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Abstract

Mass spectrometry is a central technology in the life sciences, providing our most comprehensive 

account of the molecular inventory of the cell. In parallel with developments in mass spectrometry 

technologies targeting such assessments of cellular composition, mass spectrometry tools 

have emerged as versatile probes of biomolecular stability. In this review, we cover recent 

advancements in this branch of mass spectrometry that target proteins, a centrally important class 

of macromolecules that accounts for most biochemical functions and drug targets. Our efforts 

cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision 

induced unfolding, and other techniques capable of stability assessments on a proteomic scale. 

In addition, we focus on a range of application areas where mass spectrometry-driven protein 

stability measurements have made notable impacts, including studies of membrane proteins, heat 

shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing 

the future of this vibrant and fast-moving area of research.
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1. Introduction

Stability-shift measurements have been a key component of biochemical research since the 

1920s. For example, early work by Eggerth and colleagues in the 1920s monitored the 

changes in Escherichia coli (E. coli) flocculation as a function of added colloidal proteins 

in suspension.1 A follow up study further probed the stability of E. coli as a function of 

strain variation, suspension media, as well as storage conditions.2 As such cellular stability 

shift assays gained importance, measurements targeting purified proteins soon surfaced. An 

example of such work is included in a series of publications by Northrop and colleagues 

wherein they explored the stability of trypsin by measuring its activity as a function of 

temperature.3,4 Similar studies measuring protein activity as a function of pH, temperature, 

and aging were performed for a variety of enzymes such as pepsinogen,5 and ribonuclease,6 

wherein a loss of enzymatic activity can be interpreted as a measurement of protein stability. 

Together, these types of studies helped build the foundations of modern biochemistry.

Later, spectrophotometry-based measurements emerged to enable in-depth investigations 

of protein stability. Early examples include absorbance spectrophotometry experiments, as 

demonstrated in early studies of rhodopsins,7,8 and polarimetry measurements, which were 

used extensively to characterize the stabilities of collagen in response to pH,9 temperature,10 

organic solvent,11 or changes in primary sequence.12 These spectrophotometric approaches 

typically yield global protein stability information. Although these techniques were 

deployed extensively in the characterization of protein targets such as myoglobin13–16 and 

hemoglobin,17 novel techniques were beginning to emerge which promised insights into 

intermediate conformers populated during protein unfolding.

Differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) quickly 

became the primary approaches for studying protein stability. DSC measures the heat 

capacity (Cp), and transition/melting temperature (Tm) at which 50% of protein population 

is denatured, with higher Tm values are indicative of higher stability, which is employed 

in a comparative manner to quantitate the stabilizing/destabilizing effects of buffer 

composition,18,19 protein-protein interactions,20 ligand binding,21–23 or mutation.24 ITC 

measures changes in the thermodynamic properties of a protein sample upon the controlled 

addition of known ligands or binding partners. Changes in these properties, discussed in 

more detail in section 2 below, can be interpreted as changes in sample stability.25–30 DSC 

and ITC remain standard techniques for protein stability measurements today.31

In the last three decades, techniques commonly used for small molecule structure 

determination such as nuclear magnetic resonance (NMR) and mass spectrometry (MS) 

have developed into tools capable of targeting larger analytes such as intact proteins. 

Advancements in NMR spectroscopy enabled for the first time, higher resolution 
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measurements of protein secondary structure stability based on changes in chemical shifts 

of residue sidechains.32–37 Similarly, the development of electrospray ionization (ESI)38 

proved crucial for the growth of MS as a probe of protein stability.39,40 Since these early 

studies, researchers have sought to expand the MS toolbox to encompass a greater number of 

biophysical descriptors associated with protein conformation and folding (Figure 1).

Tandem MS (MS-MS or MS2) approaches were utilized to determine primary sequence,41 

while charge state distributions (CSD)40 were used to monitor protein structures incubated 

under different solvent conditions,42–44 or temperatures.45–51 These studies led to the 

realization that, under the appropriate conditions, ESI-MS was capable of transmitting 

non-covalent protein complexes in a manner closely mirroring their native states52–56. 

In the three decades since these initial discoveries, innovations in protein ionization57,58 

and instrumentation59 have led to the emergence of native mass spectrometry, a technique 

capable of directly analyzing a wide array of multimeric protein machines,55,60–62 including 

chaperones,63,64,73–79,65–72 ribosomes,80–82 and intact viral particles.83–85

MS-based techniques soon emerged capable of measuring protein stabilities. For example, 

covalent labeling techniques such as hydrogen-deuterium exchange MS (HDX-MS),86 fast 

photochemical oxidation of proteins (FPOP),87 and chemical cross-linking MS (CXL-MS)88 

are three such techniques which are capable of yielding protein structure and dynamics 

information at the level of individual amino acid residues within the targeted sequences. 

Briefly, these techniques covalently label proteins in solution, and the results of this labeling 

are then typically analyzed by bottom-up liquid chromatography MS (LC-MS) workflows. 

Such approaches can be used to directly assess the impacts of stress, ligand binding, or 

post-translational modification upon protein structure and stability within complex mixtures.

Another such approach, ion mobility-mass spectrometry (IM-MS), is capable of separating 

a variety of gas-phase ions based on their interactions with gaseous neutrals. IM-MS has 

been used to separate the electronic states of transition metals,89–91 as well as the shapes 

of varying carbon clusters,92–94 and PEG polymers.95 Pioneering instrument development 

efforts combined ESI with IM-MS enabling the initial separations of intact protein ions,96 

and helped to establish a research area now referred to as gas-phase structural biology.97 

IM-MS technology provides the foundation for collision-induced unfolding (CIU) assays, 

wherein native-like protein ions are incrementally activated in the gas phase prior to IM 

separation. This results in gas phase unfolding of the ions, which is detected by IM as an 

increase in CCS.98,99 CIU has been applied to a variety of biological targets98 including 

biotherapeutics,100–102 membrane proteins,103–107 chaperone complexes,108 and kinases.109 

This review will expand on the various gas phase stability measurement techniques 

summarized here, with focused sections covering applications targeting biotherapeutics, 

membrane proteins, intrinsically disordered proteins, and heat shock proteins.

2. Survey of MS-based Protein Stability Measurement Techniques

2.1 Reference Techniques for measuring protein Stability

Thermal stability is a key determinant of protein structure and function.110 As such, stability 

measurements are extensively used throughout biochemistry, and especially in context 
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of pharmaceuticals, where protein stabilities are used to support the quality, safety and 

efficacy of biotherapeutics, or protein-based therapies, throughout their development.111,112 

Technologies such as circular dichroism (CD),113 DSC,111,114 ITC,31 and differential 

scanning fluorimetry (DSF)115 are widely used for the analysis of protein stabilities.116 

In particular DSC, ITC, and DSF function as reference protein stability probes due to their 

ability to directly track changes in thermodynamic stability117–121.

Despite offering robust assessments of protein stability, the spectrometric and calorimetric 

methods briefly surveyed above often require large quantities of purified protein and lengthy 

acquisition times. In contrast, MS-based protein stability measurement techniques require 

substantially less sample and have the potential to be orders of magnitude faster when 

compared to their solution counterparts122. As indicated above, MS techniques also excel 

in extracting stability measurements from protein mixtures. Furthermore, when MS is 

combined with structurally sensitive labeling and separation techniques, such approaches 

can provide granular structural information that makes it possible to link specific regions of 

the protein sequence to changes in both protein structure and stability.

2.2 Mass Spectrometry-based Probes of Protein Stability

2.2.1 Native Mass Spectrometry

2.2.1.1 Introduction: For nearly three decades, a large number of MS based observations 

have indicated that protein complexes can be directly transferred into the gas phase in 

a manner that retains their native oligomeric states and ligand-binding properties.123,124 

From the initial reports of nMS measurements, questions have emerged regarding the 

structural and functional states of the proteins captured in flight. While many of these 

questions persist today, a number of reports have greatly informed our current understanding 

of gas-phase protein structures and their potential fidelity to native conformations. For 

example, it has been shown that gas-phase peptide and protein ions retain much of their 

structural integrity following soft-landing on a surface housed within MS equipment.125 

Specifically, apoferritin, a protein known for its iron-storage capabilities and cage-like 

structure was shown to retain its native configuration after transport in the gas-phase and 

soft-landing.126 Also, ESI-MS has been employed to measure binding constants of protein 

ligand interactions.127 Additionally, nIM-MS enables comparisons between measured CCS 

values and those estimated from high-resolution structure determination experiments (such 

as x-ray crystallography and NMR), revealing both strong correlations between kinetically-

trapped gas-phase protein structures and those associated with their native conformational 

states, as well as specific areas of structural compaction.128 For more details on how CCS 

measurements are obtained from nIM-MS and their application for structural refinement 

please refer to targeted reviews covering this topic.129–131 Recently, the optimization of 

sample preparation, ionization, and ion transport conditions have advanced dramatically our 

knowledge of gas-phase biomolecular structure, and this area is covered by a number of 

excellent recent reviews.128,132–138

ESI has proven to be a key enabling technology for MS-based protein stability 

measurements.139 The technique involves application of high voltage to a conductive 

emitter, resulting in the creation of charged populations of aerosolized droplets. Subsequent 
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droplet fission and evaporation events give rise to analyte ions that can be analyzed by 

