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Abstract

Riverine macrophytes form distinct species groups. Their occurrence is determined by envi-

ronmental gradients, e.g. in terms of physico-chemistry and hydromorphology. However,

the ranges of environmental variables discriminating between species groups (“discrimina-

tory ranges”) have rarely been quantified and mainly been based on expert judgement, thus

limiting options for predicting and assessing ecosystem characteristics. We used a pan-

European dataset of riverine macrophyte surveys obtained from 22 countries including data

on total phosphorus, nitrate, alkalinity, flow velocity, depth, width and substrate type. Four

macrophyte species groups were identified by cluster analysis based on species’ co-occur-

rences. These comprised Group 1) mosses, such as Amblystegium fluviatile and Fontinalis

antipyretica, Group 2) shorter and pioneer species such as Callitriche spp., Group 3) emer-

gent and floating species such as Sagittaria sagittifolia and Lemna spp., and Group 4)

eutraphent species such as Myriophyllum spicatum and Stuckenia pectinata. With Random

Forest models, the ranges of environmental variables discriminating between these groups

were estimated as follows: 100–150 μg L-1 total phosphorus, 0.5–20 mg L-1 nitrate, 1–2 meq

L-1 alkalinity, 0.05–0.70 m s-1 flow velocity, 0.3–1.0 m depth and 20–80 m width. Mosses

were strongly related to coarse substrate, while vascular plants were related to finer sedi-

ment. The four macrophyte groups and the discriminatory ranges of environmental variables

fit well with those described in literature, but have now for the first time been quantitatively

approximated with a large dataset, suggesting generalizable patterns applicable at regional

and local scales.

1. Introduction

Riverine macrophyte species occur under a wide range of chemical and hydromorphological

conditions and can be classified into groups according to their ecological preferences resulting

in distinct distribution patterns [1–3]. These distribution patterns are useful, for instance, to

indicate environmental conditions relevant for target setting in ecological conservation and

restoration. There is, however, limited quantitative empirical information on the environmen-

tal conditions where species groups differentiate along multiple gradients.
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Chemical variables have received most attention in identifying potential discriminative

ranges of macrophyte species, with nutrient concentration being studied most frequently. The

input of nutrients increases algae growth, restricting light and promoting faster-growing, can-

opy-forming macrophytes which can outcompete smaller species [4,5]. Alkalinity, a proxy for

dissolved inorganic carbon (DIC), is another important driver of macrophyte [6,7]. Thus,

nutrients and DIC are major determinants for macrophyte occurrence.

Hydromorphological characteristics including flow velocity, depth, width and substrate

type also strongly affect macrophyte occurrence [8–10]. Streamlined, small or deep-rooting

macrophyte species are able to tolerate higher and turbulent flow in upstream shallow sections

[11–13]. Especially mosses are able to tolerate higher flow velocities and grow on coarse and

stable substrate while superficially rooting or free-floating species with large leaf areas prefer

downstream sections, which are deeper, wider and characterised by lower flow velocities and

finer sediment [2,10]. Therefore, habitat-related gradients pose an additional layer of complex-

ity for understanding the composition of macrophyte groups.

Along all these different environmental gradients, we expect the occurrence of different

macrophyte groups being discriminated by specific ranges of selected environmental gradi-

ents. Such “discriminatory ranges” denote gradient regions which separate between the occur-

rence of different macrophyte groups. “Groups” are defined as macrophyte species that often

co-occur under similar conditions.

Currently, discriminative ranges are based on expert judgment or derived from small-scale

experiments, rather providing descriptive accounts scattered across the scientific literature

[14–16]–the question of discriminatory ranges is addressed with little empirically evidence.

But what is the meaning of environmental descriptions such as ‘shallow’ or ‘deep’, ‘high nutri-

ents’ or ‘low nutrients’ with regard to the occurrence of distinct groups of macrophyte species?

Is it possible to substantiate these qualitative expressions with quantitative values?

In this article, we explore a large dataset spanning 22 countries in Europe, which covers

large environmental gradients linked to the occurrence of river macrophytes. This allows us to

address two research questions:

1. Which groups of co-occurring macrophyte species can be observed across Europe’s rivers?

2. What are the discriminative ranges of these macrophyte groups along gradients of nutri-

ents, alkalinity, flow velocity, depth, and width at continental scale?

