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Abstract

The sounds of human infancy—baby babbling, adult talking, lullaby singing, and more—fluctuate 

over time. Infant-friendly wearable audio recorders can now capture very large quantities of these 

sounds throughout infants’ everyday lives at home. Here, we review recent discoveries about 

how infants’ soundscapes are organized over the course of a day based on analyses designed 

to detect patterns at multiple timescales. Analyses of infants’ day-long audio have revealed that 

everyday vocalizations are clustered hierarchically in time, vocal explorations are consistent with 

foraging dynamics, and musical tunes are distributed such that some are much more available 

than others. This approach focusing on the multi-scale distributions of sounds heard and produced 

by infants provides new, fundamental insights on human communication development from a 

complex systems perspective.
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Over the course of a day, a baby may babble playfully, coo socially, scream manipulatively, 

attempt to produce spoken words and phrases, laugh, cry, observe quietly, and sleep silently. 

And they may hear adult speech, sibling screaming, soothing lullabies, recorded voices, 

water running, dogs barking, clothes rustling, and many, many other sounds. These will 

depend on the infant’s age, physical environment, culture, family structure, personality, and 

other factors, some of which may be relatively stable and others of which may change within 

or across days, weeks, and months.

All theories that attempt to explain human communication development (atypical or typical) 

make assumptions (implicit or explicit) about the statistics of the inputs infants receive. 
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And all must account for the statistics of the sounds children produce and how they change 

over time. It is therefore crucial that ecological data on children’s input and productions 

be recorded in naturalistic settings and with long enough durations to capture the range of 

contexts and fluctuations infants actually experience and exhibit.

Thanks to innovation in infant-friendly wearable audio recorders and related tools for 

quantifying patterns in everyday soundscapes (Casillas & Cristia, 2019; Gilkerson et al., 

2017; VanDam et al., 2016), we can now begin to characterize infants’ sound experiences 

over the course of an entire day. Foundational discoveries about how these everyday 

soundscapes matter for young children used machine estimates of overall quantities of 

specific event types (e.g., number of adult words heard over the day). Human listeners’ 

annotations of short sections of audio sampled from day-long recordings have led to further 

insights. Now, an additional suite of discoveries is emerging based on analyses that focus on 

how sounds are distributed over the course of a day.

One overarching finding emerging from these studies is that structure in infants’ auditory 

and vocal experiences is nested across seconds, minutes, and hours. There is a general 

tendency for acoustic events to be distributed non-uniformly. Sounds occur in nested clusters 

with a combination of many short gaps between sounds along with relatively fewer large 

gaps. When it comes to sound types, a few types a lot and cumulate to long total durations of 

experience with that sound type, and many other sound types are experienced less often. We 

suggest that this non-uniform organization has important implications for understanding and 

studying human communication development.

Hierarchical clustering of infant and adult vocalizations in time

A complex system can be defined as a system comprised of many interacting components 

organized at multiple levels. The human brain-body-environment system is one of many 

naturally occurring complex systems. A substantial body of research has analyzed the 

behaviors of many natural and simulated complex systems in search of commonalities across 

domains. One result is an understanding that complex systems tend to generate behavior that 

fluctuates at a range of nested scales (Kello et al., 2010; Kello, 2013; Viswanathan et al., 

2011). This leads to similarity in how a pattern looks when zooming in or out, or fractality. 

There are many reasons scientists have found fractality in behavior intriguing. For one, the 

degree to which there is such nesting in animal behavior often correlates with environmental 

features. In one example, fractality of human spatial search on a computer screen was higher 

when resources were clustered compared to when they were uniformly randomly distributed 

(Kerster et al., 2016). In another example, fractality of albatross foraging was greater when 

food resources were scarce compared to when they were plentiful (Viswanathan et al., 

2011). It is possible that changes in fractality of search patterns are adaptive to one’s 

environment.