MS with both positive and negative polarities. Typical ESI-MS experiments employ high 

source temperatures (> 100 °C), drying gas, and organic co-solvents in order to facilitate 

ion desolvation. Since such conditions can be detrimental to the preservation of native-like 

protein structures, nMS experiments utilize nanoESI (nESI), aqueous solutions and lower 

source temperatures (20 – 30 °C).57 In nESI, smaller droplets are produced which allow for 

more complete protein ion desolvation, resulting in significantly improved mass resolution 

and dramatic reductions in artifact protein complex signals. The fundamental principles of 

ESI, along with recent advancements in its theory of operation and implementation, have 

been discussed in detail previously.57,140–142

2.2.1.2 Charge State Distributions as a Probe of Protein Stability: The native mass 

spectra of protein ions produced by nESI-MS typically reveals a series of ion signals 

corresponding to a narrow range of charge states, the magnitude of which correlate strongly 

with the available surface areas of the structures adopted by the analyte proteins in solution. 

As such, the charge state distribution (CSD) recorded for protein ions can be treated as a 

direct probe of protein solution structures, and measured over a wide array of preionization 

sample conditions.143 By extension, such CSDs have been used as a measure of protein 

stability.42,144 For example, Chowdhury et al. showed that at least three CSDs were observed 

in ESI-MS data recorded for bovine cytochrome c (cytc) when incubated at pH values 

ranging from 2.6–5.2. Critically, the existence of at least three cytc conformational states 

had been observed in both NMR and CD datasets.42 Using a similar approach, Loo et al. 
demonstrated that ubiquitin CSDs could be varied based on the amount of organic solvent 

used, serving to denature the protein and alter its structure prior to ESI-MS.144 In 1997, 

Konnerman & Douglas studied the CSDs of cytc in detail and correlated their findings 

with both CD and DSF data.145 Together, the studies discussed above laid the foundation 

for future developments in the application of CSD measurements to protein stability and 

structure.

Since their first use as a measure of protein structure and stability, CSD data have 

engendered questions surrounding the potential projection of solution-phase biophysical 

information into the gas-phase. Early IM-MS results for of cytc showed that the +7 and 

+8 of the protein ions observed possessed more than one CCS value when compared 

to higher cytc charge states.146 Intrinsically disordered proteins (IDPs), which are often 

implicated in protein misfolding diseases, typically produce significantly wider CSDs and 

a greater plurality of CCS values for individual charge states than globular proteins studied 

by nIM-MS.147,148 Storage time and conditions in the gas-phase can further influence the 

range of structures accessed by protein ions in a charge state dependent manner.149 Taken 

together, the studies above strongly suggest that protein ion structure is a product of the 

conditions surrounding their preparation, creation, storage, and transport. All of the previous 

factors must be considered alongside properties such as charge state, stability, sequence, and 

native structure when evaluating relationships between solvated and gas-phase biophysical 

data.150 For example, ubiquitin ions having identical charge states, but prepared through 

different routes, can display distinct stability differences.151 As such, while CSD data has a 

Vallejo et al. Page 5

Chem Rev. Author manuscript; available in PMC 2022 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clear relationship to protein structure and stability in solution, the evaluation of associated 

gas-phase protein structure can prove more challenging.

2.2.2 Variable Temperature Mass Spectrometry—Variable temperature 

electrospray ionization (vT-ESI) is an analog of standard solution phase temperature 

annealing techniques, utilizing MS detection to monitor changes in protein structures 

(Figure 2A).42 The experimental setup includes a heat-conductive material that encapsulates 

and houses the ESI emitter.152 Throughout the experiment, higher currents are drawn 

through this housing, generating resistive heating in a controllable manner for the direct 

assessment of protein CSD,153 and the oligomeric status of protein complexes.154,155 The 

largest advantages of vT-ESI devices remains their ability to probe protein melting point 

(Tm) values that are comparable to reference technologies (see Section 2.1), without need of 

large amounts of purified sample (Figure 2A ii).156–158 Recently, efforts in this space have 

been made to expand the structural information that can be obtained by vT-ESI-MS,159 by 

incorporating IM-MS and detailed forms of data analysis in order to more deeply probe the 

connections between protein stability and gas-phase protein ion structure.160,161

2.2.3 Overview of MS-based Footprinting Methods—MS-based footprinting 

encompasses techniques that probe the solvent accessible surface area (SASA) of proteins 

using a wide range chemical modifications that act to shift the measured mass of an 

analyte in a manner dependent on its structure and stability (Figure 2B).162,163 MS-enabled 

footprinting techniques offer high-throughput, amino-acid level resolution information, low 

limits of detection, and the ability to access protein stability values from within complex 

mixtures. In addition to the specific technologies covered in the sections below, a wide 

range of reagents, including carbene and diethylpyrocarbonate chemistries, that seek to 

comprehensively label solvent exposed residues within folded protein sequences.162,163 

Our coverage of MS-based footprinting tools will focus on specific labeling technologies 

and their applications to protein stability measurements, and will include examples from 

Hydrogen-Deuterium Exchange (HDX), chemical cross linking (CXL), and fast photo-

oxidation of proteins (FPOP) data.

2.2.3.1 Hydrogen-Deuterium Exchange: HDX-MS enables the acquisition of protein 

structure and stability information through the exchange of labile hydrogens with deuterium 

in solution at the level of individual amino-acid residues.164,165 The concept of HDX goes 

back to the late 1960s when it was first used in conjunction with NMR spectroscopy.166 

HDX exchange rates vary widely, and are based on the local environment of the backbone 

amide in question. Specifically, solvent accessibility and intramolecular hydrogen bonding 

can influence greatly the “protection factor” of an amino-acid residue in the context of 

HDX. In general, there are two procedures for measuring HDX by MS: Continuous-labeling 

and pulse-labeling. In continuous-labeling experiments, proteins are incubated with D2O 

and then analyzed at fixed timepoints.167 Continuous-labeling is primarily used to monitor 

slow (min – hours) structural transitions in intact proteins and is often performed using 

standard MS hardware.166 In contrast, pulse-labeling HDX is capable of measuring faster 

transitions (seconds - hours), and functions by exposing samples briefly to a deuterium 

source following a structural pertubation.168
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The MS equipment and techniques used to measure HDX are continually evolving. 

Key challenges include limiting the back-exchange of absorbed deuterium,86,166 as 

well as improving both the throughput and coverage of the protein digestion 

step.169,170 Many excellent reviews cover the current applications and practice of HDX-

MS.86,162,163,165,168,171–174 As such, the discussion below focuses mainly on the application 

of HDX-MS for the assessment of protein stability. The earliest examples of such 

experiments focus on model proteins, such as ubiquitin and lysozyme, with the latter protein 

probed both under conditions promoting intact and reduced disulfide bonds.175 From these 

initial data, HDX-MS has grown significantly to encompass stability data targeting large 

proteins and their functional assemblies.

Specific examples of HDX-MS protein stability measurements in action span work 

associated with protein-ligand complexes, biotherapeutic antibodies, and protein-surface 

adsorption. In the latter area, HDX-MS has quantified the destabilization of proteins 

during surface adsorption,176,177 and have extended to free energy assessments for 

myoglobin-silica adsorption events.177 HDX-MS played a central role in the evaluation 

of the National Institute of Standards and Technology monoclonal antibody (NISTmAb) 

standard.178 Specifically, HDX-MS revealed the role of net protein charge on the stability 

and aggregation of the NISTmAb, an insight verified using a battery of reference 

protein stability measurement tools. HDX-MS also led the way in uncovering the role of 

glycosylation in stabilizing mAb structure in general, linking the presence of high-mannose 

or complex glycans to stability increases in model immunoglobin G1 (IgG1) and IgG2 

antibodies.179 The influence of ligand binding on protein stability has also been examined 

in detail using HDX-MS.180,181 For example, a recent study utilized HDX-MS to determine 

two hotspots adjacent to the core binding interface of the SARS-CoV-2 Spike Receptor 

Binding Domain and the human Angiotensin-converting enzyme 2 (hACE2) protein. These 

hotspots could represent potential targets for therapeutics that act to destabilize the spike 

protein-hACE2 interactions.180

Tandem MS (MS/MS) technologies are central to most high-resolution HDX-MS 

workflows. The migration of deuterium tags from their original labeling sites remains a 

challenge in evaluating residue-level HDX information. Such H/D scrambling is prevalent 

in datasets utilizing collision induced dissociation (CID) for ion activation,182 but is 

dramatically lessened (or eliminated) for workflows using electron capture dissociation 

(ECD) or electron transfer dissociation (ETD).164,183–185 Scrambling is caused by the 

increased vibrational energy and larger timescales of the CID process compared to 

ECD/ETD.186 For example, an intact protein HDX-MS workflow incorporating ECD 

fragmentation has localized deuterium incorporation to residue pairs within the target 

sequence.164,187 Clearly, avoiding protein digestion steps allows for both the acquisition 

of global exchange data while simultaneously limiting back-exchange due to the large 

decrease in sample preparation time and likelihood of back-exchange.183 It is clear that 

the advantages associated with the direct sequencing of intact proteins will spur further 

advancements in HDX-MS technology.

