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ABSTRACT

ICU Cockpit: a secure, fast, and scalable platform for collecting multimodal waveform data, online and historical

data visualization, and online validation of algorithms in the intensive care unit. We present a network of soft-

ware services that continuously stream waveforms from ICU beds to databases and a web-based user interface.

Machine learning algorithms process the data streams and send outputs to the user interface. The architecture

and capabilities of the platform are described. Since 2016, the platform has processed over 89 billion data points

(N¼979 patients) from 200 signals (0.5–500 Hz) and laboratory analyses (once a day). We present an

infrastructure-based framework for deploying and validating algorithms for critical care. The ICU Cockpit is a

Big Data platform for critical care medicine, especially for multimodal waveform data. Uniquely, it allows algo-

rithms to seamlessly integrate into the live data stream to produce clinical decision support and predictions in

clinical practice.
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INTRODUCTION

Clinical information systems (CIS) are gradually becoming indis-

pensable in intensive care units (ICUs) to record and integrate medi-

cal data from patient history, laboratory values, monitoring

parameters, and medications. Commercially available CIS, however,

do not meet requirements to collect and process high-resolution data

streams (full-resolution waveforms). Data logging and storage in

many commercial systems is performed only intermittently, captur-

ing information for routine clinical purposes,1,2 thereby limiting po-

tential benefits of clinical decision support systems.

Simultaneously, the advent of deep learning based machine

learning (ML) algorithms spurred the development of more accurate
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but complex models for outcome prediction in critical care.3,4 With

more complex models also came the demand for large and detailed

datasets. Open source datasets such as Physionet and Physiobank,5

MIMIC III,6 eICU,7 and PIC8 are benchmark datasets used by ML

researchers to compare model performance under standardized met-

rics. Although promising models have been developed, as for early

detection and outcome prediction in sepsis,9–12 few have been imple-

mented in ICU practice.13 This phenomenon is called the “AI

chasm” and refers to the fact that offline, purely computational vali-

dation of models is insufficient for successful clinical deployment.14

The danger of using models developed from ICU context specific,

retrospective datasets stems from the inherent problem of “model

generalization” to new, as yet unseen patient conditions and hospi-

tal environments. Thus, models trained offline still need to be vali-

dated online running on real-time data streams, in different data

ecosystems, where signals are measured by different devices.14,15

Started in 2014 at the Neurocritical Care Unit, University Hospi-

tal Zurich, the aim of the ICU Cockpit project was to develop a se-

cure, fast, and scalable platform for the collection of multimodal

waveform data, and deployment of real-time decision support sys-

tems integrating live data streams in the ICU. Crucially, ICU Cock-

pit infrastructure has evolved to cover the entire ML workflow from

artificial intelligence (AI) based computational disease modeling, to

online, real-time validation of algorithms in clinical trials.

METHODS

Research network
The ICU Cockpit platform is a network of data sources, databases,

microservices, and user interfaces (UIs) built around a central data

messaging service that allows users to acquire, visualize, compute

on, and annotate data from critical care patients. The main compo-

nents are shown in Figure 1. A detailed description of each compo-

nent is provided in Supplementary Appendix A1.

RESULTS

Data flow
Patient data originate from patient bedside in one or more ICUs or

from hospital services, mainly in 2 forms: streaming and sparse data.

Streaming data consist of live patient video and physiological signals

such as electrocardiography (ECG), arterial and intracranial pressure,

etc., advanced hemodynamic monitoring (eg, continuous cardiac out-

put), parameters from artificial ventilation (fraction of inspired oxy-

gen, positive end expiratory pressure, etc.) and neuromonitoring (eg,

electroencephalography (EEG)) acquired at sampling frequencies of

once every second to as high as once every 2 ms (¼500 Hz, typically

for ECG). Sparse data consist of patient metadata (eg, from patient

history or clinical events) entered into the clinical data annotation

tool (icuCDA, Supplementary Appendix A2) and measurements made

infrequently, for example laboratory tests performed once a day, or

arterial blood gas analysis performed once every few hours. Various

services send streaming and sparse data to a central Apache Kafka

message broker (icuKafka) from which it can be accessed by other

data processors in the ICU Cockpit Live Environment, Figure 1.

An admission-discharge-transfer service (icuADT) listens for and

publishes events that affect patient status, namely admission, dis-

charge, and transfer to another hospital unit. Laboratory results are

collected through the icuLAB service.