2. Material and methods

2.1 Data basis

Biotic data. We have used a dataset collated from national monitoring programmes to

assess the ecological river status [17, see S1 Table for the respective data providers]. These data

were initially used to compare the national classifications of ecological river status and covered

22 countries including all European bioregions except for the Boreal and Mediterranean

region (both regions not part of this comparison, Fig 1). The rivers included in the dataset

comprise a range of different types from small upland brooks, to medium-sized rivers and

large lowland rivers (e.g., Danube River). All national protocols for the macrophyte surveys

complied with the European Standard CEN-EN 14184 [18]. In short, riverine macrophytes

were monitored along a river reach of 100 m during the growing season (June to September)

by wading, diving or boating, using rakes or grapnels. No multiple samples from a single site

were used (no duplicates). We only included macrophyte species with a high water-affinity

[’aquaticity levels’ 1 and 2 according to [19,20] and excluded species recorded at less than 25
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Fig 1. Map of Europe with bioregions and sample size per country.

https://doi.org/10.1371/journal.pone.0269744.g001
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sites. This number was derived from initial data screening, chosen to prevent the grouping of

species in non-representative clusters due to minimal sample size. This resulted in rarely

occurring species being excluded from the analysis (e.g., Chara globularis with n = 3, Potamo-
geton polygonifolius with n = 15, Ranunculus baudotii with n = 1 or Utricularia vulgaris with

n = 3). The dataset used in our analysis covered 1,896 unique sampling sites surveyed between

1994 and 2011 including 62 species and 8,090 species records (see Fig 2).

Fig 2. Dendrogram with four groups used in the RF models. n = number of species’ occurrences in the group.

https://doi.org/10.1371/journal.pone.0269744.g002
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Environmental data. The associated environmental data covered hydromorphological as

well as chemical surface water variables (Table 1). Substrate was given as the most dominant

substrate size in seven categories: 1) Silt, sand and gravel, 2) sand, 3) gravel and boulder, 4)

gravel, 5) silt and sand, 6) sand and gravel, and 7) rock and gravel. Width, depth and flow

velocity were given as average values of the sampling site. Total phosphorus (TP), nitrate

(NO3
-) and alkalinity (meq L-1 CaCO3) were given as annual mean values. These parameters

were selected due to an adequate availability in the present dataset. Missing values for the envi-

ronmental data were assumed to be missing at random.

2.2 Species grouping

For delineating species groups, we created a presence-absence matrix of species and sampling

sites. Based on this matrix, we clustered species with Jaccard index and the Wards D criterion.

We subsequently created 2 to 62 clusters (from now on referred to as ‘species groups’, indicat-

ing the target variable), with the last 62nd cluster representing an individual group for each spe-

cies. For each of the cluster analyses we assessed how well a Random Forest (RF) model

assigned the individual species to a group with the environmental data (predictor variables).

RF is a machine-learning method that operates by constructing a multitude of decision trees

for predictive modelling [21]. The cluster analysis was performed on all sampling sites, but the

RF model was trained on a randomly selected 80% of the combined biotic and environmental

data, while 20% were used as single validation fraction. We selected the number of species

groups before Cohen’s kappa, calculated on the Out-Of-Bag (OOB) predictions, dropped

below a value of 0.3 [22]. Hence, the selection of how many species groups are relevant

depended on the ability of the model to discriminate between them. It has to be noted that,

contrary to the concept of macrophyte communities [see, for instance, 17] this approach does

not allow for classifying species into multiple groups.

A model trained to predict the groups before Cohen’s kappa dropped below 0.3 were fur-

ther tuned by changing the “nodesize” argument (regulating the tree depth). After the model

was fine-tuned, it was again applied on the holdout fraction (20%) to preclude strong overfit-

ting. To see how well the model generalizes, we applied 10-kfold cross-validation with the rfU-
tilities package for R [23] on the full dataset, but only after the prediction on the holdout

fraction was found reasonable (~5% deviation from OOB predictions).

Two final models were created based on different approaches to handle missing values of

the predictor variables (= imputation) to explore if a less complex approach would be outper-

formed by a more complex approach. For the first approach (less complex), we used the

Table 1. Number of observations per category of the categorical variables (including missing values), and the quantiles (5, 50, 95%), mean and percentage of missing

values of the continuous variables.

