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ABSTRACT

Objective: Artificial intelligence (AI) models may propagate harmful biases in performance and hence nega-

tively affect the underserved. We aimed to assess the degree to which data quality of electronic health records

(EHRs) affected by inequities related to low socioeconomic status (SES), results in differential performance of AI

models across SES.

Materials and Methods: This study utilized existing machine learning models for predicting asthma exacerba-

tion in children with asthma. We compared balanced error rate (BER) against different SES levels measured by

HOUsing-based SocioEconomic Status measure (HOUSES) index. As a possible mechanism for differential per-

formance, we also compared incompleteness of EHR information relevant to asthma care by SES.

Results: Asthmatic children with lower SES had larger BER than those with higher SES (eg, ratio ¼ 1.35 for

HOUSES Q1 vs Q2–Q4) and had a higher proportion of missing information relevant to asthma care (eg, 41% vs

24% for missing asthma severity and 12% vs 9.8% for undiagnosed asthma despite meeting asthma criteria).

Discussion: Our study suggests that lower SES is associated with worse predictive model performance. It also high-

lights the potential role of incomplete EHR data in this differential performance and suggests a way to mitigate this bias.

Conclusion: The HOUSES index allows AI researchers to assess bias in predictive model performance by SES.

Although our case study was based on a small sample size and a single-site study, the study results highlight a

potential strategy for identifying bias by using an innovative SES measure.
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INTRODUCTION

Augmented computing power, storage capability, and predictive an-

alytics have accelerated the adoption and deployment of artificial

(augmented or machine) intelligence (AI) tools in health care system

of the United States.1,2 As of 2017, 96% of US hospitals adopted

certified electronic health records (EHRs) and 98% of US hospitals

demonstrated meaningful use of at least one certified health infor-

mation technology.1 A recent survey showed that 90% of health

care executives in the United States reported they had AI tools and

automation strategy in 2020 compared to 53% in 2019.2 As of

2020, more than 80 imaging-related AI algorithms have been

cleared by the US Food and Drug Administration (FDA).3,4 A re-

search group at Mayo Clinic showed that an electrocardiogram-

based, AI-powered clinical decision support tool demonstrated early

diagnosis of low ejection fraction, a condition that is underdiag-

nosed but treatable, via a randomized clinical trial (RCT).5 The in-

tervention increased the diagnosis of low ejection fraction in the

overall cohort (1.6% in the control arm versus 2.1% in the interven-

tion arm, odds ratio [OR] 1.32 (1.01–1.61), P¼ .007).

Health care research continues to try and develop AI tools to im-

prove health and reduce disparities (eg, reducing unexplained self-

reported pain disparities by applying image-based AI algorithm in

underserved populations).6 However, AI systems can introduce or

reify biases and negatively influence health in under-resourced or ra-

cial/ethnic minority populations.7–10 For example, a recent study of

a widely used commercial AI algorithm based on health care costs

identified only 18% of Black patients needing additional care for

chronic disease management, compared to 47% after controlling for

chronic historical under-spending on Black patients.7 This demon-

strated that building predictive models from easily available proxies

(health care spending, rather than health) without considering possi-

bly differential performance by marginalization status has the poten-

tial to reify bias, but also that appropriate analysis may be able to

mitigate this bias. Others reported biases in model performance by

race and socioeconomic status (SES) in predicting post-partum de-

pression (logistic regression),11 intensive care unit (ICU) mortality

(logistic regression),12 and 30-day psychiatric readmission (logistic

regression).12 When models have differential predictive performance

by patient characteristics such as SES,13 the adoption of AI in clini-

cal care on a large scale risks exacerbating inequities.14–16

Given the significant associations of SES with health risk and

health care access especially driven by upstream social determinants

of health (SDH),17,18 quantifying the degree of bias in differential

model performance by SES has important ethical implications for AI

research as well as health care delivery research. SES is a key element

of SDH in health care delivery and research19–28 and is considered a

major factor accounting for differential health outcomes through

broad and fundamental mechanisms, from biological (eg, epige-

netics, gene expression or telomere length) and behavioral (eg, non-

adherence and stress) factors to environmental factors (eg, indoor

[eg, molds and other allergens] or outdoor environment [eg, high

traffic volume]).20,28–31 We investigate a specific mechanism: if

EHRs are less comprehensive or complete for those of lower SES

due to limited health care access (eg, less access to health care

resources), and AI models are developed from EHRs and rely on

data completeness and quality for predictive success, then the

straightforward adoption of AI has the potential to discriminate

against those of lower SES.