Streaming data are collected from different medical devices such

as Philips IntelliVue (Philips Medical Systems, Boeblingen, Ger-

many), Hamilton-S1, (Hamilton Medical, Bonaduz, Switzerland),

Licox Brain Tissue Oxygen Monitor (Integra Princeton, NJ, USA),

etc. via Moberg Component Neuromonitoring Systems (Moberg

Research Inc, PA, USA). The icuCollector software packs individual

data points into sets of formatted messages and sends them via

icuKafka to several sinks, such as the icuDBWriter. The icuDBWriter

writes data messages to a PostgreSQL database (icuDB). On average,

thousands of data points are written into the icuDB every second

from each patient. Data stored in the icuDB are accessible for offline

inspection. Older data are archived in the ResearchDB for sharing

with researchers that receive authorized access clearance.

Data protection
Patients or their representatives must provide informed consent for

the use of their data for research purposes. The consent status is

recorded in the icuCDA. If consent is not given or withdrawn, any

stored data in icuDB or ResearchDB are immediately deleted. Once

consent is given, clinicians involved in patient treatment are allowed

to access the database via a secure virtual private network (VPN)

and visualize data on computers with VPN access enabled. They

can view the patient metadata and treatments. For researchers with

approved access, data are pseudonymized via the ICUMRNmapper

tool and then exported.

Online stream processing and ML-algorithms
Using data collected by the ICU Cockpit platform, algorithms for

neurologic prognostication,16,17 detection of epileptic seizures from

bedside video,18 detection of clinically relevant EEG patterns,19 sta-

tistical analysis of high-resolution data streams20 as well as false

alarm reduction21,22 have been already developed, and validated off-

line. Promising algorithms can be implemented into the ICU Cockpit

as stream processors enriching and augmenting the original data

streams. Importantly, computed values become part of the original

data stream. As an example, we describe the implementation of a

heart rate variability computation algorithm23 into the online

streams in Supplementary Appendix A3. Its results can be visualized

in a historical data dashboard (Supplementary Appendix A4).

Web user interface for patient monitoring
Figure 2 shows a snapshot of the web UI (icuUI) in live use. Each

bed of the ICU is represented as a box. In addition to bed number

and vacancy, further metadata can be visualized on demand (eg,

SARS-CoV-2 status). ML algorithm outputs, such as the predicted

probability of delayed cerebral ischemia (DCI) (Figure 2, DCI bed

panel button) can be visualized for each bed in a pop-up UI.

Any bed can be selected for detailed display in the large center

panel. A live webcam feed is shown as a backdrop (by default, vid-

eos are blurred to protect patient identity). Selected signals are visu-

alized on top of the video feed. Signal charts are backed by the

icuKafka layer and are updated as soon as new data are available.

Update rates and latencies depend on signal sampling rates as well

as network bandwidth. We performed a coarse estimate of signal la-

tency using a stopwatch that used the network time. The ECG sen-

sor on a patient was connected and disconnected several times

during routine patient care, and the resulting signal loss was regis-

tered within 2 s on the UI.
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A framework for critical care machine learning model

validation
The ICU Cockpit was designed with the aim of implementing, test-

ing, and deploying ML algorithms into the live data stream from

ICUs. We have created a framework for model validation that occurs

in stages according to the guidelines in references.13,14 First, in Stage

1, models are developed using data stored in ResearchDB. This is also

known as internal (offline) validation Figure 3 (bottom). Next, an in-

ternally validated model is deployed in a test environment, to ensure

that model outputs are produced correctly. Following Stage 1, the

model is deployed in the live environment (Stage 2) but with the out-

puts only visible in the MD’s office where they can be compared to

actual patient health status, that is, in “silent” mode. In this stage out-

puts do not affect the behavior and decision making of clinical staff.

Finally, model outputs become visible on the standard icuUI when

models are tested in randomized clinical trials (Stage 3) or thereafter.

In Stage 3, model outputs are viewed by clinical staff during regular

ICU work. Longitudinal monitoring of model performance can be

done offline based on model outputs stored in the ResearchDB (Post

implementation evaluation). Clinical outcome trials that are only ob-

servational studies also fall into this category.

Performance statistics
Since 2016, from a patient cohort of N¼979 admitted to the Neu-

rocritical Care Unit with informed consent, the total number of data

points processed and stored by the ICU Cockpit platform was ap-

proximately 88.9 billion. These data were collected over 8383 days

of admission from 12 ICU beds. Table 1 summarizes statistics across

patients.