The peak capacities of LC-MS methods associated with HDX-MS have a clear impact on the 

acquisition of protein stability information that can be accessed from larger protein systems. 
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As such, IM separation has been broadly deployed in HDX-MS workflows in order to 

expand the total number of resolved features accessed by HDX-MS technology.188,189 The 

deconvolution of isotopic patterns for co-eluting peptides allows for accurate determination 

of exchange rates. In addition to HDX in solution, proteins can undergo HDX reactions with 

reagent gases and background neutrals while trapped in the gas phase. Such gas-phase HDX-

MS experiments can be challenging to interpret, but a number of reports demonstrate how 

such HDX data, when combined with IM-MS, can provide synergistic datasets from which 

to resolve and identify the plurality of structural microstates that evolve during protein 

unfolding reactions.190,191 Future work will undoubtedly reveal further complimentary 

aspects of IM-MS and HDX data for the evaluation of protein stability in even greater 

detail.

Lastly, HDX has been utilized to track shifts in protein stability associated with ligand-

binding events, often as a function of ligand concentration or ligand to protein ratio. For 

example, using Stability of Unpurified Proteins from Rates of H/D Exchange (SUPREX) 

analyses, thermodynamic parameters have been evaluated for the binding of anions to ferric-

binding protein.192 Unlike, SUPREX, the Protein–ligand interactions by mass spectrometry, 

titration, and H/D exchange (PLIMSTEX) method does not need denaturants to obtain 

binding constant values for protein-ligand interactions using HDX-MS data.193 For more 

information on HDX-MS studies of protein-small molecule binding and HDX-MS and other 

non-MS tools as a quantitative approaches for assessing protein stability, see the recent 

reviews by Williams194 and Fordyce195, respectively.

2.2.3.2 Chemical Crosslinking: Over the last 20 years, chemical crosslinking (CXL) 

combined with MS has proved to be an invaluable tool for evaluating the structures 

of protein complexes.88 CXL-MS is most often accomplished by exposing proteins to 

compounds that possess two reactive sites spaced by a known distance. If both sites within 

the CXL reagent undergo a successful linking reaction with residues on the surface of the 

protein, then a covalent link between disparate regions of the protein can be established 

that, if located through MS/MS experiments, can reveal those sequence elements located 

nearby in the native protein structure. CXL-MS is also a potent tool for examining 

the stabilities stoichiometries, flexibilities, and binding interfaces associated with protein 

complexes.196 Such CXL-MS datasets are most often used to create distance maps, a 

network of interactions between crosslinked proteins, that can be used as constraints for 

generating low-resolution models of protein assemblies.197 Integration with nIM-MS data 

enables CXL-MS maps to directly account for protein complex stoichiometry, orientation, 

and size and thus improve the resolution of the models generated.198,199 The gas-phase 

stabilities of cross-linked proteins and complexes reveal expected increases in stability, 

with greater increases provided by charged reagents.198,199 Future developments in CXL 

chemistries and associated MS methods will clearly promote more detailed assessments of 

the stabilities of proteins and their associated complexes200.

2.2.3.3 Fast Photochemical Oxidation of Proteins: Fast photochemical oxidation of 

proteins (FPOP) methods generate hydroxyl radicals that irreversibly label solvent-exposed 

amino-acid side chains within proteins for MS and MS/MS evaluation.201,202 FPOP 
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reactions typically occur on the sub-millisecond timescale,203,204 enabling wide ranging 

studies of protein stability.201,205 Additionally, like other chemical footprinting techniques 

combined with MS detection, FPOP provides a unique set of restraints that can be used to 

generate, or improve, low-resolution protein structure models.206 FPOP experiments often 

require laser irradiation within flow injection manifolds to control the oxidation reactions 

used for protein labeling.207 More recent versions of FPOP operate without the need of 

lasers,208 offering the potential to measure protein stabilities directly through the direct 

observation of protein oxidation rates,209 and are moving towards in vivo proteome wide 

assessments of protein stability values. Future advancements in FPOP will likely continue 

along this trajectory, further enabling the measurement of protein and protein complex 

stabilities on a proteome scale.210,211

2.2.4 Overview of protein ion activation methods—The activation of gas-phase 

ions is central to a number of methods associated with assessing the stabilities of 

proteins.212 Several approaches are available for increasing the internal energies of protein 

ions,213 and if activated sufficiently, each method can provide unique patterns of fragment 

ions that, in many cases, can provide protein stability information. For example, collision 

induced dissociation (CID) often utilizes multiple low energy collisions with neutral gas, 

resulting in ions that undergo a relatively slow (microsecond timescale) accumulation of 

rotational/energy (Fig. 2C).214 In contrast, surface induced dissociation (SID) utilizes fast 

(sub-microsecond) ion-surface collisions to impart rotational/vibrational energy to protein 

ions in a single step.215 The different ion activation timescales accessed by CID and 

SID methods can lead to dramatically different fragmentation patterns in large protein 

complexes, with the former favoring the ejection of unfolded subunits and the latter 

producing multi-protein sub-assemblies as product ions.215 ECD and ETD methods utilize 

electron capture/transfer and can produce fragment ions on shorter timescales than those 

accessed by CID and SID, leading to the rapid excitation of protein electronic states 

and the formation of product ions that can reveal unstructured regions within protein 

ions, adding further granularity to gas-phase protein stability assessment efforts.216 Lastly, 

photo-activation of gas-phase ions provides a flexible platform for assessing protein 

stability values, with black body infrared dissociation (BIRD) and infra-red multi-photon 

dissociation (IRMPD) providing direct access to ion internal temperature information 

through a slow (microsecond) heating process, and thus, information regarding protein 

ion dissociation energetics. Ultra-violet photo-dissociation (UVPD), in contrast, produces 

a fast (sub-nanosecond) activation step primarily used to efficiently fragment the protein 

backbone. For each of the ion activation techniques listed above, the energy deposition 

timescale accessed dictates much of the eventual product ion population, as well as the 

utility of such data for protein stability measurments.217,218

2.2.4.1 The energetics of protein ion unfolding and dissociation in the gas phase: Since 

the inception of Rice–Ramsperger–Kassel–Marcus (RRKM) theory,219 which provides 

access to micro-canonical rate constants and barrier heights associated with primarily small 

molecule unimolecular decay reactions, a detailed description of the energetics underlying 

molecular decomposition events observed by MS has been developed. A similarly detailed 

description has been sought for gas-phase protein ions, with most efforts focusing on 
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activation methods that utilize relatively slow energy addition steps.217 For example, BIRD 

has been used to evaluate the energetic details associated with the gas-phase dissociation of 

both small and large molecules.220 Specifically, BIRD measurements revealed exceptionally 

large pre-exponential factors associated with the temperature dependent rate contents 

determined for the dissociation of Shiga toxin oligomers, indicating the formation of 

highly disordered intermediates.221 More recently, a framework for quantifying energy 

deposition during collisional activation has been described and used to evaluate the internal 

temperatures of protein complex ions undergoing SID.222 In addition, this framework has 

been extended to evaluate the energetics associated with CID and CIU processes in protein 

ions.223 Future efforts will seek to deploy such detailed knowledge of ion temperature to 

further evaluate the information content of gas-phase protein stability measurements.

2.2.5 Activation and Dissociation Techniques for Protein Stability 
Assessment

2.2.5.1 Collision Induced Dissociation: Early observations of protein complex 

CID60,224,225,226 revealed product ion distributions dominated by highly-charged monomers 

and remaining oligomers stripped of both monomers and their associated charge. 