Substrate (number of observations)

Silt, sand and gravel Sand Gravel and boulder Gravel Silt and sand Sand and gravel Rock and gravel Missing
662 339 279 255 219 54 34 54

Continuous variables

Quantiles Alkalinity Velocity Nitrate Total phosphorus Width Depth

(meq CaCO3 L-1) (m s-1) (mg L-1) (μg L-1) (m) (m)

5% 0.4 0.10 0.11 19 2 0.1

50% 2.6 0.50 2.51 110 8 0.4

95% 6.6 0.80 17.00 796 82 1.5

Mean 2.9 0.48 4.25 256 18 0.5

Missing (%) 52 60 17 35 14 28

https://doi.org/10.1371/journal.pone.0269744.t001
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median of the respective predictor variables to substitute missing values. For the second

approach (more complex), values were imputed with the missForest package for R [24]. The

number of trees for the missForest package was set at 200 and categorical variables were under

sampled on the least occurring group. Under sampling indicates that each generated tree in

the RF model has an equal number of observations for each group.

The RF models were created with the randomForest package for R [25]. The performance

on the OOB and holdout predictions was assessed based on the accuracy and Cohen’s kappa

calculated with the caret [26] and rel [27] packages for R. The accuracy is the percentage of spe-

cies that the model has classified correctly as belonging to a specific group. Cohen’s kappa

takes the hypothetical probability of chance agreement into account, estimates how far the

model is deviating from random guessing and informs on the balance of the predictions. The

ranges of Cohen’s kappa can be interpret as follows: < 0 = poor agreement, 0–0.19 = slight

agreement, 0.20–0.39 = fair agreement, 0.40–0.59 = moderate agreement, 0.60–0.79 = substan-

tial agreement, and� 0.80 = almost perfect agreement [28]. For each model, the number of

random bootstrapped predictors at each node (“mtry”) was set to 1 and the number of trees

created was set at 7000. The classes were under sampled based on the number of observations

in the minority group. Indicating that each tree in the model was create on a random and

equal number of observations from each class. The argument “nodesize” was finally set to 200

to reduce effects of overfitting and improving generalization, regulating the number of species

occurrences that end up in the terminal nodes.

2.3 Discriminative ranges

The discriminative ranges of the species groups along the gradients of environmental variables

were analysed with the fine-tuned RF models. We extracted the mean, maximum and mini-

mum values of the split-points of the continuous variables when they occurred in the root-

node of the generated trees. Since the number of trees was set at 7000 and “mtry” at 1 each var-

iable ended up ~1000 times in the root-node, as there were seven predictors. This allowed to

quantify the variability of the split-points, where the discrimination between groups was most

apparent. The wider the ranges, the more variable the split-points of the RF model occurred in

the root-node. The ranges of the split-points were defined as discriminative ranges. The pre-

dictions and discriminative ranges of the models were displayed in partial dependency plots

(PDPs), created with the pdp package for R [29]. This was not possible for the categorical vari-

able ‘substrate type’, and only the category for which a species group is most likely predicted

was displayed. The PDPs show the marginal “effect” one predictor has on the voting fraction

of the model. All calculations were performed in R [30] and the additional R packages used

were ggplot2 [31] and cowplot [32].

3. Results

A four-cluster solution represented the highest number of different species groups before

Cohen’s kappa dropped below 0.3 (Fig 2). Accuracy and Cohen’s kappa for both approaches to

handle missing values were similar (around 50–55% and 0.35–0.40, respectively) (S2 and S3

Tables). Species group 1) comprised mosses such as Amblystegium fluviatile and Fontinalis
antipyretica, species group 2) shorter and pioneer species such as Callitriche spp., species

group 3) emergent and floating species such as Sagittaria sagittifolia and Lemna spp., and spe-

cies group 4) eutraphent species such asMyriophyllum spicatum and Stuckenia pectinata.

Species in Group 1 were predicted to occur more likely on coarse substrate (boulder, rocks

or gravel) and species in Group 4 were predicted to occur more likely on fine substrate (silt,

sand or gravel). Species in Group 2 had an intermediate position, predicted on coarse substrate
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but less than species in Group 1 and more than species in Group 3 (Fig 3A). Width and depth

affected the discrimination as well: Species in Group 4 were predicted to occur more likely in

wider (> 20–82 m) and deeper (> 0.3–1.1 m) rivers, while this was the opposite for species in

Group 2. Species in Group 3 were predicted to occur more likely in smaller (< 20–82 m) but

Fig 3. Partial dependency plots of Groups 1–4 displaying predictions of the RF model. A) dominant substrate type, B) width, C) total phosphorus, D) depth,

E) alkalinity, F) nitrate and G) flow velocity. Grey coloured areas indicate the split-point range representing the minimum and maximum values extracted from

the root-nodes for each generated tree. The two dotted lines indicate the minimum and maximum values and the dashed line indicates the mean. Variables are

log-transformed for visualization (natural logarithm).

https://doi.org/10.1371/journal.pone.0269744.g003
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deeper rivers (> 0.3–1.1 m). Species of Group 1 were predicted to occur more likely in shallow

rivers (< 0.3–1.1 m) and showed a unimodal response towards occurrence in medium-sized

rivers, although width was less influential (Fig 3B).

