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Abstract

We propose fast univariate inferential approaches for longitudinal Gaussian and non-Gaussian 

functional data. The approach consists of three steps: (1) fit massively univariate pointwise 

mixed effects models; (2) apply any smoother along the functional domain; and (3) obtain joint 

confidence bands using analytic approaches for Gaussian data or a bootstrap of study participants 

for non-Gaussian data. Methods are motivated by two applications: (1) Diffusion Tensor Imaging 

(DTI) measured at multiple visits along the corpus callosum of multiple sclerosis (MS) patients; 

and (2) physical activity data measured by body-worn accelerometers for multiple days. An 

extensive simulation study indicates that model fitting and inference are accurate and much 

faster than existing approaches. Moreover, the proposed approach was the only one that was 

computationally feasible for the physical activity data application. Methods are accompanied by 

R software, though the method is “read-and-use”, as it can be implemented by any analyst who is 

familiar with mixed effects model software.
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1 Introduction

Longitudinal high dimensional data have become ubiquitous. For example, a Diffusion 

Tensor Imaging (DTI) study (Greven et al., 2010; Goldsmith et al., 2011, 2012; Scheipl 

et al., 2015) collected fractional anisotropy (FA) at multiple locations along the corpus 
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callosum at multiple visits for each study participant. FA is a measure of water diffusion 

direction that is thought to be associated with white matter integrity and myelination. Figure 

1 displays the FA measures along the corpus callosum for two study participants (left and 

right panels). Each curve represents data collected during a particular visit (color-coded 

according to visit number). The visit time, covariates, and health outcomes are collected 

at each visit but are not displayed; for more details see Goldsmith et al. (2012). Visual 

inspection of the left panel does not indicate an obvious temporal trend across visits, 

while each FA profile exhibits substantial within-visit noise. The FA profiles are less noisy 

for the second study participant (right panel), though the much lower FA values at the 

second visit could indicate substantial technical or biological variability. Given such data, 

the scientific goal is to quantify how FA at each location of the corpus callosum changes 

between visits and how these changes are associated with study-participant characteristics. 

To conceptualize the data structure, we denote by Yij(s) the FA value for study participant i 
at visit j at time tij and location s ∈ S of the corpus callosum.

Another example is the National Health and Nutrition Examination Survey (NHANES) 

(Leroux et al., 2019; Smirnova et al., 2019; Cui et al., 2020), where minute-level activity 

counts (AC), a proprietary measure of physical activity (PA), were collected for up to seven 

consecutive days by hip-worn accelerometers. Data can be further transformed at the minute 

level to an active/inactive indicator depending on whether the observed AC is above/below a 

threshold. Here we use the threshold of 100, which was proposed by Matthews et al. (2008) 

for the NHANES hip accelerometry data and has been used extensively in the literature 

(Koster et al., 2012). Therefore, the data are binary (active/inactive), functional (minute-level 

measurements during the day), and multilevel (multiple days). To conceptualize the data 

structure, Yij(s) denotes the binary indicator of whether a study participant i was active on 

day j at minute s ∈ S = 1, …, 1440 . For the purpose of this paper, we are interested in 

studying the association between Yij(s) and sex, age, day number from the beginning of the 

study, and day of the week.

Both these examples contain functional data measured at multiple visits, while the sample 

size in NHANES is over 10 times larger than the DTI study. Such data structures generalize 

standard longitudinal data, as instead of observing one scalar variable at each visit, one 

observes a high dimensional function. Functional data methods are sometimes used to model 

scalar longitudinal data (Yao et al., 2005), but longitudinal functional data has a more 

complex structure due to the large number of observations with complex correlations at each 
visit. Methods have been proposed for functional data with complex correlation structures 

(Guo, 2002; Morris and Carroll, 2006; Greven et al., 2010; Zipunnikov et al., 2014; Scheipl 

et al., 2015; Brockhaus et al., 2015; Scheipl et al., 2016; Shou et al., 2015; Zhu et al., 2019). 

In particular, Scheipl et al. (2015, 2016) proposed an inferential framework and associated 

software for correlated functional responses based on additive mixed models. This is an 

important step forward, though the method cannot currently handle very large data sets. For 

example, it takes more than 24 hours on a regular laptop (2.7 GHz Dual-Core Intel Core i5, 

8GB RAM) to fit a functional random intercept model with I = 1000 subjects and an average 

of 5 visits per subject. The approach of Goldsmith et al. (2015) runs into similar scaling 

up problems. Indeed, they reported a total computation time of 10 days in their applications 

Cui et al. Page 2

J Comput Graph Stat. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using a dataset with fewer than 600 subjects, 5 visits per subject, and 144 observations per 

curve. Applying either method to our NHANES example is computationally impractical.

Thus, we conclude that this area of research is still in its initial stages of statistical 

development. Indeed, there is an increased need for methods that: (1) are scalable both in 

terms of number of study participants and of the dimension of the functional data; (2) can be 

applied to Gaussian and non-Gaussian data; and (3) preserve the interpretability of standard 

mixed effects models. To address this need, we propose fast univariate inferential (FUI) 

approaches for longitudinal functional data of any type. The approach consists of three steps: 

(1) fit massively univariate pointwise mixed effects models; (2) apply a smoother along 

the functional domain; and (3) obtain joint confidence bands using analytic approaches for 

Gaussian data or a bootstrap of study participants for non-Gaussian data. The first two steps 

are conceptually similar with Fan and Zhang (2000) and Reiss et al. (2017) for function-on-

scalar regressions. However, to the best of our knowledge, these approaches did not model 

correlated functional responses or provided joint inference that accounts for this correlation. 

The methods proposed by Park et al. (2018) are the closest to our methods, though there are 

important differences. First, they estimate the fixed effects under independence across- and 

within-visits. We use mixed effects models across visits. Second, because Park et al. (2018) 

rely on fixed effects, their approach cannot be used to predict visit-specific functional effects 

or missing data. Third, their approach was developed for a narrower set of models.

