TABLE 5.
Subscale | Model | Features (n) |
Validation set |
Test set |
||||||||||
Eye-tracking | Behavioural | Total | Accuracy | Kappa | AUC | TPR | TNR | Accuracy | Kappa | AUC | TPR | TNR | ||
MLQ-Leadership transformational | kNN | 20 | 3 | 23 | 0.78 | 0.53 | 0.74 | 0.8 | 0.76 | 0.69 | 0.4 | 0.67 | 0.57 | 0.83 |
MLQ-Leadership transactional | Naïve Bayes | 13 | 7 | 20 | 0.84 | 0.66 | 0.88 | 0.8 | 0.9 | 0.75 | 0.53 | 0.83 | 0.57 | 1 |
MLQ-Leadership passive-avoidant |
kNN | 21 | 9 | 30 | 0.81 | 0.63 | 0.86 | 0.79 | 0.87 | 0.67 | 0.31 | 0.74 | 0.71 | 0.6 |
MLQ-Leadership laissez | RandomForest | 14 | 0 | 14 | 0.74 | 0.4 | 0.82 | 0.88 | 0.53 | 0.75 | 0.31 | 0.59 | 1 | 0.25 |
MLQ-Leadership effort | kNN | 33 | 5 | 38 | 0.84 | 0.65 | 0.84 | 0.8 | 0.89 | 0.75 | 0.47 | 0.8 | 0.75 | 0.75 |
MLQ-Leadership effectiveness | Naïve Bayes | 19 | 4 | 23 | 0.81 | 0.61 | 0.8 | 0.81 | 0.85 | 0.67 | 0.4 | 0.91 | 0.5 | 1 |
MLQ-Leadership satisfaction | kNN | 21 | 7 | 28 | 0.87 | 0.42 | 0.82 | 0.97 | 0.48 | 0.92 | 0.63 | 0.62 | 1 | 0.5 |
MLQ-Subordinate transformational | kNN | 15 | 4 | 19 | 0.78 | 0.55 | 0.82 | 0.76 | 0.84 | 0.91 | 0.82 | 1 | 1 | 0.83 |
MLQ-Subordinate transactional | kNN | 21 | 2 | 23 | 0.82 | 0.62 | 0.88 | 0.79 | 0.89 | 0.5 | 0 | 0.5 | 0.5 | 0.5 |
MLQ-Subordinate passive-avoidant |
kNN | 12 | 7 | 19 | 0.81 | 0.61 | 0.88 | 0.79 | 0.86 | 0.82 | 0.65 | 0.93 | 0.67 | 1 |
MLQ-Subordinate laissez | RandomForest | 29 | 14 | 43 | 0.72 | 0.43 | 0.82 | 0.79 | 0.67 | 0.67 | 0.27 | 0.46 | 0.86 | 0.4 |
MLQ-Subordinate effort | Naïve Bayes | 10 | 5 | 15 | 0.86 | 0.7 | 0.88 | 0.87 | 0.86 | 0.5 | 0.08 | 0.66 | 0.29 | 0.8 |
MLQ-Subordinate effectiveness | kNN | 16 | 2 | 18 | 0.68 | 0.34 | 0.71 | 0.74 | 0.64 | 0.67 | 0.33 | 0.72 | 0.5 | 0.83 |
MLQ-Subordinate satisfaction | kNN | 26 | 12 | 38 | 0.8 | 0.57 | 0.81 | 0.81 | 0.76 | 0.91 | 0.81 | 0.97 | 1 | 0.8 |
The number of variables used by each model is divided according to their source (i.e., eye-tracking, or behavioural data). The values shown per metric in the validation set are the mean values of the cross-validation iterations. TPR and TNR stand for true positive rate and true negative rate, respectively.