Unfortunately, individual-level SES measures that are validated,

reliable, and scalable are frequently unavailable in commonly-used

data sources for clinical care and research,32 posing a major barrier

to health care delivery and research as acknowledged by National

Academy of Medicine and the National Quality Forum.9,33,34 Addi-

tionally, the limited availability of suitable individual-level SES in

EHRs is a major challenge in studying possible bias in the adoption

of AI systems. Consequently, current AI fairness research is limited

to considering readily available demographic factors such as age,

sex, and race/ethnicity,35 leaving the role of SES in AI bias (on its

own, or in interactions with other factors) poorly understood.

To address this major roadblock in the equitable implementation

of health care AI, we propose using the HOUSES (individual

HOUsing-based SES) index as a measure of SES with important fea-

tures (validity, precision, objectivity [instead of self-report] and scal-

ability) that can be integrated with AI model development. In this

work, we (1) assessed differential data availability and validity of

EHRs among study subjects according to SES as measured by

HOUSES and (2) applied HOUSES index to quantify bias in com-

monly used metrics of model performance by SES. Thus, the goal of

this study is to demonstrate the importance of considering SES in AI

research; we plan to do a future study to create recommendations of

specific mitigation steps using SES.

MATERIALS AND METHODS

Study population and setting
The study population and setting were described in our recent re-

port.36 Briefly, Olmsted County is a virtually self-contained health

care environment with only 2 health care systems providing clinical

care to nearly all residents. About 98% of residents authorize the

use of their medical records for research.37 According to 2010 US

Census data, the age, sex, and ethnic characteristics of Olmsted

County residents were similar to those of the state of Minnesota and

the Upper Midwest.38 However, Olmsted County has become more

diverse as indicated by the racial/ethnic characteristics of children

enrolled in public schools (in 2019, 35.2% reported belonging to a

racial/ethnic minority group). Mayo Clinic Primary Care Pediatric

Practices offers primary care service at 4 locations within Olmsted

County. This study was conducted at the Baldwin Primary Care

Practice site, the largest of the 4 practice sites (ie, including teaching

pediatric faculty, residents, and nurse practitioners). In Olmsted

County, Asthma is the most prevalent chronic illness, with the third

highest health care expenditures in children and adolescents.39 The

asthma prevalence in the primary care practice (14%) is slightly

lower than that of the county overall (17.6%).40

Study design and subjects
The design and subjects of the original study as an RCT were de-

scribed in our recent report.36 Briefly, the present study was

designed as a cross-sectional study. Patients were randomly assigned

to 2 independent cohorts (ie, training and testing cohorts) for the de-

velopment of machine learning (ML) models. A previous study de-

veloped a novel AI-assisted clinical decision support system named

A-GPS (Asthma-Guidance and Prediction System), based on a

single-center pragmatic RCT. An A-GPS-based intervention in the

original study provided clinicians with the summary of most rele-

vant information for asthma management, along with a prediction

of asthma exacerbation (AE) made using the trained ML models.36

Despite providing a great deal of actional guidance and intervention

information, it overall significantly reduced clinicians’ EHR review

burden, resulting in more efficient asthma management. The focus
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of the original study was to assess the effectiveness of the use of A-

GPS on asthma outcomes (eg, AE, asthma control, asthma-related

health care utilization, asthma care quality and health care costs).

The original study used data from subjects who had persistent

asthma or those who met Predetermined Asthma Criteria (PAC). In

this present report, we limited the primary analysis assessing algo-

rithmic bias to those with persistent asthma in order to focus on a

more homogeneous patient group. Details of the original study have

been reported.36 For additional analysis, we used the subjects in the

original study who met PAC definition but were not yet diagnosed

with asthma at the time of enrollment. This study (IRB number: 15-

004435) was approved by the Mayo Clinic Institutional Review

Board (IRB).

ML models for estimating AE risk
For A-GPS, we trained and tested 2 ML models: Naı̈ve Bayes (NB)

and gradient boosting machine (GBM) for binary classification for

estimating 1-year AE risk among children with asthma. We

extracted 29 candidate variables based on the literature including

sociodemographics, risk factors, and asthma outcomes from EHR

over a prior 3-year period. The regularization of NB model selected

the following 5 variables as the most informative (previous exacer-

bation, asthma symptom, hospital visit due to asthma, rescuer medi-

cation, and controller medication) and used them when testing the

model performance. GBM model used variables with relative influ-

ence score at least 1% that included a broader range of variables:

most of the variables from NB model (eg, asthma symptoms and

previous exacerbation) and sociodemographic factors (eg, race and

HOUSES quartiles). The original study included 590 subjects (300

in the training and 290 in the test set) who had persistent asthma or

met PAC from a Mayo Clinic pediatric practice panel, respectively.