The remainder of the paper is organized as follows. Section 2 introduces the longitudinal 

functional model. Section 3 describes two approaches for fixed effects inference, one 

analytic for Gaussian data and one based on the bootstrap of study participants for any 

type of data. We further discuss in Section 4 a simple and flexible simulation-based 

approach to obtain joint confidence bands. Section 5 presents the simulation results and 

comparisons with existing methods. Section 6 describes the applications of our model on 

DTI and NHANES study. We close with a discussion in Section 7. All code for model 

implementation, simulation and application is available on the supplementary material.

2 Massively Univariate Longitudinal Functional Model

Assume that data is of the type Yij(s) on a grid {s1, s2, …, sL} of the compact functional 

domain S. Data can be Gaussian or non-Gaussian, i =1, 2, …, I is the index of the 

study participant, and j =1, 2, …, Ji is the index of the longitudinal visit at time tij. In 

addition to the functional outcomes, Yij(s), Xij = Xij1, Xij2, …, Xijp
T ∈ ℝp are the fixed 

and Zij = Zij1, Zij2, …, Zijq
T ∈ ℝq are the random effects variables. We posit the following 

marginal three-step inferential approach:

First step:

At each location sl ∈ S, l = 1,2,…, L, fit a separate pointwise generalized linear mixed 

model (GLMM) Yij(sl) ~ EF{μij(sl)}, where EF denotes the exponential family distribution, 

μij (sl) is the conditional mean, and
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ηij sl = g μij sl = Xij
Tβ sl + Zij

Tui sl . (1)

Here g(·) is a link function and ui (sl) is a q × 1 dimensional vector of random effects that 

depends on the location. Denote the estimates of fixed effects as β(s1), …, β(sL) and of the 

linear predictors as ηij s1 , …, ηij sL  obtained from these univariate GLMMs. We refer to this 

as massively univariate analysis because a GLMM is fit at every location sl, l = 1, …, L, 

where L can be very large (hence, the use of the word “ massive”).

Second step:

Smooth the estimated fixed effects β(s1), …, β(sL) and/or linear predictors ηij s1 , …, ηij sL
along the functional domain. Denote these smooth estimators by β(s), s ∈ S  and 

ηij(s), s ∈ S , respectively. This can use any smoother that is or is not data adaptive, 

including not smoothing and taking the average over all locations.

Third step:

Obtain joint confidence bands for fixed effects parameters and/or linear predictors using 

analytic approaches for Gaussian data or a bootstrap of study participants for Gaussian and 

non-Gaussian data.

The key insight of our method is to decompose the complex correlation structure into 

longitudinal and functional directions. The first step of the analysis is to use the familiar 

univariate GLMMs, a procedure that can be easily implemented using parallel computing. 

This substantially reduces the computational burden of existing methods. The third step 

allows for joint inferences that take into account within- and between-visit correlations. This 

approach is not limited to estimating β(s) and ηij(s) and can be used for any measures of 

interest, including random effects, quantiles, and group means. We discuss the fixed effects 

inference of our approach below.

3 Fixed Effects Inference

Developing a principled statistical inferential framework for fixed effects in longitudinal 

functional models is difficult. Several approaches that account for the complex within- 

and between-study participant correlations exist and include different Bayesian approaches 

(Morris and Carroll, 2006; Morris et al., 2006; Zhu et al., 2011; Goldsmith et al., 2015; 

Zhang et al., 2016). Unfortunately, many of these methods require specialized software, 

are slow, and do not scale up with the number of study participants and dimension of 

the functional domain. Our proposed approach is philosophically closer to the methods 

proposed in Crainiceanu et al. (2012) and Park et al. (2018), which use bootstrap of study 

participants. For Gaussian functional data we provide an analytic solution, while for all 

types of data we propose a bootstrap approach.

3.1 Analytic Inference for Gaussian Functional Data

For Gaussian functional data the pointwise linear mixed model has the form
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Y ij sl = Xij
Tβ sl + Zij

Tui sl + ϵij sl . (2)

For the ith study participant at sl ∈ S data are {Yi(sl), Xi, Zi}, where 

Y i sl = Y i1 sl , …Y iJi sl , Xi = Xi1, …, XiJi , and Zi = Zi1, …, ZiJi . The observations for 

the entire study population are then denoted as {Y(sl), X, Z}, where Y(sl) = [Y1(sl), 

…, YI (sl)]T, X =[X1, …, XI]T, and Z = diag Z1
T , …, ZI

T . The matrix notation of 

equation (2) is Y(sl) = Xβ(sl) + Zu(sl) + ϵ(sl), where u(sl) = [u1(sl)T, …, uI(sl)T]T and 

ϵ(s) = ϵ11(s), ϵ12(s), …, ϵIJI(s) T  are mutually independent random coefficients and errors 

with a joint multivariate Gaussian distribution. The pointwise estimator of the fixed effects 

is β(sl) = {XTV−1(sl)X}−1XTV−1(sl)Y(sl), where V(sl) = ZH(sl)ZT + R(sl) and H(sl) and 

R(sl) are covariance matrices of u(sl) and ϵ(sl), respectively. These fixed effects estimators 

are correlated across sl, which needs to be taken into account when conducting joint 

inference, including when building joint confidence bands or conducting multiple testing. 

This correlation is modeled intrinsically by assuming Cov u sl1 , u sl2 = G sl1, sl2  and 

Cov ϵ sl1 , ϵ sl2 = 0 for all sl1 ≠ sl2. Thus, the covariance of the raw estimates at sl ∈ S

is Var{β(sl)} = {XTV−1(sl)X}−1, and between sl1 and sl2 ∈ S is

Cov β sl1 , β sl2 = XTV −1 sl1 X −1XTV −1 sl1 W sl1, sl2 V −1 sl2
X XTV −1 sl2 X −1 .

(3)

Here W sl1, sl2 = ZG sl1, sl2 ZT .

Estimates of H(sl) and R(sl) can be obtained directly from the mixed effects model 

software. An additional smoothing approach, for example using penalized splines (Ruppert 

et al., 2003), can be applied to each entry of these matrices along the functional domain. 