The nutrients TP and NO3
- also played an important role. Species in Group 1 were pre-

dicted to occur more likely at TP concentrations lower than 109–164 μg L-1 (Fig 3D), while

Group 3 and 4 species were predicted to occur more likely at concentrations above 109–164 μg

L-1. The response to NO3
- emerged far at the end of the gradient, and Group 1 and 4 showed

limited response, whereas Group 3 was discriminated more likely under lower NO3
- concen-

trations and Group 2 under concentrations higher than 0.5–22 mg L-1, respectively (Fig 3E).

Group 2 species were predicted to occur more likely at higher NO3
- (see also S1 Fig). Group 1

species were predicted to occur more likely at alkalinities lower than 1.1–2.0 meq L-1, while

predictions of Group 2 were uncertain (Fig 3F). Group 3 and 4 species were predicted to occur

more likely at alkalinities above 1.1–2.0 meq L-1. For velocity, both Group 1 and 4 species were

predicted to occur more likely above 0.07–0.70 m s-1, while Group 2 and 3 species were pre-

dicted to occur less frequently above 0.07–0.70 m s-1 (Fig 3G).

4. Discussion

We discriminated four macrophyte groups with a combination of cluster analyses and RF

models. These four groups represent those species compositions which occurred most often

together at different sampling sites. The accuracy and Cohen’s kappa for both imputation

methods for missing values were similar to another study predicting the presence/absence of

macrophytes [22]. The overall strong variability of macrophyte occurrence along the gradients

does not make the more complex and precise imputation with missForest superior to simply

using the median. Furthermore, the fraction of variables missing for particular parameters

might be too large for missForest. Hence, there is no clear pattern to “recognize” by missForest

that would lead to outperforming the simple imputation using the median.

4.1 Macrophyte groups

Group 1 comprises species of shallow mountain brooks with coarse substate, high flow veloci-

ties and low alkalinity and TP concentrations. This group represents the so called “moss zone”

of headwaters, where mosses often occur under high flow velocities and attach to coarse sub-

strate [33–35]. Therefore, mosses such as Amblystegium fluviatile, Chiloscyphus polyanthos and

Fontinalis antipyretica can often be found together as described by [36] [Belgium].

Group 2 comprises species found in shallow streams under low TP concentrations and flow

velocity. Most of these species are either small, or have floating leaves and are rooted in the

sediment or are fast colonizers (e.g., Callitriche spp., Glyceria. fluitans, Polygonum amphibium
and Potamogeton natans). Other species in this group occur at the banks of lowland brooks

(Nasturtium officinalis and Veronica beccabunga) or are mosses tolerant to eutrophication

(e.g., Amblystegium tenax [37]). This group shows similarities to groups described by [36,38–

41] [Belgium, Italy, Great Britain, France and Denmark].

Group 3 comprises species often occurring in deep and wide rivers under high alkalinity

and TP concentrations but low flow velocities. Species include free-floating (Lemna spp. and

Spirodela polyrhiza), common lowland species (e.g., Sparganium emersum) and species grow-

ing on banks and shallow channel zones (Berula erecta and Scirpus lacustris). Species with

large leaves or free-floating are particularly susceptible to higher flow velocities and can be eas-

ily damaged, de-rooted or flushed downstream [13,42–44]. Similarities are present with [38]

[Denmark], sharing the observation that Elodea canadensis, Lemna minor and Sparganium
emersum occur in similar clusters.
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Group 4 comprises species such as Ceratophyllum demersum,Myriophyllum spicatum,

Potamogeton crispus and Stuckenia pectinata that can tolerate the extremes of the environmen-

tal variables investigated in this study. These species are often associated with large eutrophic

rivers [37,45], are able to utilize both HCO3
- and CO2 [46], can tolerate high levels of salinity

[47], form long shoots [5] and can adapt their physiology [13]. Hence, the groups can be sepa-

rated based on traits or adaptive strategies fitting with the concurrent environmental variables.