Another reason for interest in nested fluctuations is that changes in fractality can be 

predictive of important state transitions. For example, Stephen et al. (2009) found that 

there was a predictable peak (an increase followed by a decrease) in the amount of nested 

structure in adult participants’ eye movements immediately before they exhibited instances 
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of mathematical insight. Stephen et al. noted that this pattern—increase in nested structure 

during times of reorganization—is a common feature of complex systems. Often this 

reorganization is purely self-organized, meaning that it results from the internal evolution 

of the system’s state as its components interact with each other. Reorganization can also be 

initiated or influenced by external inputs to the system.

Bringing a nested-structure focus to study human infant communication, Abney et al. 

(2016) assessed the degree of hierarchical clustering when infants and caregivers vocalized 

during day-long recordings. They used the LENA (Language Environment Analysis) system 

(Gilkerson et al., 2017). LENA enables recording up to 16 hours of infant-centered 

audio and provides automatic tagging of when infant and adult vocalizations occurred, 

categorizing infant vocalizations into pre-speech sounds (cooing, babbling, squealing, 

talking, etc.) versus reflexive or vegetative sounds (cries, laughs, coughs, etc.). Abney et 

al. found that the difference between the number of vocalizations observed within one time 

interval and the number in the next consecutive interval is positively correlated with the size 

of the time interval. In other words, there is more difference in vocalization quantity from 

one hour to the next hour than from one five-minute interval to the next five-minute interval, 

consistent with the nesting of vocalization clusters apparent in Figure 1.

In addition to demonstrating hierarchical clustering of both infant and adult vocalizations, 

Abney et al. (2016) found that the degree of nesting tended to match between infant 

vocalizations and adult vocalizations. This matching effect held even after controlling for 

matching in overall rates of vocalization and for temporal proximity between infant and 

adult vocalizations. Matching was also found to increase with infant age due to adults’ 

scaling pattern becoming more similar to infants’.

Vocalization-to-vocalization changes: a foraging perspective

Analyses of foraging by humans and other animals have also yielded many examples of 

multi-timescale, non-uniform patterns in behavior. Foraging can be considered broadly to 

include a wide range of resource types and realms being searched (Todd & Hills, 2020). 

For example, when animals forage in space for prey and when human adults forage in 

cognitive semantic networks for items of a particular type, resources tend to be found in 

nested clusters over time and space (Kerster et al., 2016; Montez et al., 2015; Viswanathan 

et al., 2011). One way to characterize foraging behavior is to quantify the transitions 

between consecutive resource-gathering events. From one event to the next (this transition 

is sometimes called a “step”), we can measure the distance individuals “travel” within a 

physical or feature space. We can also measure the time between the two events.

Using LENA recordings and their associated automatically identified vocalization onsets and 

offsets, Ritwika et al. analyzed the acoustic differences and time elapsed from vocalization 

to vocalization (Figure 2, left panel). They asked whether infant and adult vocalizations 

could be construed as foraging through pitch and amplitude space. They also looked for 

evidence that vocal responses from others serve as “resources” for the foraging individual. 

Inspired by prior foraging research, Ritwika et al. fit mathematical distributions—normal, 

exponential, lognormal, or pareto (power law)—to the observed acoustic step sizes (Figure 
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2, right panel) and inter-vocalization intervals. These step sizes and time intervals spanned 

large ranges. Importantly, the longer step-sizes and inter-vocalization intervals require long 

recordings to be observed and measured.

Ritwika et al. found that for both infants and adults, the more time that elapsed between 

consecutive vocalizations, the bigger the change in pitch and amplitude. This aligns with 

foraging in other domains (Montez et al., 2015; see also Hills et al., 2012). They also 

found that less time elapsed from one vocalization to the next when infants and adults were 

interacting with each other. This fits the hypothesis that vocalization is a type of foraging for 

social responses. It also corresponds with prior research on infant-adult turn-taking. Ritwika 

et al. also observed that infants’ vocalization-to-vocalization pitch movements increased 

with age (suggesting increasing pitch exploration) while amplitude movements shrank. 