Such asymmetric charge partitioning between monomers and stripped oligomers can 

be rationalized based on the mobile proton model227,228 coupled with the unfolding 

ejected monomers. Initial observations of asymmetrically charged CID product ion 

populations for protein complexes were rapidly broadened to include a wide range of 

protein assemblies, establishing the asymmetric charge partitioning model as the standard 

mechanism underlying protein complex CID.150,221,229 Subsequent measurements indicated 

that this mechanism can be readily shifted to include folded monomers and sub-complexes, 

as well as peptide fragmentation channels, upon charge manipulation of the precursor 

complex.230 A more detailed understanding of protein complex dissociation and unfolding 

was obtained by deploying IM-MS to monitor the sizes of collisionally-activated protein 

complexes.133 Early IM-MS experiments focused on the tetrameric transthyretin (TTR), 

directly observing increases in IM drift time upon collisional activation that allowed protein 

unfolding to be confidently invoked within protein complex CID mechanisms for the first 

time.231 In addition, these observations gave rise to current generation CIU technology (see 
Section 2.3.2), a method capable of directly assessing gas-phase protein stabilities.

Quantitative assessments of the dissociation pathways produced upon the collisional 

activation of protein complexes can be used to investigate the stabilities of target complexes, 

alongside subunit composition, topology and protein-protein interaction strengths.232–234 

Such an analysis was conducted for a series of small heat shock protein oligomers, and 

revealed the presence of different protein-protein interaction strengths and subunit stability 

values could be detected and quantified in such systems.234 In a separate study, CID 

pathway analysis was used to assess the stabilities of TTR and one its amylogenic variants, 

ultimately determining that the wild type (WT) protein complex to be the more stable 

variant.235 For further detail concerning the theory and practice of protein complex CID, a 

number of excellent review papers are available.213,214,227,228,236–238
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The extent to which the CID mechanism can be altered through precursor charge 

manipulation remains an active area of research, and progress in this area may open new 

avenues for gas-phase protein stability measurements.234,236–240 For example, a gas-phase 

corona discharge probe can be used to on-line charge reduction, and this approach can 

prepare ions that eject compact protein product ions upon CID over a wide range of 

oligomeric states and a masses (12 – 233 kDa).240 Furthermore, in cases where no subunit 

was ejected, peptide fragmentation can be captured from such charge-reduced precursors.230 

Clearly, precise control over both the charge states and internal energies of proteins is 

necessary to maximally utilize CID for protein stability measurements.

2.2.5.2 Surface Induced Dissociation: In the context of protein stability measurements, 

SID is often utilized to evaluate the binding strength associated with protein-protein 

interfaces within larger assemblies.215 Previous work has indicated that charge reduced 

complexes provide a dramatically improved ability to access to sub-complex product ions 

and a greater fidelity to the relative sizes of protein-protein interfaces.241,242 SID has 

been deployed to evaluate the structures of tetrameric protein complexes in this fashion, 

finding strong correlations to SID product ion populations and the relative stabilities of the 

interfaces between dimers and monomers within such structures.243–245 SID has also been 

used to detect differences in the stabilities of ligand-bound tetrameric protein complexes 

in a manner dependent upon ligand binding strength and location.245 The stabilities and 

structures of large protein complexes, including the GroEL tetradecamer, have also been 

reported.242 A broader evaluation of SID applications and instrumentation is available in 

recent reviews.215,246

2.2.5.3 Electron-Capture and Transfer Dissociation: ECD utilizes low energy electrons 

(1eV), (Figure 2C), whereas ETD uses anions to transfer electrons to precursors, both 

of which typically act to produce a similar population of product ions associated with 

protein backbone cleavage.247,248 A large number of excellent reviews cover the theory 

and application of ECD and ETD technology, much of which is focused on protein 

squencing.216,249–251 Many reports also focus on evaluating ECD/ETD fragmentation from 

the point of view of evaluating protein structure, as data strongly indicates that fragment 

ion production can be linked to unstructured regions within protein sequence or surface-

accessible reaction sites.216,252,253 The content below will focus primarily on the use of 

these tools for assessing protein stabilities.

ECD has been combined with collisional activation in order to survey the stabilities of 

multiple protein sytems.254,255 For example, ECD has been used to evaluate the stability 

of the kinase inducible domain (KIX), revealing that its three helices unfold similarly 

in both the gas phase and in solution.254 In a separate study, ECD data was able to 

differentiate horse and tuna heart cytc on the basis of stability.255 A large number of 

reports have focused on the ability of ECD to evaluate monomeric protein structures, and 

is this area is the subject of multiple excellent reviews.216,252,253 Initial applications of 

ECD to multi-protein complexes focused on alcohol dehydrogenase (ADH) tetramer ions, 

which revealed the presence of an N-terminal fragmentation pattern correlating with those 

regions of its X-ray structure possessing high b-factors,256 Atomic displacement parameter, 
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temperature factor or b-factor indicate regions of disorder in a crystal structure.257 ECD 

fragmentation being produced from regions with high b-factors is an observation that 

was subsequently extended to other protein assemblies, indicating the utility of ECD to 

characterized disordered regions.258–260 When combined with IM-MS, ECD acquired for 

protein complexes can provide a deeper level of structural insight associated with detected 

differences in protein stability.151,261–265 For instance, the gas-phase unfolding of Hb 

tetramer ions was characterized by both IM and ECD, establishing that protein unfolding 

occurs first at the termini of both the α and β subunits of the complex, and that these 

unfolded regions are correlated with elevated b-factor regions within X-ray data.266 As a 

further example, the structural differences between WT and mutants of the metamorphic 

protein lymphotactin have been quantified based on a combination of IM-MS and ECD 

data.262 In another study, ECD fragmentation and IM-MS data streams were used to jointly 

constrain a coarse-grained model of variant apolipoprotein E oligomers, which together 

suggested the presence of a tetramer possessing C4 symmetry.265 Finally, IM-MS combined 

with ECD was able to identified a compacted bound state alongside binding site information 

for a molecular tweezer-type compound attached to tau protein monomers.264

More recently, ETD fragmentation has been used to investigate protein stability and 

structure.261 In an early set of experiments in this area, ETD data was collected on ADH 

tetramers.256 In contrast to prior ECD work, ETD fragmentation was not correlated to 

regions of the sequence possessing enhanced b-factors, but instead was correlated with the 

solvent accessible surface area (SASA) of the complex. ETD methods have subsequently 

been extended to monitor the unfolding of both Concanavalin (ConA) and Hemoglobin 

(Hb) tetramer ions.263 When combined with IM-MS, ECD acquired for protein complexes 

can provide a deeper level of structural insight associated with detected differences in 

protein stability.151,260–264,267 For instance, the gas-phase unfolding of Hb tetramer ions was 

characterized by both IM and ECD, establishing that protein unfolding occurs first at the 

termini of both the α and β subunits of the complex, and that these unfolded regions are 

correlated with elevated b-factor regions within X-ray data.260 As a further example, the 

structural differences between WT and mutants of the metamorphic protein lymphotactin 

have been quantified based on a combination of IM-MS and ECD data.262 In another study, 

ECD fragmentation and IM-MS data streams were used to jointly constrain a coarse-grained 

model of variant apolipoprotein E oligomers, which together suggested the presence of 

a tetramer possessing C4 symmetry.267 Finally, IM-MS combined with ECD was able 

to reveal a compacted bound state alongside binding site information, for a molecular 

tweezer-type compound attached to where in the structure the tweezer had bound to tau 

protein monomers.264 Taken together, the studies above project a bright future for ECD/ETD 

methods as a vital technology for annotating the structural details associated with shifts in 

protein stability.

2.2.5.4 Ultraviolet Photodissociation: Through the absorption of monochromatic UV 

light, proteins and their assemblies can quickly cross the energy barriers associated with 

covalent bond dissociation, making UV photodissociation (UVPD) a useful technology for 

top-down protein sequencing applciations.268 When applied to intact protein complexes, 

UVPD at lower laser powers engenders the formation of highly-charged unfolded protein 
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product ions and stripped complexes similar to those observed in CID datasets, but when 

laser fluence is increased, symmetric charge portioning among product ions is typically 

observed.269 Recent work points to the potential of UVPD for characterizing of protein 

stability. For example, 193 nm UVPD has been used to assess the stabilities of a range of 

model protein tetramers.270 Additionally, UVPD has been used to localize and characterize 

the conformational changes that occur upon ligand-binding.266,271,272 Further, UVPD has 

detected the effects mutations within the proto-oncogene K-Ras and its kinase binding 

partner Raf.273,274 Lastly, UVPD fragmentation has been observed to reflect IM-based 

measurements tracking protein unfolding in either solution or the gas phase.275,276Recent 

reviews are available covering advancements in UVPD technology.268

2.3 Ion Mobility Spectrometry

2.3.1 Fundamental principles and general Applications—IM is a technique that 

separates gas-phase protein structures based on their size and charge and has emerged as a 

useful technique for the characterization of protein structures and stabilities.277 In a simple 

IM experiment, ions are collected in a pre-IM region, and released in concentrated ion 

packets into a drift tube filled with inert gas (typically N2 or He). In the drift tube, ions 

are separated based on their mobility under the influence of a weak electric field. The 

amount of time an ion takes to traverse the drift tube, defined as drift time (DT), can be 

converted to a collision cross section (CCS), a parameter directly related to the size and 

shape of an ion.278 Early native IM-MS (nIM-MS) data confirmed that gas phase ions 

retain compact native-like structures in the absence of bulk solvent.231,239,279–281 Many IM 

analyzers are available and offer a range of capabilities for the detailed analysis of gas-phase 

protein structure and stability, primarily through CCS values, which can often be directly 

correlated to molecular models in order to assess protein structures.132,282 When coupled 

to MS, CCS values can be correlated with ion compositions that reveal the influences 

of sequence changes283,284, ligand binding285, or post-translational modifications286,287 on 

protein structure and stability.