A drawback of our methodology is that the model cannot discriminate multiple species in

different groups. For example, Group 3 and 4 cannot both contain Potamogeton crispus. A

possible workaround could be to weigh (w) the groups (g) or species within the GINI index:

GINI = S(1 - (gi
�wi-. . .-gn

�wn)2). Better discriminating groups get a higher weight compared

to poorly discriminating groups. This would allow the algorithm to maximise GINI over

higher weighted groups in each tree, which affects the error-rate and location of the split-

points.

4.2 Discriminatory ranges

The observed ranges of variables in this pan-European dataset fit well with both expert judge-

ment and experiments from literature originating from very different regions. However, the

imputation of missing values might change the precision of the results. Nonetheless, the

hydromorphological characteristics substrate, width and depth were of importance, with flow

velocity to a lesser extent. Substrate was clearly decisive for Group 1 and 4 species. Substrate

reflects hydrological regime [15], habitat heterogeneity [48] and nutrient availability [49]. It is

a crucial proxy variable reflecting a multitude of environmental conditions changing along the

river continuum [50,51]. More stable coarse substrate is representative for higher flow veloci-

ties and lower nutrient contents, whereas finer substrate often goes along with lower flow

velocities and higher nutrient contents. It can potentially indicate eutrophication processes

including the release of nutrients to the surface water [52].

The separation of the groups along the gradients of width and depth resulted in relatively

broad discriminatory ranges. For width (~20–80 m) and depth (~0.3–1.0 m), the ranges corre-

spond to the classes of Schaumburg et al. [53], who placed boundaries to distinguish between

river types at 40 m width and 0.3 m depth. Riis and Biggs [54] suggested a boundary at 1.0 m

and van Geest [55] described and optimum for submerged plants at 0.5–1.0 m depth in lakes.

The prediction of Group 4 strongly increases with width, while the predictions of the other

groups slightly declined. Wider and deeper rivers are relatively fast flowing and have a high

trophic state, thus only a few larger and tolerant species regularly occur, as in Group 4.

The chemical variable TP showed a narrower range compared to width, depth and flow

velocity. The discriminative ranges of TP were between 109–112 μg L-1, similar to observed

changes in macrophyte composition and disappearance in lakes [56,57]and rivers [58,59].

Novak and Chambers [58] suggested management should focus to reduce TP in rivers below

~100–150 μg L-1, as the diversity of species declined beyond this point. Presumably, diversity

decline is caused by increasing dominance of algae or by competition between species of

Groups 3/4 with species of Groups 1/2. Giblin et al. [59] showed that free-floating plants

(mainly present in our Group 3) increase in abundance at TP ranges of 43–167 μg L-1. How-

ever, species related to more nutrient-rich conditions were also included in Group 2 (e.g.,

Lemna gibba n = 28 and Zannichellia palustris n = 41). This is probably related to the low num-

ber of observations for these species in our dataset, not representing their real distribution. It

is yet to be noted that various authors challenged the role of TP as explanatory factor for mac-

rophyte distribution due to absence of a direct known mechanistic link and spurious correla-

tions [60–62].

PLOS ONE Environmental ranges discriminating between macrophytes groups in European rivers

PLOS ONE | https://doi.org/10.1371/journal.pone.0269744 June 14, 2022 9 / 15

https://doi.org/10.1371/journal.pone.0269744


For nitrate, discriminative ranges were broader (~0.5–20 mg L-1), which is in line with [63],

who also found broad ranges for species responding positively to nitrate (2.5-9.7 mg L-1). Yet,

the range is extremely broad suggesting smooth transition along the gradient instead of

“breakpoints” at particular nitrate concentrations. Similar broad ranges have been observed

for Chara hispida and C. vulgaris, which show relatively constant growth rates up to 30 mg L-1

[64]. Moreover, growth inhibiting effects at relatively low nitrate concentrations may play a

role as well. Boedeltje et al. [65] suggested that for species dominantly assimilating ammonium

(e.g., Potamogeton alpinus), the switch to nitrate as the main source of nitrogen comes at high

metabolic costs reducing the growth rate. In our analysis, P. alpinus occurred in Group 3 that

is related to lower nitrate concentrations. In contrast, Group 2 species were predicted to occur

more likely under higher NO3
- concentrations. This could be the result of higher denitrifica-

tion rates in downstream sections, where anaerobic sediment is more dominant [66]. So these

differences between groups might simply reflect the river continuum. Hence, the mechanistic

rational of nitrate is not clear in relation to macrophytes or functional groups.