Adult vocalization steps in both acoustic dimensions grew with infant age. These results 

connect existing research on infant-adult turn-taking with interdisciplinary work on foraging 

dynamics. They indicate that vocalization can be construed as an exploratory foraging 

process and that infant and adult vocal exploration patterns change with age.

Multiple timescales in the sound types infants experience

Focusing now on what day-long audio can reveal about the distributions of specific types 
of sounds infants encounter, we turn to recent discoveries about musical sounds available 

throughout the day. Second-by-second manual annotation identified which seconds of 

infants’ days were musical as well as the specific voices and tunes within the day’s music 

(Mendoza & Fausey, in press). Because full waking days were annotated, it was possible to 

observe relatively rare musical voices and tunes and to observe the proportional differences 

between more and less available musical identities. As shown in Figure 3, instead of each 

instance of a musical tune cumulating to the same proportion of daily music, certain tunes 

were much more available than others.

How does this distributional non-uniformity matter for infant learning? One possibility is 

that highly familiar tunes ground musical recognition, providing a base of deep expertise 

from which infants can learn to generalize to novel tunes. Experiences of numerous less 

available tunes may help infants establish this generalization capability (see also Smith 

et al., 2018, for related hypotheses about early learning in other domains). Indeed, it has 

long been known that word frequencies in natural language follow highly skewed (Zipfian) 

distributions and this non-uniformity can help adults learn words (Hendrickson & Pefors, 

2019). Skewed distributions can also improve adults’ category generalization (Carvalho et 

al., 2021).

What could account for the non-uniformity of musical tune distributions? As with many 

aspects of infant-caregiver interactions, possible factors might include infant and caregiver 

preferences, the availability of a particular option in a caregiver’s memory, the appeal 

of novelty, and the comfort of familiarity. Given the many related factors involved, 

and knowing that complex systems composed of many interacting components often self-

organize to generate multi-scale patterns of behavior, the answer is likely to be complicated.
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Future work along these lines may enable researchers to compare how distributions of 

musical (or other audio) stimuli are affected by differing living situations, family structures, 

and early childhood education experiences. The initial work, especially given that the dataset 

is available for re-use by other researchers (Mendoza & Fausey, in press), may also enable 

machine learning researchers to test whether the non-uniformities of input experienced by 

human infants yield improved capacities for machine learning (see also Bambach et al., 

2018; Ossmy et al., 2018). This may in turn enhance our understanding of how these 

distributional features affect human infants’ perceptual learning.

Detecting events within day-long audio: Automatic vs. manual annotation

Automated algorithms available for annotating day-long child-centered audio include the 

LENA system’s proprietary software as well as a handful of open-source alternatives (Le 

Franc et al., 2018; Räsänen et al., 2021; Schuller et al., 2017). LENA annotates recordings 

with a closed set of mutually exclusive sound source labels and estimates counts of adult 

words, child vocalizations, and back-and-forth conversational turns between the child and 

adults. One huge advantage of automated annotation is that annotation time does not scale 

prohibitively with recording length. Another advantage is that the exact same algorithm can 

be shared across projects, eliminating variation that can occur when human annotators with 

different life and professional experiences interpret sounds differently.

However, automatic annotation accuracy is often lower than that of human listeners (e.g., 

Ferjan Ramírez et al., 2021). Further, algorithms originally trained with specific datasets 

for specific purposes may not generalize well. For example, LENA was developed for 

the purpose of obtaining word, vocalization, and turn counts at the 5-minute, 1-hour, and 

day-long levels (Gilkerson et al., 2017). Inaccuracies in the annotation might make the 

algorithm unsuitable for research projects that demand higher accuracy or that use the labels 

for other purposes. Moreover, for many meaningful units within everyday recordings, no 

automatic algorithms are currently up to the task (e.g., Adolph, 2020). One issue with 

day-long child-centered audio recordings is that they are among the most difficult types 

of conversational speech data for automated systems to accurately tag (Casillas & Cristia, 

2019).

