly reconstituted
(filtered) from the first K components of either CA or OCA, thanks to the reconstitu-
tion formulas (it seems that JCA works better than MCA for data reconstruction [19];
nevertheless superseding MCA by JCA in the proposed method is not straightforward).

The original table could be this way split into a table associated with the Guttman effect,
and a residual. When the Guttman effect is associated with some gradient, its influence
could be eliminated by considering only the residual table. This method is related to the
‘detrending-by-polynomials’ approach of DCA, but in this case the existence and the order
of the phenomenon could be tested (not postulated), and the polynomials used for a pos-
sible detrending would be directly associated with the Guttman effect, instead of being
arbitrary. At last, while the importance of some component is classically measured by the
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corresponding eigenvalue, in the case of a Guttman effect of orderK, it would be consistent
to measure the importance of the first component by the sum of the K first eigenvalues.

With a view to future work, it would be judicious to improve the computation of the
orthogonal polynomials. This problem has been tackled by Gautschi [26,28], who pro-
posed to supersede the Stieltjes procedure (5,6) by the modified Chebyshev algorithm.
Roughly speaking, it consists in the orthogonalization (in L

2
λ) of some standard family

of orthogonal polynomials (Legendre, Chebyshev, Laguerre, Hermite, Krawtchouk, etc),
much better conditioned, thanks to another recurrence relation found by Chebyshev in
1859 [28].

Themethod detailed in this work has been implemented in aMathematica [56] package,
available from the first author (work in progress).
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