Estimations of the G sl1, sl2  is not as intuitive. However, the method of moments (MoM) 

procedure introduced in Greven et al. (2010) provides the blueprint for our procedure. More 

precisely, for any sl1 ≠ sl2

E Y ik sl1 − Xik
T β sl1 Y ij sl2 − Xij

Tβ sl2

= ∑
v = 1

q
∑
t = 1

q
ZijvZiktCov uit sl1 , uiv sl2 ,

(4)

for any j, k =1, …, Ji. This suggests a simple approach: regressing linearly the residual 

products Y ik sl1 − Xik
T β sl1 Y ij sl2 − Xij

Tβ sl2  onto the covariates {ZijvZikt : j, k =1, …, 

Ji}. A bivariate smoother, for example, the fast bivariate P-splines (Xiao et al., 2013), could 

be used to further reduce the variability of the covariance estimators. This approach does not 

guarantee that the resulting H(sl), R(sl), and G sl1, sl2  are positive definite. This is handled 

Cui et al. Page 5

J Comput Graph Stat. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by trimming the negative eigenvalues of these estimators at 0, as suggested in the literature 

(Yao et al., 2003; Hall et al., 2008; Greven et al., 2010).

While the model allows different smoothers in the second step, we provide the closed form 

solution for penalized splines. For simplicity, we focus on the rth fixed effect βr (s). Denoted 

by βr = βr s1 , …, βr sL
T  the raw estimates of βr (s) obtained from the first step. Let Br = 

[br1, …, brK] be the K-dimensional spline basis matrix, where brk = [brk(s1), …, brk(sL)]T, 

k = 1, …, K. K is usually chosen to be much smaller than L. Given a smoothing parameter 

λr, penalty matrix Pr, define Sr = Br Br
TBr + λrPr

−1Br
T . The smoothed estimator of the rth 

fixed effect is βr = Srβr. The covariance matrix of βr is Cov(βr) = SrCov(βr)Sr, a sandwich 

smoother of Cov(βr) obtained from the first step.

This inferential approach is explicit when working with linear mixed effects models with 

Gaussian random effects and errors. While the inferential approach described in this 

section involves additional notation, the computations are straightforward. This analytic 

inferential solution offers the potential for substantially reducing the computational burden 

of performing bootstrap inference for large-scale Gaussian functional data and performs 

well in our simulation study (close to nominal coverage for 95% confidence bands). For 

outcomes with general (Gaussian and non-Gaussian) distributional assumptions we now 

discuss the bootstrap of study participants as a general solution.

3.2 Nonparametric Bootstrap Approach

Bootstrapping functional data is a practical approach for fixed effects inference (Cuevas 

et al., 2006; Crainiceanu et al., 2012). For complex correlated functional data, Park et 

al. (2018) proposed both study participant and residual bootstrap. Here we focus only on 

the study participant bootstrap approach because the residual bootstrap is not defined for 

generalized outcomes. The approach is described in Algorithm 1.

Algorithm 1:

Nonparametric Bootstrap for fixed effects inference

Data: {Y(sl), l = 1,…,L}, X, Z

Result: Var(β(sl)), l = 1,…,L.

for b = 1,…,B do

1. Re-sample / subject indices from {1,…,I} with replacement. Denote the vector of re-sampled indices as M(b);

2. For the i′th element of M(b),i′ = 1,…,I, include all observations of the corresponding subject in the bootstrap sample. 

Denote the bth bootstrap sample as Y M(b) sl , l = 1, …, L , XM(b), ZM(b) ;

3. Fit the model in Section 2 using the bth bootstrap sample. Derive the fixed effects estimates {β(sl)(b), l = 1,…,L};

end

4. For l = 1,…,L, derive Var(β(sl)) from B bootstrap estimates {β(sl)(1),…,β(sl)(B)}. In practice we calculate the sample 
variance and use it as the estimator.
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3.3 Extension to Random Effects Inference

The proposed inference procedure has a natural extension to random effects and visit-

specific predictions. We provide a brief introduction for this framework. Given equation 

(2) and notations introduced in Section 3.1, the pointwise BLUP of the random effects is 

u(sl) = H(sl)ZTV−1(sl){Y(sl) − Xβ(sl)}. Without loss of generality assume R(sl) = σ2(sl)I. 

The uncertainty of u(sl) can be measured through the conditional variance (Morris, 1983) as 

Var{(u(sl)|Y(sl)} = σ2(sl){H(sl) − H(sl)ZTV−1(sl)ZH(sl)}. The uncertainty of random effects 

between locations can be measured similarly using the empirical Bayes estimator.

4 Joint Confidence Bands

Inference for functional data has a natural connection with the problem of multiple 

testing due to the inherent correlations in the observed data along the functional domain. 

The pointwise confidence bands described in Sections 3.1 and 3.2 do not provide any 

information about joint coverage probabilities over the entire domain and are, in fact, valid 

when averaged across the functional domain. The Bonferonni correction (Bonferroni, 1936) 

is exact for independent data, but is inappropriate for functional data, which is correlated 

and can have arbitrary sampling density. For example, a functional domain could be sampled 

at one hundred or one million equally spaced points. In both situations the point estimators 

would barely change, whereas the joint Bonferonni corrected confidence intervals would 

depend on the choice of number of samples within the functional domain. At one extreme, 

if the number of points is allowed to go to infinity, the length of the joint confidence 

intervals diverges to infinity. This is unacceptable and cannot be addressed by changing 

the testing criterion to, say, the Benjamini-Hochberg false discovery rate (Benjamini and 

Hochberg, 1995). The reason is that both methods are overly conservative when the test 

statistics are highly correlated. As functional data can be sampled densely and correlations 

between observations increase with sampling density, the probability of failing to reject the 

null hypothesis using these corrections rapidly approaches one as the data are more densely 

sampled. An alternative was proposed by Cox and Lee (2008) for functional data based on 

the Westfall-Young randomization method (Westfall and Young, 1993).

The construction of joint confidence bands in the context of functional data analysis has 

been studied using various approaches including local linear estimators (Degras, 2011), 

piecewise constant splines (Ma et al., 2012), and polynomial splines (Cao et al., 2012). 

However, most of these methods assume independence between curves, which is not the 

setting considered here. Crainiceanu et al. (2012) and Park et al. (2018) proposed the 

bootstrap of study participants as a general inferential procedure for functional data with 

arbitrarily complex functional correlation structures. Here we follow a similar approach.

Based on a bootstrap of study participants we obtain the following estimators 

βr = β r s1 , …, β r sL
T  and Var(βr), where βr(s), s ∈ S  is the rth functional fixed effect. 