Receiver operating characteristic areas under the curve for NB and

GBM model were 0.78 and 0.74 on the testing cohort, respectively.

This report calculated differential performance on these models’ test

performance by SES.

Fairness metrics
We considered common metrics for assessing fairness in model per-

formance: accuracy equality (equal accuracy across groups), equal

opportunity (equal false negative rate [FNR] across groups), predic-

tive equality (equal false positive rate [FPR] across groups), and pre-

dictive parity (equal precision across groups). As it is impossible for

a model to simultaneously satisfy equal opportunity, predictive

equality, and predictive parity (‘impossibility theorem’),41,42 and

there is no agreed-upon gold standard metric to be used, we priori-

tized balanced error rate (BER),43 defined as the unweighted average

of the FPR (predictive equality) and FNR (equal opportunity), as the

primary metric for assessing bias in this presented work (see more

details in Supplementary Table S1). BER was chosen as the primary

metric because our focus in the current work was prediction accu-

racy, which involves both FPR (or 1-specificity) and FNR (or 1-sen-

sitivity). We decided to use the unweighted (ie, equal weights)

average for summarizing both metrics, because the relative impor-

tance of these metrics will likely depend on the purpose of the stud-

ies. While our rationale for the use of BER is supported by

literature41,42 and we use it as the primary measure of fairness, we

also present results of each metric separately to see which metric is

more meaningful in a given study.

For each metric, we calculated the ratio comparing least privi-

leged group (eg, HOUSES Q1 representing lower SES, see below)

with the privileged group (HOUSES Q2–Q4 representing higher

SES). For FPR and BER, a ratio >1 means that the model perfor-

mance is superior for the privileged group, while a ratio >1 for the

other 3 metrics (accuracy equality, equal opportunity, and predictive

parity) means the model performance is superior for the less privi-

leged group. As a rule of thumb, a ratio that is <0.8 or >1.25 (1/

0.8) is considered as meaningful difference, which is implemented in

the open source program AI Fairness 360.44

Socioeconomic measures
In this study, we included 2 SES measures: HOUSES and area depri-

vation index (ADI). HOUSES is an individual-level SES measure

based on 4 real property data variables of an individual housing unit

after principal component factor analysis: housing value, square

footage, number of bedrooms, and number of bathrooms. An indi-

vidual’s address from the EHR is directly linked to the publicly

available assessor’s data (which is a basis for property tax and thus

is available throughout US counties and cities).32 We formulated a

standardized HOUSES index score by summing these variables after

z-score transformation. The greater the HOUSES index, the higher

the SES. Since its development, HOUSES has been extensively ap-

plied as a validated SES measure that has shown association with

numerous (39 different) health-related outcomes, including acute/

chronic conditions, health care access issues, health care utilization,

and other health-related behaviors such as smoking, and vaccine sta-

tus as summarized in Supplementary Table S2 representing 23 pub-

lished reports. As an alternative SES measure, we included ADI in

the analysis to compare the relative utility of HOUSES and ADI in

assessing bias in model performance by SES. ADI is a widely used

aggregate-level SES measure in clinical research, and it can use

smaller geographic units (Census Block Groups).45 We used

national-level ADI and categorized subjects into 2 groups: the high-

est ADI quartile (ADI: 76–100; lower SES) and lower ADI quartiles

(ADI: 0–75; higher SES).

Other pertinent variables
While our focus is to quantify bias in model performance by SES, we

also considered other readily available demographic characteristics

(age, sex, and race/ethnicity), and pediatric chronic conditions de-

fined by Feudtner et al (an accepted measure of pediatric chronic

conditions in literature).46,47 While it is possible that model perfor-

mance may differ among racial groups (eg, Asians vs African Ameri-

cans), the current study cohort does not have a large enough sample

size of each group to do a separate analysis. Therefore, the race vari-

able is collapsed into “white” and “other”. These variables are

extracted from patient’s EHR. For chronic conditions, ICD-9 diag-

nostic and procedure codes were used. For simplicity, we dichoto-

mize age (<12 vs �12 years) and chronic conditions (yes vs no). To

demonstrate the association of SES with completeness of EHR as a

potential reason for differential model performance by SES, we com-

pared availability of 7 variables that are clinically relevant to child-

hood asthma management (health maintenance visit, asthma

compliance, asthma severity, asthma type, National Asthma Educa-

tion and Prevention Program (NAEPP) recommendation, smoking

status, and missing school). These variables were extracted from

EHR in the 3 years prior to the study index date. Additionally, we

assessed data validity by looking at ICD-9 codes for asthma among

those who met PAC definition but were not yet diagnosed with

asthma at the time of the study.36 Specifically, we previously

reported a significant number of children with undiagnosed asthma
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by comparing asthma prevalence by ICD code-based asthma ascer-