For alkalinity, we found discriminative ranges of ~1.0–2.0 meq L-1, which is also in line

with the observations of other authors. For example, Butcher [50] termed the concentration

range of 0.4–2.0 meq L-1 as “slightly calcareous and almost neutral”, below 0.4 meq L-1 as non-

calcareous and above 2.0 meq L-1 as alkaline. Moyle [67] suggested the distinction between

soft and hard water lakes between 0.6–1.0 meq L-1 (30–50 ppm), Arts et al. [14] between 1.0–

2.0 meq L-1 and, recently, Lyche Solheim et al. [16] set boundaries for river types at 1.0 meq L-

1. The mechanistic link is likely the result of carbon concentrating mechanisms [7], but why

these particular boundaries were observed remains unclear.

Flow velocity also displayed recognizable patterns. We observed a discriminatory range of

~0.05–0.70 m s-1, which is in line with the observation of other authors [11,15,34]. Biggs [15]

suggested that assemblages change from vascular plants to mosses around 0.3–0.7 m s-1 and

French and Chambers [34] showed that after 0.4–0.6 m s-1 vascular plants are often absent.

Chambers et al. [68] noted that velocities over a range of 0.2–0.7 m s-1 coincided with a

decrease in plant biomass. The figures given by Kemp et al. [11] showed changes around 0.5 m

s-1 and it was observed that above 0.5 m s-1 submerged fine leaved macrophytes dominated.

Also Smidt et al. [69] noted that medium to fast flowing was between 0.35–0.70 m s-1. More-

over, Kemp et al. [11] observed that emergent macrophytes preferred up to 0.05 m s-1, coincid-

ing with our Group 3. We showed that the voting fraction starts to increase at ~0.3 m s-1 (see

Fig 3). C. demersum was also placed in Group 4, but it is not expected under higher flow veloci-

ties. This species likely grows closer to the banks sheltered from higher flow velocities. This

confirms that the measurements of the environmental variables are averages of presumably

heterogeneous conditions within a river stretch.

The discriminatory ranges are not to be mistaken with management thresholds represent-

ing points along a gradient at which a desired status is likely to be achieved (e.g., distinct water

or habitat quality targets) [70]. They also neither suggest a clear discrimination for each unique

gradient nor group predictions independent from other (measured and unmeasured) environ-

mental variables. Furthermore, the discriminative ranges do not indicate that a species is

restricted to higher/lower parts of the environmental gradient. These ranges rather denote that

the discrimination of the model between the groups was most noticeably at this range along

the gradient.

Causation and independence can in most cases not be derived based on data obtained by

biological monitoring programmes. Our analysis is thus associative and exploratory rather

than causative. The dataset used is not suited to study nuanced cause-effect relations, because

environmental gradients are correlated, and confounding factors are not controlled for.

Despite these limitations, the dataset’s coverage of large spatial and environmental gradients
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allows for detecting patterns that conform to findings of other studies. This is beneficial for

defining valid macrophyte groups and the corresponding environmental conditions, particu-

larly in the light of ecosystem management and recovery at the European scale [16,17]. Our

results and their discussion also provide evidence to build informed priors for Bayesian infer-

ence (e.g. Bayesian threshold/changepoint analysis) or to substantiate “breakpoints” in diag-

nostic networks [71]. Yet, the most interesting but open questions are: Which mechanisms are

the result of these observed discriminatory ranges? Why do they exactly occur at these loca-

tions, and can they be approximated with theoretical models?

As demonstrated above, the macrophyte groups resulting from our analysis show strong

similarities to group descriptions in various national macrophyte studies. Our discriminatory

ranges for the relevant environmental factors provide quantitative evidence instead of qualita-

tive accounts derived from small-scale investigations or expert judgment. The discriminatory

ranges fit well with these accounts, suggesting that they are generalizable across different spa-

tial scales. Our study may initiate further research on the multiple factors determining macro-

phyte occurrence beyond the usual focus on the trophic state. Our study may initiate further

research on broader concepts for macrophyte occurrence beyond the usual focus on trophic

state. An improving capacity to quantify the environmental conditions that determine the

presence of riverine macrophytes will ultimately benefit biological prediction, facilitating

enhanced conservation and restoration effectiveness.
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