Let Ns be the sample size of simulated data. Our approach requires simulations from the 

multivariate normal distribution N βr, Var βr . When the dimension L of the functional 

domain is large, this can be quite slow, but the problem can be addressed using a PCA 

decomposition of the bootstrap samples βr(1), …, βr(B); for details see Algorithm 2.
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Algorithm 2:

Level α joint confidence bands of β r(s)

Data: βr,Var(βr), βr(1),…, βr(B), Ns.

Result: Joint confidence bands of β r(s), s ∈ S .

1. Perform Functional Principal Component Analysis (FPCA) on [βr(1),…,βr(B)]T. Derive the mean function μ = 
[μ(s1),…,μ(sL)]T, eigenvalues λ1,…,λL and eigenfunctions ψ1,…,ψL, where ψk = [ψk(s1),…,ψk(sL)]T, k = 1,…,L;

for n = 1,…, Ns do

2. Simulate ξnk N 0, λk  for k = 1,…,KT. Calculate βr, n = μ + ∑k = 1
KT ξnkψk;

3. Calculate un = maxsl ∈ S{|βr, n − βr|/ diag Var βr };

end

4. Obtain q1−α, the (1−α) empirical quantile of u1, …, uNs ;

5. The joint confidence interval at sl ∈ S is calculated as β r sl ± q1 − α Var βr (l, l). The upper and lower 

bounds of the joint confidence bands can be smoothed.

The number of functional principal component basis KT in Step 2 is selected based on 

proportion of variance explained, as suggested in the FPCA literature, and usually does 

not exceed 100 when using a 95% variance explained threshold. As a result, this modified 

algorithm reduces the dimension of simulation from potentially large L to a more acceptable 

KT; see supplementary material for a comparison of computing time between this method 

and direct simulations from multivariate normal distribution.

5 Simulations

An extensive simulation study is used to assess: (1) the performance of the estimators and 

the pointwise/joint confidence bands; (2) how methods compare to existing approaches. The 

R code for the simulation study is provided in the supplementary material.

5.1 Simulation Setup

We simulate functional responses on an equally-spaced grid of S = [0, 1] with length L. For 

simplicity, we fix p = 2, the number of fixed effects for each point s on the functional 

domain and q = 1, the number of random effects for each point on the functional domain. 

Therefore, Xij = [1, Xij1]T and ui (s) = ui(s), though the approach is designed for much larger 

p and q. For subject i at visit j the data generating model is

ηij(s) = g μij(s) = β0(s) + Xij1β1(s) + ui(s), s ∈ S .

The fixed effects covariates are simulated as Xij1 N(0, 4), while the random effects are 

simulated as ui(s) = ci1ψ1(s) + ci2ψ2(s). We use the scaled orthonormal functions ψ1(s) 

∝ 1.5−sin(2πs)−cos(2πs) and ψ2(s) ∝ sin(4πs) to capture the individual-level fluctuations. 

The random coefficients are generated from ci1 N 0, 2σB
2  and ci2 N 0, σB

2 , respectively. 
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Here σB
2  is determined by the relative importance of random effects SNRB, as described 

below. We consider the following simulation scenarios:

1. Simulation parameters

• Distribution of the functional responses: (a) Gaussian, (b) binary.

• Functional fixed effects β(s):

• S1: β0(s) = −0.15−0.1*sin(2πs)−0.1*cos(2πs), β1(s) = 1
20ϕ(s − 0.6

0.0225 );

• S2: β0(s) = 0.53 + 0.06sin(3πs)−0.03sin(6.5πs), 

β1(s) = 1
60ϕ(s − 0.2

0.12 ) + 1
200ϕ(s − 0.35

0.12 ) − 1
250ϕ(s − 0.65

0.062 ) + 1
60ϕ( s − 1

0.072 ).

2. Sample size parameters

• Number of subjects: I ∈{50,100,200,400}.

• Mean number of visits per subject: J ∈{5,10,20,40}. For subject i the 

number of visits Ji is drawn from Poisson(J) with a minimum of 1 visit.

• Dimension of the functional domain: L∈{50,100,200,400}.

3. Signal-noise parameters

• Relative importance of random effects: SNRB ∈{0.5, 1}. Here SNRB 

is the standard deviation of the fixed effects functions divided by the 

standard deviation of the random effects functions; see Scheipl et al. 

(2015) for detailed descriptions of this parameter.

• Signal-to-noise ratio: SNRϵ ∈{0.5,1} (Gaussian response only). Here 

SNRϵ is the standard deviation of the linear predictors divided by the 

standard deviation of the noise σϵ.

In terms of fixed effects, the S1 functions are similar to those used by Goldsmith et al. 

(2015), are smooth and easy-to-estimate. The S2 functions have more complex shapes and 

are designed to approximate the estimated effects in our DTI application. To be specific, 

β0(s) mimics a typical fractional anisotropy (FA) trajectory on the corpus callosum in DTI 

while β1(s) represents a non-monotonic effect of scan date on the FA.

For each scenario we conducted 200 simulations. Considering all combinations of 

parameters would have been impossible even for our extensive computing resources. 

Instead, for each combination of simulation parameters (denoted by “Gaussian S1”, 

“Gaussian S2”, “Binary S1”, “Binary S2” in the simulation results), we: (1) fix the sample 

size parameters at their baseline (I = 50, J = 5, L = 50), then change the signal-noise 

parameters; and (2) fix the signal-noise parameters at their baseline (SNRB = 0.5, SNRϵ =1), 

then change the sample size parameter one at a time while fixing the other two sample size 

parameters at baseline. For example, we fix J = 5, L = 50 to evaluate model performance for 

a different number of study participants, I.

Cui et al. Page 9

J Comput Graph Stat. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.2 Comparisons to Existing Methods

Many methods have been developed to model correlated functional responses, including 

Functional Additive Mixed Models (FAMM) (Scheipl et al., 2015, 2016), Generalized 

Multilevel Function-on-Scalar Regression and Principal Component Analysis (GenMFPCA) 

(Goldsmith et al., 2015), Functional Linear Array Model (FLAM) (Brockhaus et al., 2015), 

Wavelet-based Functional Mixed Models (WFMM) (Morris and Carroll, 2006), FMEM 

(Yuan et al., 2014; Zhu et al., 2019). As described in Scheipl et al. (2015), FAMM 

outperformed Bayesian WFMM for smooth curves. For FLAM, Brockhaus et al. (2015) 

reported a similar estimation accuracy with FAMM in their simulations. Although inference 

for FLAM could potentially be conducted via subject-level bootstrap, this implementation 

was not available in the FDboost package (Brockhaus et al., 2017). For FMEM we could not 

identify general purpose software. Therefore, we compare FAMM and GenMFPCA, which 

have well-documented and easy-to-use implementations for inference.