tainment with that by natural language processing (NLP)-based as-

certainment using PAC (sensitivity: 31% for ICD-9 vs 81% for NLP

using criteria-based logic and 85% for NLP using ML).48–50

Data analysis
In this presented work, we quantified algorithmic bias for 2 ML

models (NB and GBM) for estimating 1-year AE risk among pediat-

ric asthmatics by demographic factors (age, sex, race/ethnicity), SES

(HOUSES and ADI), and chronic condition. For race/ethnicity vari-

able, all non-Hispanic Whites were classified as “Others” when

assessing algorithmic bias, due to small sample sizes in each minor-

ity category. This was done using a separate testing cohort whose

data were not used in model training, to avoid overestimates of out-

of-sample performance. To see the association of SES with data

availability and completeness of EHR, we also calculated propor-

tions of subjects with missing or unknown information for 7 varia-

bles relevant to asthma management. This analysis was done using

HOUSES only, because the number of subjects with the lowest SES

measured by ADI was very small. Based on our earlier work, we fo-

cused on assessing one variable as the main measure of data accu-

racy, diagnosed vs. undiagnosed asthma by ICD codes for those who

met PAC.49,50 This calculation was done in both the training and

testing cohorts.

RESULTS

Subject characteristics
The training cohort consisted of subjects with 71% being <12 years

old and 57% males. For race/ethnicity, a large portion of subjects

(60%) were non-Hispanic White and 14% were African American

as shown in Table 1. Roughly 20% of the subjects were in the low-

SES (HOUSES Quartile 1, Q1) group and 20% had at least one

chronic condition. However, the proportions of subjects with lower

SES by ADI were only 7% in training and 8% in testing cohorts.

Subject characteristics were similar between training and testing

cohorts. Roughly 30% of subjects had AE within 1-year follow-up

period (26% in the training cohort and 35% in the testing cohort:

Table 3). Table 2 showed that proportion of AE differed by subject

characteristics. In general, the proportion was higher in subjects

who were younger, male, lower SES by HOUSES, and those with

chronic conditions. There was significant discrepancy in the propor-

tion of subjects with a history of AE among lower SES group defined

by HOUSES (53%) and ADI (0%) in testing cohort.

Bias in performance
Using the testing cohort, Table 3 summarizes the results of bias in

model performance for both NB and GBM models in estimating 1-

year AE risk. Overall, model performance was not independent of

patient characteristics such as age, sex, and chronic diseases as

expected. Also, the 2 models did not have systematically different

patterns compared to one another in how their performance differed

by these factors. Higher SES as measured by HOUSES index was

greatly associated with superior model performance. Specifically,

children in lower SES groups had higher BERs than those in the

higher SES group in both ML models (ratio¼1.35 for NB model

and 1.25 for GBM model) which exceed those for race/ethnicity

(1.23 and 1.04, respectively). This differential performance by SES

was driven more by FNR (¼1-sensitivity; ratio¼1.51 by NB and

2.01 by GBM model) than FPR (1.18 by NB and 0.92 by GBM

model). This was also true for the equal opportunity (ie, sensitivity)

metric. Children in the higher SES group had significantly higher

sensitivity in the performance of both models, compared to those in

the lower SES group, to a greater extent than the difference by other

demographic factors. The bias analysis using ADI was limited due to

the lack of children experiencing AE among those having the lowest

SES measured by ADI in the testing cohort. For example, 2 of 5 met-

rics (equal opportunity and BER) used were not computable because

the denominator was zero. Also, PPV for those with ADI>75 was

zero because the numerator was zero.

Availability and accuracy of data relevant to asthma

management
We compared data availability for the key variables associated with

the risk of AE in the training and testing cohorts. As shown in Ta-

ble 4, compared to children in the higher SES group, those from

lower SES background had lower availability of the key variables

for asthma (eg, compliance data, severity and smoking exposure) as-

sociated with the risk of AE. Additionally, children with lower SES

had higher prevalence of undiagnosed asthma (ie, data inaccuracy),

compared to those with higher SES, although they met the criteria

for asthma.