2.3.2 Collision Induced Unfolding—Recent advancements in IM-MS technology 

have enabled the acquisition of both protein structure and stability information 

simultaneously through CIU experiments. CIU is accomplished by increasing the internal 

temperature of protein ions in a stepwise fashion prior to IM separation through exposure 

to activating collisions with a background gas (Figure 2E). Typically, large proteins will 

undergo several CIU transitions resulting in increased IM drift times. Plots of collision 

energy against IM drift time (or CCS) can be generated in order to capture and quantify 

the transitions detected. The resulting CIU ‘fingerprints’ have the ability to capture stability 

shifts associated with changes in protein domain structure283,284,288–292, anion and cation 

adduction293–295, disulfide bonding patterns100, glycosylation296, as well as ligand and 

cofactor binding109,297–300. Currently, efforts are being made to hyphenate CIU with online 

separation methods301–303, expand the number of commercially available IM-MS instrument 

platforms capable of CIU108,304–306, develop the technique for middle-level protein structure 

analysis307, and to further illuminate the fundamental principles of CIU222. There have also 

been considerable efforts to integrate CIU with other structurally-sensitive MS-based probes, 
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producing datasets of high dimensionality and enabling a deeper level of protein structure 

analysis than was previously possible (Figure 3).

2.4 Proteome-wide Stability Measurements

An array of LC-MS technologies based on the bottom-up assessment of protein mixtures 

are currently providing exciting insights into protein stabilities across entire proteomes. 

Tools based on HDX and oxidative labeling technology are now used to regularly probe 

the impact of bioactive compounds on protein stabilities on a proteomic scale.163,209,308 

Other methods capable of comprehensively surveying protein stability seek to quantify 

the soluble proteins that remain following a thermal shock.110,309 The remaining soluble, 

folded proteins are then quantified by LC-MS based proteomics. Using this method, 

protein stabilities have been captured across the cell cycle, revealing that protein stability 

is correlated with enzyme activity, DNA-binding, and protein complex formation. Similar 

thermal shock based proteome assays have been applied across 13 species covering all 

domains of life.110 These experiments have produced the most comprehensive assessment 

of protein stability currently available, and the resulting ‘meltome’ atlas highlighted stability 

differences between protein classes, with those involved in cellular respiration granted 

particularly large stabilities. LC-MS analysis following the limited digestion of protein 

mixtures under native conditions with a non-specific protease prior to LC-MS interrogation 

is another widely used method to probe protein stabilities on a proteome-wide scale.310 

Stable proteins remain more protease resistant than those that are less stable, and thus 

methods associated with quantitative proteomics can readily quantify protein stabilities 

under such conditions. Finally, FPOP experiments have recently been carried out within 

cells, paving the way for a new generation of proteome-wide stability data. The technology 

relies on a Platform Incubator with movable XY stage (PIXY), which allows for both 

the growth of cultures and FPOP experiments to be carried out within the same optical 

bench.311 Irradiation of one sample well takes 20s of analysis, which allows the study of 

protein folding and signaling in a time-dependent manner. For more details regarding current 

MS-based workflows for proteome-wide structural studies, a recent review is available.312

3. Biotherapeutics

Monoclonal antibodies, or mAbs, currently represent the largest and most successful class 

of biotherapeutics available.313,314 Details surrounding the structures and immunological 

action of IgGs, the most common antibody isotype used for biotherapeutic development, can 

be found in previous reports.315 Unlike small molecule therapeutics, IgGs are composed of 

over 12,000 atoms, thus dramatically increasing their relative complexities, and projecting 

myriad challenges for current pharmaceutical measurement science.316–318 Specifically, 

the relative dynamism of mAbs (relating to their structures’ hinge region which provides 

flexibility allowing the structure to dynamically encompass a large conformational range of 

positions) creates difficulties in rapidly assessing higher order structure (HOS), a key factor 

associated with biotherapeutic safety and efficacy.319–322 Structurally-sensitive MS methods 

have evolved into critical tools in the rapid analysis of mAb HOS characterization.122 MS 

is compatible with a wide range of LC methods, and as such, LC-MS based methods 

are used throughout the pharmaceutical industry within multi-attribute monitoring (MAM) 
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workflows.323–325 Furthermore, recent advancements in nMS and nIM-MS techniques have 

demonstrated potential for MAM characterization of mAb HOS, aggregation, degradation, 

and stability. Figure 4 illustrates the information content that can be achieved with thermal 

stability, MS, and IM-based methods.

3.1. Stability Analysis of Biotherapeutic Antibodies

3.1.1 Trends in MS-based mAb Stability data—MS-enabled stability assessments 

can be carried out in solution and in the gas-phase, depending upon the needs of the 

application in question. Variable temperature experiments are often used to monitor the 

shift from native mAb solution structures to unfolded structures and quantify melting point 

temperatures, Tm, while gas-phase technologies (e.g. IM-MS) can be deployed to detect 

changes in gas-phase mAb structures in a manner correlated with temperature changes in 

solution, or in a CIU mode (Fig 4A). Importantly, different mAb compositions and mass-

resolved therapeutic modalities can be individually interrogated in MS-enabled stability 

assessments in manner that is challenging to replicate with other technology platforms. 

Biosimilar mAb products by design aim to recapitulate the Tm of their mAb reference. 

Shifts in variable temperature data can indicate either destabilized or stabilized structures, 

respectively (Fig 4B). Shifts in variable temperature MS data acquired for fusion protein 

samples will depend strongly on the type of fusion protein being measured (e.g. Fc vs 

Fab, smaller vs larger protein, etc.), but such assays can reveal both shifts in stabilities 

as well as new Tm features when compared with parent molecule data (Figure 4C). For 

variable temperature experiments targeting antibody-drug conjugates (ADCs), shifts in mAb 

stability can be tracked as more drug molecules and linkers are conjugated to the protein, 

which is often progressively destabilized as the drug-to-antibody (DAR) ratio is increased 

(Figure 4D). For bispecific mAbs, variable temperature MS data is expected to reveal a an 

intermediate stability relative to the Tm values recorded for parent mAb structures used in 

its generation (Figure 4E).

3.1.2. Standard and Variable Temperature MS—Clearly, the assessment of mAb 

primary structure remains a key MS-related task in biotherapeutic discovery and 

development, as such changes can induce altered therapeutic stability and efficacy 

profiles.122,326,327,328,329,330 In concert with these standard MS measurements, variable 

temperature ESI-MS data is growing in utility in this area.161 For example, such methods 

have been used to characterize changes in IgG stability through the detection of both 

degradation products and non-native disulfide bonds within mAb samples heated within the 

ESI source.331 In general, MS-based methods have a central and growing role in assessing 

mAb HOS and stability.

3.1.3 Footprinting MS—Footprinting techniques such as covalent labelling, HDX, 

and FPOP provide a direct and granular assessment of antibody stabilities.332 Covalent 

labelling measurements can reveal subtle changes to HOS,333 structural integrity,334 

and antigen interactions.162 HDX exchange methodologies are well established for the 

assessment of mAb stability,335 and are increasingly used to determine elements of 

biotherapeutic HOS.336,337 FPOP methods have also demonstrated their general utility in 
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the characterization mAb HOS,338,339 and have specifically excelled in the area of epitope 

mapping.340,341

3.1.4 IM-MS and CIU—IM-MS and its associated methods have been shown to be able 

to differentiate between mAb subclasses based on disulfide bonding patterns,100,284,342,343 

differences between innovators and biosimilars,323,344–347 glycosylation patterns,100,296,348 

HOS structure associated with domain exchange,283 and ADC drug loadings.101 Variable 

temperature IM-MS, achieved altering the temperature of the IM drift gas, can also be used 

to detect changes to antibody HOS.349 In general, IM data has been particularly useful as 

a probe for subtle changes in HOS that may go undetected by MS alone350 despite the fact 

that gas-phase mAbs typically undergo significant collapse in the gas-phase.351

In parallel with the above approaches, the capabilities of CIU to capture stability shifts 

associated with protein domain structure,283,284,288–292 anion and cation adduction,293–295 

as well as ligand and cofactor binding in mAbs has been well documented.109,297–300 

Additionally, CIU has been shown to be able to track differences in mAb disulfide 

bonding100 (Figure 5A), glycosylation patterns,296 ADC drug loading101 (Figure 5D), 

domain exchange283 (Figure 5A), HDX-uptake,344 light chain variants,304 and bispecific 

stoichiometries284,307 (Figure 5C), in addition to probing the subtle differences between 

innovator and biosimilar mAbs323,346,347,352 (Figure 5B). IM-MS and CIU technologies are 

currently well positioned to provide information-rich, rapid assessments of mAb HOS across 

a wide range of therapeutic modalities.