Our method (FUI) is implemented in the lfosr3s() function in the supplementary material, 

which implements univariate GLMMs and then applies a penalized cubic spline smoother. 

Results are highly robust to the choice of smoother. For FAMM we use the pffr() function 

from refund package (Goldsmith et al., 2020) in R. We used 15 and 20 cubic B-splines bases 

with first order difference penalty for the population average and global functional intercept 

respectively; see bs.yindex and bs.int arguments in the pffr() function. We have increased the 

number of bases from the default to increase the performance of FAMM.

Because Goldsmith et al. (2015) reported considerably larger computing time than 

FAMM, comparisons with GenMFPCA are restricted to smaller sample sizes. In addition, 

GenMFPCA software is only applicable to binary response. We have attempted to manually 

implement GenMFPCA for Gaussian responses, but, probably due to our sub-optimal 

implementation, our implementation was quite slow. To ensure a fair comparison of 

computing time, we focus on comparing with GenMFPCA only for binary response. The 

results are shown in the supplementary material.

5.3 Model Evaluation Criteria

We compare the performance of each method (FUI, FAMM, GenMFPCA) with respect to: 

(1) accuracy in estimating fixed effects; (2) inference on fixed effects; and (3) computational 

efficiency.

Accuracy of fixed effects estimation was assessed using the integrated squared error (ISE) 

of fixed effects, defined as ISEk = ∫0
1 βk(s) − βk(s) 2ds, k = 0, 1. The mean integrated squared 

error (MISE) is calculated by averaging ISE across simulated datasets. We show ISE of 

β1(s), as similar results were obtained for β0(s).

Inferential performance was assessed by calculating the empirical coverage probability 

of 95% pointwise confidence bands at each location, then taking the average along the 

functional domain. For FUI, we also report the empirical coverage probability of 95% joint 

confidence bands proposed in Section 4. For FUI we use analytic inference (mean±2sd) 

for Gaussian responses and bootstrap inference for other families of distributions. In the 
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nonparametric bootstrap, we have used the formula mean±2.2sd instead of mean±2sd. This 

is a simple solution that provides remarkably good results and seems to account for the 

extra within-subject variability that may be missed by conducting a bootstrap of study 

participants.

For each scenario, we do 200 simulations on the Joint High Performance Computing 

Exchange (JHPCE) Cluster with 1 core per simulation. The computing time of each method 

is obtained under different scenarios.

5.4 Simulation Results: Signal-to-noise parameters

The simulation results for different signal-noise parameters are shown in Figure 2 under 

the scenario with the smallest number of subjects, mean number of visits per subject, and 

dimension of the observed functional responses (I = 50, J = 5, L = 50). We only display 

results for the Gaussian response, as similar results were obtained for binary responses. Left 

two panels: fixed effect is S1. Right two panels: fixed effect is S2. The MISE decreases 

as signal increases, either by increasing SNRB or SNRϵ. In addition, these two parameters 

exhibit similar scaling behavior using both estimation methods. Specifically, increasing 

SNRB (or SNRϵ) from 0.5 to 1 decreases MISE by about 60% in S1 and about 50% in S2 

using either FUI or FAMM. For this small sample size, the coverage is close to the nominal 

level and the computing time for both methods is almost identical (not displayed).

5.5 Simulation Results: Sample Size Parameters

The simulation results for different sample size parameters are shown in Figure 3. As results 

tend to be quite consistent, we display the results for Gaussian outcomes and fixed effects S1 

(denoted by “Gaussian S1” in the title of each panel). Results for other combinations are in 

the supplementary material. The baseline setting is I = 50, J = 5, L = 50, SNRB = 0.5, SNRϵ 
= 1. All other parameters are fixed at their baseline values when one sample size parameter 

is changed. Left column: number of subjects (I). Middle column: mean number of visits per 

subject (J). Right column: dimension of the functional domain (L). The ISE and computing 

time for 200 simulations are displayed in the top and bottom row, respectively. The inference 

results are shown in Table 1. For FUI, we report the empirical coverage probability of both 

joint (denoted as “Coverage (Joint)”) and pointwise (denoted as “Coverage (Pointwise)”) 

95% confidence bands. For FAMM, we report the coverage of the pointwise confidence 

bands (denoted as “Coverage”).

As the number of subjects increases, the MISE for both FUI and FAMM decreases. The 

estimation accuracy of the two methods is similar, and the coverage of the confidence 

bands, both joint and pointwise for FUI and pointwise for FAMM, reach their nominal 

level. However, FAMM computing time increases substantially when the number of subjects 

increases (see bottom left panel). Indeed, the median computing time exhibits a second-

order polynomial shape in number of subjects, with median computing time exceeding 10 

hours on the cluster when I = 400. In addition, the memory usage for FAMM increases 

substantially despite the use of the efficient mgcv::bam implementation. For example, we 

were not able to perform simulations for FAMM when I = 1000, as both memory (more than 

40 GB RAM) and computing time (unknown) exceeded our extensive resources. In contrast, 
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FUI required only 40 seconds for I = 500 study participants and there are no problems with 

fitting even for I = 10000.

As the mean number of visits per subject (second column of panels) and dimension of 

the functional domain (third column of panels) increase, both methods display similar 

estimation accuracy. The confidence bands of both methods, including joint and pointwise 

confidence bands for FUI and pointwise confidence bands for FAMM, also have good 

coverage close to the nominal level (middle and bottom blocks of Table 1). For I = 50, L 
= 50 FAMM requires similar computation time (3 to 7 minutes) for 5 to 40 visits per study 

participant, while FUI takes on average less than 1 minute in all scenarios. For I = 50, J 
= 5 computing time of FUI increases with the dimension of the functional domain (bottom 

right panel) while FAMM remains unaffected. This increase is expected as we run a GLMM 

at every location and the time for these GLMMs simply add up. However, our method is 

easy to parallelize, which would reduce the fitting time to the the time it would take to fit 

a single GLMM. To the best of our knowledge, FAMM does not currently have a parallel 

implementation.