DISCUSSION

Our study results suggest that lower SES, as measured by the

HOUSES index, is associated with worse predictive model perfor-

mance. A possible mechanism for this bias in performance is incom-

plete and inaccurate EHR data, as AI models perform better with

larger amounts of and more accurate data, and we found unavail-

Table 1. Subject characteristics used in the study

Training cohort Testing cohort

(N¼ 133) (N¼ 113)

Age (in years), n (%)

<12 94 (71%) 80 (71%)

�12 39 (29%) 33 (29%)

Sex, n (%)

Male 76 (57%) 67 (59%)

Female 57 (43%) 46 (41%)

Race/ethnicity, n (%)

Non-Hispanic Whites 76 (60%) 67 (60%)

African Americans 18 (14%) 9 (8%)

Asians 10 (8%) 13 (12%)

Hispanics 9 (7%) 11 (10%)

Other categories 14 (11%) 12 (11%)

Missing 6 1

HOUSES, n (%)

Q1 (the lowest SES) 22 (18%) 15 (14%)

Q2–Q4 102 (82%) 92 (86%)

Missing 9 6

Chronic condition, n (%)

Yes 30 (23%) 19 (17%)

No 103 (77%) 94 (83%)

National ADI, n (%)

76–100 (the lowest SES) 6 (7%) 6 (8%)

0–75 76 (93%) 65 (92%)

Missing 51 42

Asthma exacerbation, n (%)

Yes 34 (26%) 40 (35%)

No 99 (74%) 73 (65%)
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ability and inaccuracy also associated with lower SES. In turn, this

means adopting AI models biased by SES systematically aggravates

inequity, alongside greater health risk and lower health care access.

One noteworthy finding is disparities in undiagnosed or delayed di-

agnosed asthma by SES, as the lack of timely diagnosis of asthma

will deter access to preventive and therapeutic interventions51,52 and

may influence long-term respiratory outcomes.

As discussed earlier, SES is a key variable for understanding the na-

ture of bias stemming from differential health risk, health care access,

and completeness of available EHRs and for assessing and mitigating

algorithmic bias in health care. However, objective, scalable, and well-

validated individual-level SES measures are unavailable in commonly

used data sources for clinical care and research32 posing a major bar-

rier to health care delivery and research as acknowledged by National

Academy of Medicine and National Quality Forum.9,33,34 In this re-

spect, using the HOUSES index as a measure of individual-level SES

can be a useful tool for health care research, including AI research, as

it overcomes such unavailability of individual-level SES measures in

commonly used data sources such as EHRs.

Our previous work demonstrated that SES defined by HOUSES in-

dex correlated with a broad range of health outcomes and care quality

as summarized in Supplementary Table S2. Relevant to this present re-

port, we showed that HOUSES was associated with inconsistent self-

reporting.53 We found that lower HOUSES (SES) was associated with

higher rates of inconsistency (inaccuracy) in self-reporting a diagnosed

disease for the given (documented) diseases between the baseline and

4-year follow-up survey, and the association remained significant after

pertinent characteristics such as age and perceived general health (ad-

justed OR¼1.46; 95% confidence interval [CI] 1.17–1.84 for the

lowest compared with the highest HOUSES decile). Given that self-

reported information is captured in EHR and often used clinically (eg,

a history of pediatric asthma), higher proportion of inconsistent self-

reporting among patients with low SES may produce less reliable ML

models (if used). For the findings in Table 4 indicating differential

completeness of EHRs pertaining to childhood asthma by SES, it is

widely recognized that people with lower SES have greater burden of

diseases and poor outcomes compared to those with higher SES,20 es-

pecially childhood asthma.54–56 It is also well documented that those

with lower SES have limited health care access, may not have a usual

source of care, or rely more upon safety net care such as emergency de-

partment, compared to those with higher SES57–59 (also see Supple-

mentary Table S2 summarizing differential burden of disease and

health care access by SES as measured by HOUSES). For example, our

unpublished data showed that the availability of patient’s online portal

system (a proxy for health care access) was significantly lower among

families with lower SES (68% in Q1 [lowest SES]), compared to 74%

in Q2, 88% in Q3, and 92% in Q4 (highest SES) (P ¼ .02). As an on-

line portal is an important tool for managing chronic diseases such as

childhood asthma (eg, with communications with care providers, pa-

tient-reported outcomes [PROs], medication updates, etc., being cap-

tured in EHRs), it significantly affected availability of a key PROs on

asthma (ie, Asthma Control Test results; 99% for those with portal vs

77% for those without portal) at the end of a clinical trial as sup-

ported by this present study (see Table 4). Populations at high risk for

poor outcomes are characterized by a mismatch (called cumulative

complexity model)60–62: despite a higher burden of diseases, families

with lower SES often also face limited health care access compared to

those of higher SES. This mismatch model provides a useful frame-

work for assessing and mitigating AI bias by SES.