4. Membrane Proteins

Membrane proteins (MPs) are important therapeutic targets which play vital roles in 

cellular function353,354, they represent over 60% of therapeutic drug targets and nearly 

80% of drugs approved by the FDA act on membrane proteins.354–357 As the structure 

of a protein is closely linked to its function, the characterization of membrane proteins is 

vital to elucidating their involvement in disease and potential druggability.358 Despite this, 

membrane proteins are underrepresented in structural databases due to challenges associated 

with their hydrophobicity and difficulty in obtaining high purity samples. Recent reviews 

form an excellent resource that outline both the current challenges and promise surrounding 

membrane protein structural biology.359–365 Native MS has emerged as a method capable of 

handling the polydispersity of membrane proteins samples to yield details of their structure 

and function,366 this section will discuss how MS has elucidated new information regarding 

membrane protein stability.

To conserve the native structure of membrane proteins in the absence of a cell membrane, 

multiple solubilization techniques have been developed. Historically, detergent micelles 

have been the most popular technique for solubilizing purified membrane proteins and 

they remain widely used today.367,368 Detergents vary in structures and charges, but all 

possess the ability to form a micelle that can encapsulate membrane protein targets. The 

hydrophobic membrane protein residues interact with the hydrophobic tails of the detergent 

and the polar head groups of the detergent allow the complex to be solubilized365,368,369. 

Among the many newer approaches to create a lipid bilayer structure in contrast to the single 
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lipid layer created by micelles, bicelles and nanodiscs are most commonly used370–372. 

In bicelles, detergents are used to surround the edges of the bilayer to create a fluid, 

yet discrete, bilayer structure373,374. Other bilayer-based solubilization techniques include 

Styrene maleic acid lipid particles (SMALPs)375,376, amphipols377, and lipid vesicles or 

liposomes.378 The details surrounding membrane mimetics are well covered in a number of 

recent review articles.370,379–381

4.1 Stability Analysis of Membrane Proteins

4.1.1. Mass Spectrometry—Mass spectrometry has recently emerged as a method 

especially suited for the analysis of native MPs, due in part to its ability to handle 

complex mixtures and lower sample concentrations.366,382–390 For the purposes of this 

work we will focus on ESI (and nESI) methodologies, which dominate the analysis of 

native protein samples. MP ions generated through ESI or nESI for nMS analysis are 

most often still encapsulated in one of solubilization agents mentioned above, and therefore 

collisional activation must be applied to remove bound detergents or lipids from the target 

membrane protein ion391. Additionally, the independent solubilization agents themselves, 

e.g. detergents, also ionize and can thus result in an abundance of noise signals in the 

resulting native mass spectra. While time-of-flight (TOF) mass analyzers have shown great 

success in this field, higher resolution technologies, such as Orbitrap mass analyzers392, can 

be helpful for resolving the intended membrane protein signal from noise. It is important to 

note that not all solubilization agents are equally effective in this endeavor, and screening 

detergents, solution conditions, and optimizing instrument parameters is a necessity for 

striking the delicate balance between the removal of solubilization agents and optimizing the 

stability of native MP structure393. However, with successful optimization, nMS has been 

used to study discrete lipid393–397 and ligand binding398 (Figure 6 A & F) events, as well 

as quantifying the thermodynamics associated with lipid binding399–402 (Figure 6B), and 

specific protein-protein interactions associated with a wide range of MPs403–405, and their 

functional assemblies374,378,406–409 (Figure 6C).

4.1.2. Footprinting MS—Deeper structural insights can be gained from MP by 

deploying LC-MS techniques in combination with chemical labeling, where the solvent 

accessible sites of native MPs are labeled permanently or reversibly prior to digestion. 

HDX,410–413 CXL,414–416 and FPOP,201,417–419 have all been used to probe MP tertiary 

structures, as well as the interactions between MPs and both protein binding partners and 

solubilization agents (Figure 6G). Much of the mechanics of MS-based footprinting tools 

targeting MPs remain similar to those directed towards water soluble protein systems, and 

typically provide a valuable readout capable of monitoring the conformational responses 

of MPs upon stimulation, both temporally and spatially. Among the labeling techniques 

surveyed here, FPOP has most often been applied to assess MP structure and stability. 

Favorable attributes of FPOP for MP-associated applications include its fast labeling 

times, the irreversible nature of the chemical modifications generated, the neutrality of 

pH maintained during the measurement, and its ability to access non-polar residues for 

labeling.206,417
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4.1.3. IM-MS and CIU—The addition of IM separation coupled to MS is beneficial for 

nMS of MPs. Additionally, IM-MS platforms include supplemental trapping regions that 

can provide opportunities to perform collisional activation aimed at both the liberation of 

membrane proteins from their solubilization agents as well as the dissociation of detergent 

or lipid clusters, which can greatly increase signal quality. The energy experienced by ions 

in these trapping regions is a function of an accelerating potential (collision voltage, CV), 

and, ideally, optimized solubilization systems can be removed at relatively low CVs. At CVs 

higher than the threshold for removal of the solubilization agents, the membrane protein 

can experience CIU, and this unfolding can be tracked through the resulting IM arrival 

time distribution98. These CIU experiments are valuable for assessing the relative gas phase 

stability of membrane protein complexes397,420 and have been used in the past to classify 

soluble protein systems109. The addition of IM to nMS allows for the elucidation on protein 

stability as a function of lipid and or ligand binding103,400,420,421 (Figure 6F), amino acid 

sequence in relationship to disease pathologies104,409 (Figure 6D), and lipid and or ligand 

binding locations103 (Figure 6E).

The study of membrane proteins represents an exciting, high-risk, high-reward area of 

research with the potential for groundbreaking medical discoveries. Methods to study MP 

stability in native-like environments are essential to understanding how they perform their 

cellular functions and, as many MPs are implicated in human disease, how pharmaceuticals 

may be developed to correct their dysfunction. Due to their insolubility in aqueous solutions 

and the complex environments in which they exist natively, MPs are challenging analytes, 

and MS has emerged as frontier tool for determining their stabilities.

5. Amylodogenic Proteins

Amyloidogenic proteins are soluble proteins that can undergo conformational changes 

that result in the formation of amyloid fibrils which are typically characterized as highly 

organized states, rich in beta-sheet secondary structure.422 Amyloids and amyloidogenic 

proteins are commonly associated with protein misfolding and a wide range of human 

diseases. The most well-known examples of amyloidogenic proteins include amyloid beta 

(Aβ) and α-synuclein (α-syn), key proteins associated with Alzheimer’s disease (AD) and 

Parkinson’s disease (PD) respectively. AD and PD together account for over 60% cases of 

dementia and created healthcare cost of over 400 billion USD in 2021 in the U.S.423,424 

However, not all amyloidogenic proteins are disease-related, as some produce functional 

amyloids that have well-defined physiological roles in many organisms, including in 

humans, bacteria and an array of animal species.425 Interestingly, amyloid formation appears 

to be a general property of proteins. With the sufficient application of heat, mechanical, or 

pH-based stress, stable proteins, such as lysozymes, can misfold and form amyloid fibers.426 

The stability of amyloidogenic proteins related to human diseases is of great importance, 

as this characteristic is likely linked to their disaggregation and clearance in vivo. In this 

section, we will focus on how the stabilities of amyloidogenic proteins are studied through 

MS related techniques.
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5.1. MS-related Stability Analysis of Amyloidogenic Proteins

Proteins prone to misfolding and amyloidogenesis present unique challenges in their 

stability measurements, as such systems aggregate to produce a wide range of oligomers, 

some of which are insoluble under the conditions designed to promote native protein 

structures. While most MS tools target only soluble oligomers for analysis, charge detection 

MS has been used to study the mass distribution and polymorphism of insoluble amyloid 

fibers.427 Conventional mass spec measures m/z alone, with high molecular weight ions, 

the charge must be deducted from the charge state envelope, this resolution is often 

lacking for very large ions. CDMS allows for the simultaneous detection of m/z and the 

charge. This allows the centroid mass of individual ions to be calculated regardless of 

the complexity of the spectral features contained within the data analyzed. In addition, 

since CDMS allows for direct mass determinations, the technology enables larger ions 

to be measured than is typically achievable using standard MS technologies. CDMS 

is especially useful in interrogating the heterogeneous aggregates generated by amyloid 

proteins during fibril formation. For example, fibrils of Aβ1–42, tau and α-synuclein have 

been individually assessed by CDMS by Pansieri et al.428 In combination of TEM data, 