An alternative is for human listeners to perform annotation. This can be an enormous 

undertaking—for example, 6400 person hours were required to manually annotate the 

features, voices, and tunes in 35 day-long audio recordings (Mendoza & Fausey, in press). 

Infrastructure supporting sharing data and protocols (e.g., Gilmore et al., 2018; VanDam 

et al., 2016) helps to maximize value of such investments. For example, sharing manual 

annotations provides training and evaluation for machine algorithms (e.g., Le Franc et al., 

2018; Räsänen et al., 2021; Schuller et al., 2017), which in turn provides new tools for 

annotating day-long recordings.

We expect that as speech recognition and other automatic audio processing algorithms 

improve, coupled with increasing availability of datasets of human-annotated audio, it will 

become possible to automatically identify words, emotions, and more within child-centered 

day-long audio recordings. Such advances will permit analyses of nested clustering in 
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additional domains. They might also enable the detection of interactions across domains 

that partially contribute to the skewed distributions and nested clustering patterns within 

domains.

Capturing day-long real-world audio recordings also raises privacy concerns. Researchers 

must explain the issues and enable participants to make informed decisions about 

participation and use of their data. Some devices, like the TILES recorder (Feng et al., 

2018), provide investigators the flexibility to extract and collect only specific features (e.g., 

speech onset and offset time, pitch estimates) from the audio input. Collecting features alone 

may better preserve privacy but may not be suitable for every research question and limits 

re-analysis when improved automatic audio processing tools become available.

Broader implications and future directions

It is clear that, over the course of a day, infant vocalizations and auditory experiences are 

organized in patterns that unfold at multiple timescales, from seconds to hours. The patterns 

likely extend to longer timescales (days, weeks, months) as well as to shorter timescales 

within utterances (Kello et al., 2017). Such multi-scale behavior is characteristic of complex 

systems involving many interacting components, such as networks of neurons and networks 

of locally interacting social agents (Kello et al., 2010). It fits with the view that infant 

development emerges within a complex system of richly interacting components within and 

external to the infant (Frankenhuis et al., 2019; Oakes & Rakison, 2020; Wozniak et al., 

2016).

Future research should explore how patterns of productions and input at shorter and longer 

timescales are related to other features of the physical and social environment (e.g., material 

resources, culture, family structure). Such work could help identify some of the mechanisms 

contributing to the multi-timescale patterns described above. It would also build bridges with 

other disciplines, like anthropology (Cristia et al., 2017; Frankenhuis et al., 2019).

Future research should also explore the extent to which fractal analyses provide unique 

information from other methods used to analyze time series data that do not focus on degree 

of self-similarity across timescales (e.g., Jebb et al., 2015). An explicit focus on dynamics 

across timescales and ecological contexts enables these comparisons.

Multi-scale patterns in human infant auditory and vocal experiences may also relate to 

brain plasticity, mental and physical health, and cognitive development. Research with adult 

humans has documented individual differences in the balance of exploration and exploitation 

across a range of spatial and cognitive foraging tasks. These differences are often consistent 

across domains and associated with performance (Todd & Hills, 2020). Regarding early-

life development, experimental research using rodent models suggests that differences in 

physical environment (e.g., a cage having or not having adequate nesting materials) can 

lead to differences in the predictability of maternal behavior, in turn leading to changes in 

offspring brain development and variations in cognition, memory, and anhedonia (Glynn 

& Baram, 2019). Predictable, repeated interactions between a caregiver and infant may 

signal safety and slow the maturation of corticolimbic circuitry, increasing plasticity 

Warlaumont et al. Page 6

Curr Dir Psychol Sci. Author manuscript; available in PMC 2022 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and improving future emotion regulation (Gee & Rhodes, 2021). However, unpredictable 

rare positive experiences, like listening to a New Year’s Holiday song, also seem to 

prolong brain plasticity (Tooley et al., 2021). Most findings about how environmental 

experiences affect brain plasticity derive from animal models. Translating this research to 

humans will be facilitated by detailed data on the distributions of different events types 

at day-long timescales and in highly naturalistic contexts— such assays would enable the 

operationalization of predictability and environmental enrichment in human development.