Our study results in Table 3 show the potential association of SES

as measured by HOUSES with biases in model performance. For ex-

ample, BERs were higher for children with lower SES for both algo-

rithms estimating AE risk, compared to those with higher SES, with a

disparity larger than those associated with other demographic factors

Table 2. Proportion of subjects with asthma exacerbation (AE) by subject characteristics

Training cohort Testing cohort

(N¼ 133) (N¼ 113)

Subjects with AE Subjects without AE Subjects with AE Subjects without AE

(N¼ 34) (N¼ 99) (N¼ 40) (N¼ 73)

Age (in years), n (%)

<12 28 (29.8%) 66 (70.2%) 30 (37.5%) 50 (62.5%)

�12 6 (15.4%) 33 (84.6%) 10 (30.3%) 23 (69.7%)

Sex, n (%)

Male 25 (32.9%) 51 (67.1%) 23 (34.3%) 44 (65.7%)

Female 9 (15.8%) 48 (84.2%) 17 (39.1%) 28 (60.9%)

Race/ethnicity, n (%)

Non-Hispanic Whites 19 (25.0%) 57 (75.0%) 25 (37.3%) 42 (62.7%)

African Americans 5 (27.8%) 13 (72.2%) 4 (44.4%) 5 (55.6%)

Asians 2 (20.0%) 8 (80.0%) 3 (23.1%) 10 (76.9%)

Hispanics 4 (44.4%) 5 (55.6%) 3 (27.3%) 8 (72.7%)

Other categories 4 (28.6%) 10 (71.4%) 4 (33.3%) 8 (66.7%)

HOUSES, n (%)

Q1 (the lowest SES) 6 (27.3%) 16 (72.7%) 8 (53.3%) 7 (46.7%)

Q2–Q4 23 (22.5%) 79 (77.5%) 29 (31.5%) 63 (68.5%)

Chronic condition, n (%)

Yes 10 (33.3%) 20 (66.7%) 7 (36.8%) 12 (63.2%)

No 24 (23.3%) 79 (76.7%) 33 (35.1%) 61 (64.9%)

National ADI, n (%)

76–100 (the lowest SES) 2 (33.3%) 4 (66.7%) 0 (0.0%) 6 (100.0%)

0–75 16 (21.1%) 60 (78.9%) 21 (32.3%) 44 (67.7%)

1146 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 7

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac052#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac052#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac052#supplementary-data


(age, sex, and race/ethnicity). This was also true for sensitivity. A re-

cent study also showed ML models having differential performance by

SES (measured by health insurance, public vs commercial health insur-

ance) in predicting ICU mortality12 and 30-day psychiatric readmis-

sion (people with lower SES had poorer prediction performance of

their ML algorithms, compared to those with higher SES).12 Overall,

our study results and the literature suggest that SES may be associated

with differential (in)completeness and validity of PROs, which may

Table 4. Summary of data availability for variables relevant to asthma management and data validity by SES for each cohort (training and

testing cohort)

Training Testing

Q1 (n¼ 22) Q2–Q4 (n¼ 102) Q1 (n¼ 15) Q2–Q4 (92)

Data unavailability, n (%)

Missing health maintenance visit 3 (14%) 12 (12%) 2 (13%) 11 (12%)

Missing asthma care compliance 14 (64%) 43 (42%) 9 (60%) 44 (48%)

Missing asthma severity 9 (41%) 24 (24%) 8 (53%) 23 (25%)

Missing asthma type 22 (100%) 95 (93%) 14 (93%) 79 (86%)

NAEPP recommendation missing 13 (59%) 43 (42%) 8 (53%) 37 (40%)

Missing smoking status 16 (73%) 39 (38%) 8 (53%) 34 (37%)

Missing data on missing school 15 (68%) 41 (40%) 8 (53%) 34 (37%)

Training Testing

Data validity* Q1 (n¼ 34) Q2–Q4 (n¼ 112) Q1 (n¼ 37) Q2–Q4 (n¼ 121)

Undiagnosed (ICD) asthma 4 (12%) 11 (9.8%) 3 (8.1%) 8 (6.6%)

*Data validity was calculated for subjects who met PAC criteria but did not have physician diagnosis of asthma.

