Skip to main content
. Author manuscript; available in PMC: 2023 Jan 1.
Published in final edited form as: J Comput Graph Stat. 2021 Aug 4;31(1):219–230. doi: 10.1080/10618600.2021.1950006

Algorithm 2:

Level α joint confidence bands of β^r(s)

Data: βr,Var(βr), βr(1),…, βr(B), Ns.
Result: Joint confidence bands of {β^r(s),sS}.
1. Perform Functional Principal Component Analysis (FPCA) on [βr(1),…,βr(B)]T. Derive the mean function μ = [μ(s1),…,μ(sL)]T, eigenvalues λ1,…,λL and eigenfunctions ψ1,…,ψL, where ψk = [ψk(s1),…,ψk(sL)]T, k = 1,…,L;
for n = 1,…, Ns do
2. Simulate ξnk~N(0,λk) for k = 1,…,KT. Calculate βr,n=μ+k=1KTξnkψk;
3. Calculate un=maxslS{|βr,nβr|/diag(Var(βr))};
end
4. Obtain q1−α, the (1−α) empirical quantile of {u1,,uNs};
5. The joint confidence interval at slS is calculated as β^r(sl)±q1αVar(βr)(l,l). The upper and lower bounds of the joint confidence bands can be smoothed.
HHS Vulnerability Disclosure