CDMS mass distribution data revealed two bundles of Aβ1–42 with a low mass of 20 

MDa and a high mass of 55 MDa. The authors also reported on the diversity of fibril mass 

and morphology of tau and α-synuclein.428 A detailed review on CDMS and its various 

applications including amyloid proteins has been recently covered by Keifer et al.429

In general, native MS can transmit soluble protein oligomers in order to make targeted 

stability measurements linked to specific variants or ligand-bound oligomers.430,431 (Figure 

7A) Amyloidogenic proteins that natively occupy an assembly state can also be targeted 

by nMS. For example, amyloid inhibitors targeting the misfolding-prone L55P mutant of 

TTR have been screened using nMS, where the intensity of the intact tetramer was tracked, 

alongside subunit exchange dynamics, to assess potential compound efficacy.432,433

Identifying and quantifying the olgomeric species present in amyloidogenic protein 

samples is critically important for assessing the mechanisms surrounding amyloid-associated 

disease.434,435 When probed by nMS, amyloidogenic proteins typically produce multimodal 

CSDs with the lower charge states correlating to compact, native-like conformers, and 

higher charge states corresponding to partially unfolded forms of the protein. The 

addition of IM separation prior to nMS has served to help quantify the conformational 

flexibility of amyloidogenic proteins.436 (Figure 7B) Interestingly, IM-MS has supported 

the classification of many amyloidogenic proteins as intrinsically disordered proteins (IDP), 

due to their polydisperse distributions of ground state structures.437–439 IM-based CCS 

information has been used to probe the stability of β-2 microglobulin (β-2m) through a 

series of titration experiments.440 Barran et al. has reported stability changes associated with 

both WT and mutated p27 IDR, the disordered region of the cell cycle inhibitory protein 

p27kip1.441 The use of IM-MS also enables CIU analysis (Figure 7C).442 For example, 

Dong et al. employed CIU to track metallothioneins, a group of intrinsically disordered 

proteins, and their interactions with a series of metals, finding that stability changes can be 

used to separate the metal associated complexes that are otherwise difficult to distinguish 

based solely on their IM profiles.443 Finally, Sanders et al. observed that binding of the 
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chaperon protein β-casein can stabilize α-lactalbumin from forming amyloids using CIU.444 

Overall, nMS, IM-MS, and CIU have provided key stability information for a wide range of 

amyloidogenic proteins and complexes.

If more localized stability information is desired, HDX-MS allows the exploration of the 

site-specific conformational status of amyloidogenic proteins (Figure 7D). An increasing 

number of reports have focused on HDX-based stability values, demonstrating the wide 

applicability of this technique. For instance, HDX-MS has been used to examine the stability 

of protofibrils associated with many amyloid-related proteins, including Aβ445 and β-2m446. 

Moreover, pulsed HDX can capture Aβ stability data on the millisecond timescale, providing 

unique snapshots of the protein aggregation process. Pulsed HDX-MS is especially useful in 

studying proteins that undergo rapid aggregation, like Aβ(1–42), where continuous HDX-MS 

labeling methods have proven challenging to use in the same manner.447 Lastly, both FPOP 

and covalent crosslinking can be readily coupled to MS for online evaluation of protein 

aggregation, and have been covered in depth by Johnson et al.201 and O’Reilly et al.448 

respectively.

6. Heat Shock Proteins

Heat shock proteins (HSPs) are a class of molecular chaperones which particularly benefited 

from the emergence of nMS, and gas-phase methods for assessing protein stability. HSPs 

are biologically expressed in response to a variety of cellular stressors, and play critical 

roles in cell survival, preserving cellular homeostasis.449 A class of smaller HSPs (sHSP) 

with monomeric molecular masses ranging from 12–42 kDa are largely ATP-independent 

chaperones which sequester early unfolded intermediates, or misfolded proteins in the 

cell to prevent aggregation.450 All sHSPs share a conserved α-crystallin domain (ACD), 

and these domains interact to first form a dimer which then can be a part of a range of 

large heterogenous complexes often exceeding 1 MDa.450 The inherent complexity of these 

mixtures has precluded their characterization by traditional biophysical techniques, however 

nMS enables the separation of these complexes via their molecular masses, enabling a 

detailed dissection of the sHSP assemblies which often coexist in solution. Historically, 

MS-enabled work in this space has been dominated by three main approaches: Tandem 

nMS experiments using CID, HDX-MS, and subunit exchange experiments evaluated by 

MS detection. In recent years, nIM-MS has also emerged for the assessment of sHSP 3D 

structure, given the heterogeneous nature of the complexes typically encountered in such 

samples. Most of the studies discussed in the section below integrate multiple MS-based 

data streams in order to comprehensively probe the stability of HSP complexes.

6.1. Stability Measurements Based on native and HDX-MS

The sHSP α-crystallin (αC) has been investigated extensively by MS leading to a wealth of 

structure and stability information for this otherwise refractory system. Found primarily in 

the eye lens, αC is a hetero-oligomer of αB-crystallin (αBC), and αA-crystallin (αAC). 

Large αC complexes act as ATP-independent chaperones to prevent the non-specific 

aggregation of β- and γ-crystallins, the main protein components of the eye lens.451 

Initial MS analysis of αC complexes primarily employed nMS and CID to dissect the 
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extreme complexity of αC samples. Gas phase activation by CID allowed the authors to 

deconvolute this protein mixture, demonstrating that αC hetero-oligomers ranging from 

24-mers to 33-mers (up to ~1 MDa), co-exist in such samples.452 In the years since, 

nMS in combination with CID453 has been used to measure changes in the stabilities of 

αC complexes in response to post-translational modifications454,455 or changes in primary 

sequence.453,456,457 HDX-MS studies have also played a key role in characterizing the 

stability of αC complexes in response to heat shock, showing that despite the inherent 

thermos-stability encoded in sHSPs, αC undergoes a structural transition that weakens 

protein-protein interfaces when incubated at elevated temperatures.458 Lastly, using nMS 

to track subunit exchange within large complexes, a 5 residue C-terminal truncation of 

one of the two αC subunits was revealed to retard complex formation substantially while 

also leading to a marked shift in the equilibrium of complex stoichiometry in order to 

significantly favor even numbered complexes.453 Further subunit exchange MS experiments 

explored the varying stabilities of the individual αAC and αBC subunits,459 as well as their 

stabilities in heterocomplexes in response to changes in temperature,460 and pH.461 Together 

tandem nMS, HDX, and subunit exchange are responsible for much that is currently 

understood surrounding αC oligomer structure and stability.

6.2. Other MS-Enabled Stability Measurements

As nMS-based approaches have gained recognition for their ability to characterize αCs, 

such tools were quickly adopted to characterize sHSP homologues from other organisms. 

Many of these studies utilize tandem nMS and subunit exchange to evaluate the stabilities 

sHSPs that contain α-Crystallin-like domains, and further established the mechanism by 

which these domains dictate sHSP complex formation and stability (Figure 8).51,234,462–469 

Furthermore, variable temperature ESI sources in conjunction with aforementioned 

approaches have been used to explore the impact of solution-phase temperature increases 

on the stability of sHSPs.51,458,462,465 MS was also increasingly applied to the analysis of 

larger HSPs such as HSP70,470,471 and HSP90,472–475 which also oligomerize in a largely 

mono-disperse format to carry out their biological functions. Recent work has featured 

IM-MS to characterize the stabilities of sHSPs,73,76,476–478 as well as larger HSPs,479 often 

leveraging CIU73,76,476,478 to study the gas phase stabilities of such assemblies. Methods 

such as tandem nMS and subunit exchange have been deployed on IM-MS instruments, 

providing increased peak capacity and the ability to record CCS values for the ions detected, 

thus aiding future efforts to model large oligomeric HSP assemblies. The recent release 

of a cyclic IM-MS (cIM) instrumentation capable of IMn offers unique opportunities to 

deconvolution the intricately complex mixtures such as those observed for αC and other 

sHSP complexes. Overall, MS-based approaches have contributed substantially to our 

knowledge of HSPs, as well as other chaperones,79,289,480–482 and these techniques are 

poised to continue playing a major role in the characterization of such complexes.

7. Conclusions and Future Outlook

Clearly, MS technologies are illuminating many previously hidden facets of protein stability. 

The range of technologies available, combined with the capabilities of MS to evaluate 

individual components within complex mixtures on the cellular scale, opens up new avenues 
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of investigation that will continue to be explored in the coming decades. As MS technology 

advances, armed with an ever-increasing appreciation for the correlations that exist between 

native proteins and their desolvated analogues, we can look forward to deeper, more 

granular assessments of protein stability shifts linked to a detailed view of protein structure. 