Table 3. Assessment of algorithmic bias for 2 machine learning models (Naı̈ve Bayes [NB] and gradient boosting machine [GBM]) estimat-

ing 1-year asthma exacerbation risk in childhood asthma using 5 commonly used bias metrics

Accuracy

equality

Equal opportunity

(sensitivity)

Predictive parity (PPV) Predictive equality (FPR) Balanced error rate

([FPR þ FNR)/2]

Groups NB

model

GBM

model

NB

model

GBM

model

NB

model

GBM

model

NB

model

GBM

model

NB

model

GBM

model

SES (HOUES)

Q1 (lowest SES) 0.47 0.47 0.38 0.50 0.50 0.50 0.43 0.57 0.53 0.54

Q2–Q4 0.62 0.50 0.59 0.76 0.43 0.36 0.37 0.62 0.39 0.43

Ratio (Q1/Q2–4) (1¼ no diff) 0.75 0.93 0.64 0.66 1.18 1.39 1.17 0.92 1.35 1.25

Age

<12 0.53 0.45 0.57 0.70 0.41 0.38 0.50 0.70 0.47 0.50

�12 0.76 0.64 0.40 0.80 0.67 0.44 0.09 0.44 0.34 0.32

Ratio (<12/�12) (1¼ no diff) 0.69 0.71 1.42 0.88 0.61 0.84 5.75 1.61 1.36 1.57

Sex

Male 0.49 0.45 0.48 0.78 0.33 0.36 0.50 0.73 0.51 0.47

Female 0.74 0.59 0.59 0.65 0.67 0.46 0.17 0.45 0.29 0.40

Ratio (male/female) (1¼ no diff) 0.67 0.76 0.81 1.21 0.50 0.79 2.90 1.62 1.75 1.18

Race/Ethnicity

Others 0.54 0.39 0.47 0.60 0.35 0.29 0.42 0.71 0.48 0.56

Non-Hispanic White 0.63 0.58 0.56 0.80 0.50 0.47 0.33 0.55 0.39 0.37

Ratio (others/White) (1¼ no diff) 0.87 0.67 0.83 0.75 0.70 0.62 1.26 1.30 1.23 1.48

Chronic condition

At least one 0.53 0.47 0.20 0.80 0.20 0.33 0.33 0.67 0.57 0.43

None 0.61 0.50 0.59 0.69 0.46 0.39 0.38 0.60 0.39 0.46

Ratio (�1/none) (1¼ no diff) 0.87 0.94 0.34 1.16 0.43 0.86 0.88 1.11 1.44 0.95

ADI

76–100 0.60 0.60 NC NC 0.00 0.00 0.40 0.40 NC NC

0–75 0.64 0.54 0.60 0.80 0.44 0.39 0.35 0.58 0.37 0.39

Ratio (76–100/0–75) (1¼ no diff) 0.95 1.11 NC NC 0.00 0.00 1.15 0.69 NC NC

NC: not computable.

Ratios either greater than 1.2 or less than 0.8 (ie, an absolute difference between the ratio and 1 being greater than 0.2) were bolded.
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subsequently lead to differential algorithmic performance by SES.

However, this needs to be further assessed in other health outcomes

and for different populations (eg, adults).

It is also important to recognize differential performance of SES

measures in predicting health outcomes because researchers rou-

tinely use aggregate-level SES measures such as ADI24,63–65 or other

SES measures in research. Aggregate-level SES measures are subject

to a significant misclassification of individual-level SES (20–

35%)66,67 and the ecological fallacy68 and thus, may fail to detect

the association of SES with health outcomes. As shown in results,

compared to ADI, HOUSES classified more people as low SES,

which led to a larger low SES subgroup, which in turn made it possi-

ble to compute more bias measures using the HOUSES. For exam-

ple, there was significant discrepancy in the proportion of subjects

with a history of AE among lower SES group defined by HOUSES

(53%) and ADI (0%) which contrasts with the widely recognized

associations of lower SES with the increased risk of AE in the litera-

ture.54–56,69 In the analysis for algorithmic bias, ADI as an

aggregate-level SES measure showed significant limitations and diffi-

culties in applying it to research work assessing algorithmic bias, es-

pecially work based on a small sample size requiring precision, due

to its imprecision and misclassification of individual-level SES meas-

ures. Along these lines, our recent study showed that HOUSES pre-

dicted that kidney transplant recipients with lowest HOUSES (Q1)