The computation time advantages of FUI should not be surprising given the way mgcv is 

used to estimate functional models. Specifically, random effects are incorporated by fully 

constructing the random effects design matrix and applying ridge penalties. Therefore, for 

a model with a subject-specific functional random intercept, u0i (s), the design matrix adds 

kb columns, where kb is the number of spline bases used to represent the functional random 

intercept. This is not a problem when I is in the range of 50 to 100, but it becomes 

problematic when I > 200. Take our physical activity data application for example where L 
= 1440, J = 7 and I = 1680 and consider a simple functional model β0(s) + ui0(s). Assume 

that the population mean function β0(s) uses 20 B-spline basis functions (the default for 

FAMM). The design matrix without random effects is 1440×7×1680 = 16,934,400 rows 

and 20 columns. Assume that the model ui0(s) uses 15 B-spline basis functions (kb = 

15). Then the full design matrix is as large as 16,934,400×25,220, since 20+ (15×1680) 

= 25,220, amounting to over 400 billion elements. This explains why FAMM runs into 

substantial computational challenges when the number of study participants increases. The 

mgcv package does have method for handling large datasets through the mgcv::bam function 

which avoids constructing and performing computations on the full design matrix. However, 

even with these added efficiencies FAMM runs into substantial computational challenges. 

This could be addressed in the future, but our current solution provides a practical, “read-

and-use”, stable alternative for a moderate to large number of study participants.

5.6 Simulation Summary

Our method achieves similar accuracy with the state-of-the-art FAMM method for fixed 

effects under different simulation settings, including different signal-to-noise parameters and 

sample size parameters. FUI is much faster than FAMM when the number of subjects is 

large. To the best of our knowledge, FUI is the first inferential method that is demonstrated 

to work with over 1500 study participants. The reason for implementing such approaches 

is practical, as many datasets, including our NHANES application, contain such sample 

sizes. Both joint and pointwise confidence bands of FUI exhibit good coverage to the 
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nominal level. For both FUI and FAMM, estimation accuracy is affected by the change of 

signal-noise parameters and sample size parameters. These results for FAMM are consistent 

with the simulation results reported in Scheipl et al. (2015).

6 Applications

In this section, we apply our method to the motivating examples introduced in Section 1.

6.1 DTI Study

Multiple sclerosis (MS) is an autoimmune mediated disease that affects the central nervous 

system (CNS) and can lead to substantial motor and cognitive disability. While the exact 

cause of MS remains unknown, modern neuroimaging has played a crucial role in the 

diagnosis and management of MS. A promising imaging technique is Diffusion Tensor 

Imaging based on Magnetic Resonance Imaging (DTI-MRI or, shorter, DTI). DTI provides 

measures of water diffusion in the brain, which are thought to be associated with white 

matter integrity. Fractional anisotropy (FA) is a measure of diffusion anisotropy derived 

from DTI. A zero value of FA corresponds to perfectly isotropic diffusion (water diffuses 

unrestricted in all directions), while a value of one of FA corresponds to perfectly 

anisotropic diffusion (water diffuses only in one direction). Values of FA fall somewhere 

within the (0, 1) range with higher values corresponding to more anisotropic (more 

organized) water diffusion. FA can be calculated at every location in the brain.

Here we focus on the FA calculated along the corpus callosum, a nerve tract connecting the 

left and right cerebral hemispheres; see Goldsmith et al. (2011) and Greven et al. (2010) 

for in-depth descriptions of the data. For our purposes, the data set consists of 142 study 

participants (42 healthy individuals and 100 MS patients). For healthy individuals there is 

only one visit, whereas for MS patients there are multiple visits with an average of 3.4 

and a maximum of 8 visits per MS patient. There were a total of 382 visits across MS 

patients and healthy individuals. Corpus callosum is a three-dimensional C-shaped nerve 

fiber bundle that connects the left and right brain hemispheres. For the purpose of this 

application, several landmarks were manually identified on the brain image and FA was 

calculated as an average FA at 93 locations along the corpus callosum. Thus, the data consist 

of a 382 × 93 dimensional matrix, where each row corresponds to a brain image visit and 

each column corresponds to a particular location in the corpus callosum, resulting in a total 

of 35526 observations. The study participant ID, age, sex and date of scan information are 

also available for each study participant at each visit.

For illustration purposes, we are interested in quantifying the association between age, sex 

and date of scan with FA measurements along the corpus callosum. Using the notation 

introduced in Section 2, the longitudinal functional responses are denoted by Yij(s), and 

are the observed FA values along the equally-spaced grid of s ∈ S = 1, …93 . For the ith 

individual at the jth visit, the fixed effects Xij =[1, Xij1, Xij2, Xij3, Xij4]T where Xij1 is a 

binary indicator of case (1 for MS patients and 0 for healthy individuals), Xij2 is the date of 

scan (converted into year unit and treated as numeric), Xij3 is a binary indicator of sex (there 

were no self-identified non-binary participants in this study) and Xij4 is the age at baseline 

scan (in years). For each location we fit a random intercept and slope model
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Yij(s) = β0(s) + Xij1β1(s) + Xij2β2(s) + Xij3β3(s) + Xij4β4(s) + ui0(s) + ui1(s)Xij2 + ϵij(s),

where (ui0(s), ui1(s)) have a joint zero-mean bivariate Normal distribution independent of 

ϵij(s), which are iid N{0, σ2(s)}. This standard linear mixed effects model is fit 93 times, 

once for each location s. After pointwise fitting, a penalized spline smoother is used to 

smooth each βl(·), l = 0,1,2,3,4 coefficient separately. All five smoothers use a cubic basis 

with 15 equally spaced knots and REML estimation of the smoothing parameter. The 

pointwise and joint confidence intervals are obtained as described in Section 3 and Section 

4.