Ultimately, we can expect that MS-driven biophysical probes will give rise to comprehensive 

catalogs of protein stabilities across the universe of human proteoforms and structural 

states adopted under a wide range of conditions, ultimately leading to breakthroughs in 

biochemistry and the treatment of human disease.
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ABBREVIATIONS

Aβ Amyloid Beta

ACD α-Crystallin Domain

AD Alzheimer’s disease

ADCs Antibody drug conjugates

ADH Alcohol Dehydrogenase

BIRD blackbody infrared radiative dissociation

CCS Collision Cross Section

CD Circular Dichroism

CID Collision Induced Dissociation

CIU Collision Induced Unfolding

CSD Charge State Distribution

ConA Concanavilin A

CV Collision Voltage

DSC Differential Scanning Calorimetry

DSF Differential Scanning Fluorimetry

DT Drift Time
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ECD Electron-Capture Dissociation

ESI Electrospray Ionization

ETD Electron-Transfer Dissociation

FDA Food and Drug Administration

FPOP Fast Photochemical Oxidation of Proteins

hACE2 human Angiotensin-converting Enzyme 2

Hb Hemoglobin

HDX Hydrogen Deuterium Exchange

HOS High Order Structure

HSPs Heat-Shock Proteins

ITC Isothermal Titration Calorimetry

IM – MS Ion Mobility - Mass Spectrometry

IR Infrared

IRMPD Infrared Multiphoton Dissociation

LC Liquid Chromatography

mAb Monoclonal Antibody

MAM Multiple Attribute Monitoring

MP Membrane Protein

MS Mass Spectrometry

MS-MS Tandem Mass Spectrometry

NISTmAb National Institute of Standards and Technology 

Monoclonal Antibody

NMR Nuclear Magnetic Resonance

nESI Nano-electrospray Ionization

nIM-MS Native Ion Mobility – Mass Spectrometry

nMS Native Mass Spectrometry

PD Parkinson’s Disease

PIXY Platform Incubator with movable XY stage

RRKM Rice–Ramsperger–Kassel–Marcus
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SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2

SASA Solvent Accessible Surface Area

sHSP Smaller Heat-Shock Proteins

SID Surface-Induced Dissociation

SMALPs Styrene Maleic Acid Lipid Particles

SUPREX Stability of Unpurified Proteins from Rates of H/D 

Exchange

PLIMSTEX Protein–ligand interactions by mass spectrometry, titration, 

and H/D exchange

TOF Time-of-Flight

Tm Melting Temperature

TTR Transthyretin

vT Variable Temperature

UV Ultraviolet

UVPD Ultraviolet Photodissociation

CXL Chemical Cross-linking

αAC αA-crystallin

αBC αB-crystallin

αC α-Crystallin

α-syn α-synuclein
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Figure 1. 
A) The total number of publications in the pubmed.gov database for the search terms 

indicated in legend. B) The majority of early protein stability measurements conducted by 

MS (pre-2000) relied on the observation of CSD shifts. The blue CSD represents a “native” 

protein possessing lower charge states. Upon denaturation, the protein unfolds presenting a 

CSD centered at higher charge (lower m/z), occupying partially unfolded structures (orange 

CSD) enroute to a fully unfolded population (red CSD). C) Native MS emerged in the 

early 2000s, and one of the initial biological systems studied by this approach were α-

crystallin proteins. MS is able to track the exchange between co-incubated homo-oligomers, 

which eventually leads to the formation of hetero-oligomers. D) Building upon these initial 

measurements, CIU employs gas phase activation in conjunction with IM, to observe the gas 

phase change in structure due to collisional heating. This approach is growing rapidly and is 

being applied to a broad variety of biological systems.
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Figure 2. Mass-Spectrometry Techniques for Protein Conformational Stability Measurements.
For each technique described, there is a corresponding summary figure, ii) data and 

iii) information content column. A) Variable Temperature. A protein experiences a 

temperature gradient as it is introduced into the mass spectrometer. A shift in CSD indicates 

conformational changes. By monitoring IM conformers, insights into thermodynamic values 

can be made. B) Footprinting uses selective or non-selective reagents (green stars) to 

monitor changes to the solvent-accessible regions of a protein. C) Electron Capture 
Dissociation is a fragmentation technique where proteins are exposed to low energy 

electrons, which are captured and produce backbone fragmentation. ECD fragmentation 

patterns can changed based on the precursor conformation and charge state. D) Collision 
Induce Dissociation allows the evaluation of protein complex subunit stoichiometry and 

composition. By monitoring protein ejection from protein complex precursors, dissociation 

thresholds can be determined and related to the stabilities of subunits and interfaces. E) 
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Collision Induced Unfolding is an IM-MS technique where a protein conformation is 

monitored as its internal energy is increased using collisional activation. A shift in voltage 

required for eliciting the unfolding transitions observed is indicative of stability shifts when 

comparing between fingerprints of different states (e.g. apo vs holo).
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Figure 3: 
Scaling the dimensionality of MS-based protein stability measurements. A) One-

dimensional assays of protein stability can include variable temperature, mass spectrometry, 

ion mobility, and collision voltage scanning. B) Hyphenation of the 1-D techniques in A 

provides access to powerful 2-D techniques such as vt-MS, IM-MS, and CIU that can 

separate and generate a wide range of unfolded protein structures. C) Further enhancements 

can be achieved with 3-D hyphenated techniques based on those shown in A and B above. 

D) A logical extension of the techniques shown in C leads to a “4-D” assay of protein 

stability governed by MS methods, capable of measuring changes in protein stability across 

multiple phases/conditions simultaneously.
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Figure 4. 
Data and information content that can be expected from variable temperature, MS and IM 

datasets for the following biotherapeutic modalities: A) mAbs, B) biosimilars, C) fusion 

proteins, D) antibody-drug conjugates, and E) bispecific antibodies. Generally, for variable 

temperature experiments shifts to lower Tm values indicate a decrease in stability and higher 

values indicate an increase in stability. Changes in mass spectrometry generally indicate 

different structures or stoichiometries. For IM shifts to lower CCS values indicate more 

compact structures while larger values indicate larger, often unfolded structures. By applying 

activation energy and monitoring unfolding, ex. Biosimilar IM, shifts in stability can be 

monitored by shifts in the IM peak relative to the activation energy.
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Figure 5. CIU applications for biotherapeutic mAbs.
A) Differentiation of monoclonal IgG subclasses by disulfide bonding patterns and 

difference in CIU unfolding due to domain exchange. B) Biosimilar antibodies have 

qualitatively similar fingerprints, but contemporary CIU analyses are able to quantitate 

subtle differences in stability. C) Bispecific antibodies present CIU characteristics centered 

between the precursor structures. D) Shifts in CCS and stability can be quantified as a 

function of increasing drug load in ADC biotherapeutics.
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Figure 6. Summary of various MS-related measurements associated with MP stability 
assessments.
A) identification of endogenous lipid binding B) thermodynamics of lipid binding to 

membrane protein C) oligomeric state assignment D) evaluation of disease state mutations 

in amino acid sequence E) site-selective ligand binding events F) resolving multiple 

simultaneous ligand bound states G) oxidative labeling.
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Figure 7. 
Overview of select MS techniques that allow direct stability measurements with challenging 

amyloidogenic proteins A) Native MS usually produces a narrow range of charge states 

compare to non-native MS. Native MS can retain the native structures of amyloidogenic 

proteins and even the non-covalent complexes formed through ligand or protein binding 

through gentle ionization parameters. B) nESI needle is filled with a mixture of different 

oligomers of an amyloidogenic protein. IM-MS is able to separate the complex population 

of oligomers in drift time space based on their size, charge and shape. C) CIU shifts 

otherwise known as CIU50 values can be obtained through a series of IM-MS experiments 

at increasing collision energy. If a ligand binding event caused an amyloid protein to 

increase in stability, CIU50 values will reflect this increase. D) HDX-MS can capture 

localized information, in as little as few milliseconds or as long as days, allowing us to take 

snapshots of an amyloid aggregation process
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Figure 8. Subunit Exchange between sHSP Oligomers Illuminated through MS.
A) Two sHSP homo-oligomers (R and B, numbers indicated the number of subunits within 

the example oligomers) with suspected hetero-oligomeric interactions are co-incubated in 

solution, and MS data is collected at various time points (t1, t2, t3 etc.). B) The MS 

data is quantified versus time to measure the decay of homo-oligomers and the growth 

in abundance of hetero-oligomeric sHSP species. The rate of this conversion from homo-

oligomers to hetero-oligomers can be measured as a function of time, and can serve as an 

indication or stability. C) When hetero-oligomeric sHSP complexes are stable their subunit 

exchange is expected to occur quickly. D) Conversely, when hetero-oligomeric complexes 

are unstable, the equilibrium shifts in the direction of homo-oligomers.
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