had a significantly higher risk of graft failure than those with highest

HOUSES (Q2–4) (adjusted hazard ratio 2.12; 95% CI 1.08–4.16).70

Importantly, other SES measures such as individual educational lev-

els and census-block group level education and income failed to pre-

dict outcomes on graft failure. Therefore, in assessing and

mitigating algorithmic bias by SES, it is important to a valid measure

for individual-level SES measure. The HOUSES index fulfills this re-

quirement and can be a replacement or complement to existing con-

ventional SES measures. As AI models are ultimately being applied

to clinical decisions for individual patients, assessing AI model per-

formance and bias using individual-level SES is conceptually and

ethically more appropriate than aggregate-level SES measures when

individual-level SES measures are available to developers.

The HOUSES index has several conceptual and methodological

merits for clinical and translational research, as summarized in the

Supplementary section: First, HOUSES is able to capture health

effects of SES (defined as ‘one’s ability to access desired resources’)71

which is associated with 39 health care access, care quality, and

health outcomes as summarized in Supplementary Table S2. In this

context, HOUSES might be particularly attuned to asthma due to

links between housing quality (eg, indoor or outdoor air quality or

molds from moisture areas with poor ventilation) and childhood

asthma as discussed in the Introduction. Second, it is an external

and individual-level SES measure, in contrast to self-reported (eg, in-

come) or aggregate-level (eg, zip-code-based Census data) measures.

Third, it can retrospectively measure SES at any given point in time

whenever address information at the index date of events is available

(not relying on recalls). Fourth, as spatial coordinates are intrinsic to

HOUSES, it enables geospatial analysis to identify geographic hot-

spots of interest (eg, COVID-19 cases) to be used as a feature in pre-

dictive models.72–74 Finally, unlike other SES measures (eg,

educational level, which is relatively static), it can capture longitudi-

nal changes as real property data are regularly updated, and reloca-

tion of residence often reflects changes in a subject’s SES. This

feature allows us to use the HOUSES index as a financial outcome

across life stages. Taken together, these features highlight how the

HOUSES index can help to address issues of fairness in AI adoption,

ultimately helping to achieve greater levels of health equity across

populations.

Our study has a few strengths. First, our study is based on a real-

world setting where patients have a wide range of EHR complete-

ness, instead of studies based on highly selected subjects. Second, we

used an objective individual-level SES measure instead of self-

reported or aggregate-level SES measures (eg, Census level data).

Therefore, it does not suffer from recall bias or inaccuracy due to ag-

gregation. Third, we assessed data availability and validity for fea-

tures relevant to AE risk, which is not commonly done in AI

research despite its importance. Our study also has limitations. First,

the analysis was based on a small sample size. The present study was

an exploratory case study based on a small sample size, and thus,

findings are preliminary and require confirmation and further as-

sessment from future studies with a larger sample size. In future

work, we may also use variability as a way to estimate uncertainty

(ie, estimating CIs of point estimates), which would capture uncer-

tainty resulting from small sample size. More importantly, we were

not able to do a separate analysis by different minorities due to the

lack of samples within minority groups. However, future work can

build on this approach of using the HOUSES index as an individual-

level SES measure to assess potential bias from adoption of AI sys-

tems. Second, our study subjects may not represent the general pedi-

atric population. However, it represents patient population (source

population) as this study was based on those who receive care at our

institution without involving any recruitment steps. Recognizing the

cumulative residential effect from environment,75 our current work

did not include measurement for cumulative residential effect (eg,

capturing longitudinal changes of traffic volume associated with

changes of address over time) in the analysis. Third, a potentially in-

formative data when using HOUSES as an SES measure is the num-

ber of residents in a house. While we recognize its importance, the

data source that we use for formulating HOUSES (real property

data from counties) does not include this information, and thus, we

are unable to investigate its importance. Lastly, while HOUSES was

validated in other states such as Missouri and South Dakota,33,76

HOUSES requires further testing in other areas, including urban cit-

ies such as New York or Chicago, to establish validity before apply-

ing it across the United States and beyond.

CONCLUSION

Our study findings highlight the important role of SES in assessing

potential bias that can result from differential performance of AI

models across SES. Understanding the extent to which SES is a di-

mension along which bias occurs and examining the potential rea-

sons or mechanisms that generate this bias will be crucially

important for recognizing and mitigating bias in emerging applica-

tions of AI in health care. It will ultimately support efforts to pro-

mote health equity and fairness. We believe the HOUSES index, and

the approach outlined here, can play an important role in those

efforts.
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