DISCUSSION

Critical care is currently experiencing a big data revolution.

Leveraging this data requires IT infrastructure that can (1) support

healthcare staff with decision support systems, (2) establish secure

access for data to researchers, and (3) allow for the offline and on-

line evaluation of ML algorithms according to the guidelines pro-

posed under CONSORT-AI24 and SPIRIT-AI.25 Recently, the US

Food and Drug Administration (FDA) and Health Canada released

a 10-point guide for Good Machine Learning Practice for Medical

Device Development.26 The ICU Cockpit empowers its users to

adhere to these guiding principles, in particular, points which

deal with good software engineering practices, model testing in

a live environment, the ability to perform statistically sound

clinical trials, and continuous monitoring of model performance

after deployment.

Few research-oriented data platforms exist that satisfy these

requirements. Several private enterprises such as Epic, Nextgen,

eClinicalWorks, etc. provide proprietary electronic healthcare re-

cord (EHR) management software. These software applications

Figure 1. ICU Cockpit platform component diagram. Patient data originate from bedside medical devices installed in ICUs (top left), and via hospital services

external to the ICU Cockpit platform (top right). External services such as laboratory analyses and patient metadata from the hospital patient data management

system are collected via icuLAB and icuADT. Live bedside webcam video is fed through a separate service (icuCAM) which encodes and optionally blurs the video

for patient privacy. The ICU Cockpit Live Environment (ICU Live env) is the central data packaging and distribution module using the icuKafka distributed messag-

ing service. The live stream of any recorded signal and ML algorithm outputs (from icuML) can be visualized in the ICU Cockpit Frontend user interface (UI) (icuUI,

bottom left) and stored in the live stream database (icuDB). Patient metadata, admission status, and clinical operations are accessible and edited through the Clin-

ical Data Annotation user interface (icuCDA). Data postprocessing, analysis and algorithm development occur offline by researchers who receive archived and

pseudonymized data from the research database (ResearchDB) after authorization. Offline validated algorithms are transferred to the icuML staging environment

for integration. Integrated algorithms receive a constant data stream from icuKafka or icuDB, to perform necessary computations and transmit outputs back into

the stream to be displayed and/or stored.
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have been successful in facilitating clinical operation, but drawbacks

are the typically high cost, low customizability, data security issues

arising from patient data stored on external cloud platforms, the ab-

sence of online monitoring and interaction with standalone ML

algorithms, and most of all the inability to collect high-resolution

physiological data. A detailed comparison of the ICU Cockpit

platform with other available research-oriented data platforms27–30

is provided in Supplementary Appendix A5.

We have shown that the ICU Cockpit platform processes and

stores a large volume of ICU data consisting of signals with variable

sampling rates, live webcam video, clinical operations, patient ad-

mission status, patient meta data, and lab results. Patient monitoring

is complemented with historical data visualization and statistical

computations are easily integrated into the processing pipeline, with

algorithm outputs appearing as new signals that can be visualized

like raw data. Our front end design for the icuUI falls in line with

the findings of a user study of clinical data UIs.31

A further advantage of our platform is that it builds on state-of-

the-art open-source software such as Apache Kafka, PostgreSQL,

ReactJS, Docker, and Grafana, thereby benefiting from the contin-

ued development by the respective communities while being easily

extendable. Moreover, all UIs are web-based allowing the ICU

Cockpit to be deployed in the cloud.

A caveat of our system is the data source bottleneck created by

using Moberg CNS monitors as gateways for interfacing medical

devices at the bedside. Integrating additional devices can be costly

and cumbersome if they are not yet supported, as new partnerships

between companies must be established. We recommend greater col-

laboration between researchers, hospitals, and industry to promote

the use of (device) interoperability standards, thereby reducing the

cost of data integration (see Supplementary Appendix A6 for

details). A second caveat of our system is the lack of an administra-

tive query assistant. For example, doctors often want to filter

out patients with certain diseases and attributes for clinical research.

We are currently implementing these features into the clinical data

annotation tool (icuCDA).

In summary, the ICU Cockpit platform provides clinical staff

and researchers with the ability to perform day-to-day clinical moni-

toring and operations, as well as advance the development and prac-

tical use of ML algorithms in patient healthcare through rigorous

real-world evaluation.
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