Figure 4 displays the point estimators of the fixed effects parameters (dashed blue lines) for 

the intercept, case, scan date, sex, and age (five panels from left to right), respectively. The 

dark gray regions correspond to the 95% pointwise confidence bands, while the light gray 

regions correspond to the 95% joint confidence bands. The intercept estimator is consistent 

with the geometry of the corpus callosum and previously published literature. Compared 

with healthy individuals, MS patients of the same sex and age at the same date of scan 

have significantly lower FA at most locations along the corpus callosum. This result may 

indicate lower anisotropy corresponds among MS patients, which may be consistent with 

brain micro-structure damage. The middle panel shows a highly significant increase in the 

FA as a function of scan date at most locations of the corpus callosum. To the best of 

our knowledge, there is no biological plausible reason for such an increase in anisotropy. 

Therefore, the result may correspond to the change in technology and software, which 

led to a large, deterministic, increase in measured FA. The effects of sex and age are not 

statistically significant at any point along the corpus callosum.

Figure 5 displays the data (left panels), together with the pointwise estimators (middle 

panels) and smoothed estimators along the functional domain (right panels). The first 

and second rows correspond to study participants ID 2017 and 2085, respectively. For 

study participant ID 2017, the point estimators are consistent with substantial reduction in 

the visit-to-visit variability. Unsurprisingly, after smoothing (right-top panel) visit-specific 

profiles are slightly smoother along the functional domain, but with a similar reduced visit-

to-visit variability. Comparing the middle and right top panels indicates that the pointwise 

linear mixed effects models did the “heavy lifting”, while the functional smoothing led 

to mostly cosmetic changes. This need not be the case in general when the noise and 

correlation structures could be quite different. Results are similar for study participant ID 

2085. These results suggest that: (1) there is a statistically significant, but small fixed effect 

for the date of the visit; and (2) much of the observed variability is due to visit-to-visit 

fluctuations in FA trajectories (measurement error); and (3) the effect of scan date is largely 

contained in the fixed effects. The results about the decomposition of the observed residual 

variability after accounting for fixed effects are consistent with the literature. Indeed, Greven 

et al. (2010) showed that only 2 to 3% of the observed variability can be attributed to the 

longitudinal functional slope.
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6.2 NHANES Study

The National Health and Nutrition Examination Survey (NHANES) is a large cohort study 

conducted by the US Centers for Disease Control (CDC) in two-year waves to assess 

the health and nutritional status of the US population. The objectively measured physical 

activity (PA) data were collected using hip-worn accelerometers on study participants in the 

2003–2006 waves. The accelerometry data are publicly available as minute-level activity 

counts (AC), a proprietary measure of PA, and can be accessed in an analysis-ready format 

through the R rnhanesdata package (Leroux et al., 2019). Specifically, the accelerometry 

data were collected on 14631 individuals in the NHANES 2003–2004 and 2005–2006 

waves. In this study, we focus on individuals with age between 18 and 30 at the time of 

accelerometer wear. In addition, we exclude individuals who had less than 3 days of data 

with at least 10 hours of estimated wear time or were labeled as poor data quality by 

NHANES. The number of available days vary between individuals with a maximum of 7. 

The final data include 1680 individuals with 8765 days, each with 1440 observations per day 

for a total of 12621600 minute-level observations.

We would like to investigate whether being non-sedentary is associated with gender, age, 

and day of the week (e.g., Monday, Tuesday). For the jth day of the ith study participant, 

the longitudinal functional response Yij(s) is now a binary indicator, which equals to 

1 if the AC at minute s ∈ {1, …, 1440} exceeds 100 and 0 if not. The fixed effect 

Xij = 1, Xij1, Xij2, Xij3, Xij4
T T

 where Xij1 = j is the day number, Xij2 is a binary indicator of 

sex (female=1), Xij3 is the age, and Xij4 is a 6 × 1 binary vector indicating the day of the 

week of day j with order {Mon,Tue, …, Sat}. For example, for study participant i if day 3 is 

Tuesday, then the second element of Xi34 is 1 while all others are 0; if day 3 is Sunday, all 

elements in Xi34 are 0. Denote f(s) = [f1(s), …, f6(s)]T. At every minute s of the day we fit a 

random intercept and slope model

logit Pr Yij(s) = 1 |Xij, ui = β0(s) + Xij1β1(s) + Xij2β2(s) + Xij3β3(s) + Xij4
T f(s) + ui0(s) + ui1(s) ⋅ j,

where [ui0(s), ui1(s)]T ~ N{0, Σu(s)}. This GLMM is fit 1440 times at every location s. The 

same penalized spline smoother using cubic basis with 15 equally spaced knots and REML 

estimated smoothing parameter is applied to smooth estimated coefficients from pointwise 

fits separately.

Figure 6 displays the estimated coefficients together with the 95% pointwise (dark gray 

shaded area) and joint (light gray shaded area) confidence bands based on 100 bootstrap 

replicates. The shape of the functional intercept is consistent with the published literature 

and indicates less activity during the night, a sharp increase in the morning, sustained 

activity during the day and a reduction of activity in late evening. The effect of sex in this 

age group (18 to 30) is statistically significant throughout most of the day with the exception 

of the late afternoon/early evening period (≈ 4–10PM). The sex effect is strongest during 

the late evening/early morning hours, when, on average, females are less active. This result 

could correspond to more restful sleep, more sleep, or higher compliance to study protocol 

for women. The effect of age is also highly significant during the night and early to late 
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morning indicating that older study participants in this age group (18 to 30) tend to have 

less activity during the night and more activity in the morning and early afternoon. These 

findings are consistent with those reported by Varma et al. (2017).

The fixed effect of day number β1(s)  indicates that individuals are slightly more likely to 

be active during the nighttime hours and less likely to be active during normal waking hours 

as a function of day, though the nighttime effect is only pointwise significant during the 

period roughly corresponding to 4AM-6AM, but not significant when considering the joint 

confidence bands. This suggests that there may be a small “habituation effect”, particularly 

during the daytime. Habituation effects was proposed as a potential psychological effect of 

increasing PA at the beginning of wearing a device merely by its presence. Compared to 

Sundays (the reference category), weekdays correspond to lower levels of activity during 

the predawn hours (12AM-4AM), higher levels activity in the morning (6AM-11AM), and 

about the same levels of activity during the afternoon and evening hours. Fridays and 

Saturdays correspond to more activity in the evening than Sundays. Saturdays tend to have 

lower activity in the morning compared to weekdays, but more activity than Sundays. These 

results are consistent with previous findings that individuals tend to be less active during 

the night and more active during the day on weekdays. These differences are likely due to 

social behaviors on the weekends and obligations related to school and/or work during the 

weekdays.