Conclusion

Data on infant vocal productions and auditory experiences acquired from day-long real-

world recordings reveal multi-timescale fluctuations and skewed distributions of event types 

across domains of infant experience. Such patterns often arise through self-organization 

of complex systems of many interacting components. The findings thus support a complex-

systems orientation and underscore the richness and complexity of development as it unfolds 

in a diverse range of physical, social, and physiological contexts.
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Figure 1. 
The circles in the top panel show the onsets of automatically-identified vocalizations in 

a 9-month-old infant’s day-long audio recording. The horizontal position of each circle 

represents time, with left being earlier in the day and right being later in the day. It is 

apparent that the infant vocalized in clusters over the day, with some of the clusters being 

denser and/or lasting longer than others. The area with gray background is an hour-long 

period and forms the basis of the middle panel. The middle panel thus presents a zoomed-in 

version of the top panel. It can be seen that within that hour, the infant vocalized in clusters, 

with the pattern of clustering appearing similar to the clustering at the day-level even though 

the timescale is much smaller. The area with gray background is a 5-minute-long period and 

forms the basis of the bottom panel. It is apparent that even within the 5-minute period, 

the infant vocalized in clusters. Again, the nature of the clustering shows similarity in its 

patterning to the clustering at hour-long and day-long scales. This figure thus highlights that 
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there is fractality, i.e., self-similarity when zooming in or zooming out, in the how infant 

vocalizations pattern into clusters over time.
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Figure 2. 
Left: A sample of some of the vocalization “movements”, a.k.a. “steps”, of a 3-month-

old infant. Each point represents a single vocalization. The horizontal axis represents the 

mean pitch of the vocalization (log-transformed and normalized with respect to the entire 

infant vocalization dataset of Ritwika et al., 2020). The vertical axis represents the mean 

intensity of the vocalization in dB (also normalized). Each arrow corresponds to one step 

between consecutive infant pre-speech sounds. The numbers next to each arrow represent 

the duration of time that elapsed between the two vocalizations (i.e., the inter-vocalization 

interval). Acoustic space step size was defined as the distance in the two plotted acoustic 

dimensions between the two vocalization points. Right: An example of acoustic step size 

distribution for a 2-month-old infant’s recording, focusing on the infant’s pre-speech sounds 

and specifically on steps where the first vocalization did not receive an adult response. 

The x-axis plots the acoustic space step size (i.e., the difference, taking into account 

both pitch and amplitude, between two consecutive infant vocalizations). The y-axis shows 

the likelihood of observing steps of a given size. It can be seen that smaller step sizes 

are generally more frequent, but that larger step sizes (spanning more than 2 and up to 

5 standard deviations in the acoustic dimensions) do occur. The blue curve shows the 

histogram of step sizes from the raw data. In this case a lognormal distribution was the 

best type of function to fit that histogram. The lognormal fit is shown by the red curve. 

The specific parameters of lognormal fits can be compared across recordings and interactive 

contexts. This can provide information about how infant vocal dynamics change, such as 

with age or related to whether the infant is or is not engaged in vocal interaction with 

caregivers. Right panel adapted from Ritwika et al. (2020).
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Figure 3. 
How much each of a day’s many tunes contributes to the full daily tune distribution for each 

of 35 infants. Each row corresponds to one day-long audio recording, segmented into unique 

tune identities (e.g., Twinkle Twinkle Little Star, Itsy Bitsy Spider, Shake It Off, Everybody 
loves potatoes, Short whistle, and so on). Within the row, each distinct tune’s relative 

duration (i.e., the proportion of the day’s musical time) is shown, organized from most 

available to the infant on the left to least available on the right. The observed proportion of 

each recording’s most available tune is marked by each thick white vertical line. The small 

white +’s show the proportion that would be expected per tune if each tune were equally 

available to the infant. Recordings are sorted with those containing the fewest total number 

of distinct tunes on the top. Figure adapted/reprinted from Mendoza & Fausey (in press).
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