Computationally, the initial model was fit in 672 minutes, with bootstrapping requiring ~ 

67200 additional minutes (1120 hours); results are reported on a standard laptop. However, 

because of the parallel nature of our method, each location-specific fit can be estimated 

separately and combined at the end. This would reduce the computation time by 3 orders of 

magnitude, as most computational time is taken by fitting 1440 univariate GLMMs. A fully 

parallel implementation the entire procedure would take ~ 30 seconds for one model fit and 

~1 hour for the inferential procedure. Though this may seem like a long time, we are not 

aware of any other methods that could fit such a model for this large longitudinal functional 

data set.

7 Discussion

We have introduced a fast univariate inferential approach for longitudinal functional models, 

a computationally efficient method for quantifying the association between covariates and a 

broad family of longitudinal functional outcomes. The model is estimated using a three-step 

procedure: (1) fit a series of separate standard longitudinal mixed models; (2) smooth 

estimators along the functional domain; and (3) construct pointwise and joint confidence 

bands using analytic approaches for Gaussian data or a nonparametric bootstrap of study 

participants for any type of data. The proposed method is highly computationally efficient 

because the first step can be parallelized to allow fitting large high-dimensional datasets. 

The second step is actually optional and one can either smooth or not smooth the resulting 

coefficients. Building joint confidence bands is a crucial component for conducting joint 

inference and performing testing multiplicity adjustment. Another major advantage of the 

proposed approach is its conceptual simplicity and availability in the R software. Most 
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importantly, methods are “read-and-use”, meaning that data scientists with a working 

knowledge of GLMMs can easily implement and apply our procedures.

The most important methodological contribution of this paper is to provide practical 

methods for building pointwise and joint confidence bands for very large longitudinal 

functional datasets. Simulation results suggest that our method achieves similar estimation 

accuracy and nominal coverage compared with existing methods, while the computation is 

much faster when the number of subjects is large (> 100).

Our work is not without limitations. First, the smoothing parameter selection assumes 

that the residuals of the raw estimated fixed effects around the true coefficient along the 

functional domain are independent. Second, changing the quantile of the confidence bands 

from 2 to 2.2 (lengthening the confidence bands by 10%) for bootstrap inference works 

well in our simulation study, but a more rigorous procedure and associated simulations may 

be necessary. Third, our method is only applicable to concurrent functional models, and 

can only take into account functional covariates that are measured on the same grid as the 

functional responses. Fourth, we focus on the fixed effects inference in this paper. While the 

inference for visit-specific predictions and other metrics falls into a similar framework, as 

introduced in Section 3.3, the extension is nontrivial and exceeds the scope of the current 

paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The fractional anisotropy (FA) tract profiles for the corpus callosum (functional domain) of 

two study participants in the DTI study. Left panel: ID 2017. Right Panel: ID 2085. For each 

study participant, each curve represents the tract profiles at one longitudinal visit. The visit 

number is color coded.
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Fig. 2. 
Estimation accuracy for FUI (red) and FAMM (blue) under different relative importance of 

random effects (SNRB, x axis) and signal-to-noise ratios (SNRϵ, labels in the gray-shaded 

area of each panel). Functional response is Gaussian; parameters: I = 50, J = 5, L = 50. Left 

two panels: S1. Right two panels: S2.
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Fig. 3. 
Estimation accuracy (top row) and computing time (bottom row) for FUI (red) and FAMM 

(blue) from 200 simulations. Response is Gaussian and the true fixed effects functions are 

S1. The baseline setting is I = 50, J = 5, L = 50, SNRB = 0.5, SNRϵ =1. All other parameters 

are fixed at their baseline values when one sample size parameter is changed. Left column: 

number of subjects (I). Middle column: mean number of visits per subject (J). Right column: 

dimension of the functional domain (L).
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Fig. 4. 
Fixed effects estimates (dashed blue line), 95% pointwise confidence intervals (dark gray 

shaded area), and 95% joint confidence intervals (light gray shaded area) in the DTI study. 

Panels from left to right: intercept, case, date of scan, sex, age at baseline.
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Fig. 5. 
Fractional anisotropy (FA) tract profiles and estimated predictors for two study participants 

(first row: ID 2017, second row: ID 2085). First column: FA tract profiles for the corpus 

callosum over multiple visits. Second column: pointwise estimated predictor ηij. Third 

column: smoothed estimated predictor ηij of the pointwise predictors.
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Fig. 6. 
Estimated coefficients from the NHANES data application. Smoothed coefficient estimates 

are denoted using blue dashed lines. Pointwise and joint 95% confidence intervals are shown 

as the dark and light gray shaded area, respectively.
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Table 1

Empirical coverage probability of 95% joint and pointwise confidence bands using FUI and 95% pointwise 

confidence bands using FAMM from 200 simulations. Response is Gaussian and the true fixed effects 

functions are S1. The pointwise confidence band is constructed as mean±2sd and the joint is mean ±q0.975 ×sd. 

The baseline setting is I = 50, J = 5, L = 50, SNRB = 0.5, SNRϵ =1. All other parameters are fixed at their 

baseline values when one sample size parameter is changed.

Method Type Number of subjects (l)

50 100 200 400

FUI Coverage (Joint) 0.93 0.96 0.94 0.95

Coverage (Pointwise) 0.94 0.95 0.94 0.95

FAMM Coverage 0.96 0.96 0.96 0.94

Method Type Mean number of visits per subject (J)

5 10 20 40

FUI Coverage (Joint) 0.93 0.95 0.97 0.96

Coverage (Pointwise) 0.94 0.95 0.95 0.95

FAMM Coverage 0.96 0.96 0.96 0.96

Method Type Dimension of the functional domain (L)

50 100 200 400

FUI Coverage (Joint) 0.93 0.94 0.94 0.94

Coverage (Pointwise) 0.94 0.94 0.95 0.95

FAMM Coverage 0.96 0.96 0.96 0.96
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