Skip to main content
. 2022 May 31;13:864266. doi: 10.3389/fpsyg.2022.864266

TABLE 5.

Metrics of the best ML model achieved for each MLQ subscale, both for the validation and the test set.

Subscale Model Features (n)
Validation set
Test set
Eye-tracking Behavioural Total Accuracy Kappa AUC TPR TNR Accuracy Kappa AUC TPR TNR
MLQ-Leadership transformational kNN 20 3 23 0.78 0.53 0.74 0.8 0.76 0.69 0.4 0.67 0.57 0.83
MLQ-Leadership transactional Naïve Bayes 13 7 20 0.84 0.66 0.88 0.8 0.9 0.75 0.53 0.83 0.57 1
MLQ-Leadership
passive-avoidant
kNN 21 9 30 0.81 0.63 0.86 0.79 0.87 0.67 0.31 0.74 0.71 0.6
MLQ-Leadership laissez RandomForest 14 0 14 0.74 0.4 0.82 0.88 0.53 0.75 0.31 0.59 1 0.25
MLQ-Leadership effort kNN 33 5 38 0.84 0.65 0.84 0.8 0.89 0.75 0.47 0.8 0.75 0.75
MLQ-Leadership effectiveness Naïve Bayes 19 4 23 0.81 0.61 0.8 0.81 0.85 0.67 0.4 0.91 0.5 1
MLQ-Leadership satisfaction kNN 21 7 28 0.87 0.42 0.82 0.97 0.48 0.92 0.63 0.62 1 0.5
MLQ-Subordinate transformational kNN 15 4 19 0.78 0.55 0.82 0.76 0.84 0.91 0.82 1 1 0.83
MLQ-Subordinate transactional kNN 21 2 23 0.82 0.62 0.88 0.79 0.89 0.5 0 0.5 0.5 0.5
MLQ-Subordinate
passive-avoidant
kNN 12 7 19 0.81 0.61 0.88 0.79 0.86 0.82 0.65 0.93 0.67 1
MLQ-Subordinate laissez RandomForest 29 14 43 0.72 0.43 0.82 0.79 0.67 0.67 0.27 0.46 0.86 0.4
MLQ-Subordinate effort Naïve Bayes 10 5 15 0.86 0.7 0.88 0.87 0.86 0.5 0.08 0.66 0.29 0.8
MLQ-Subordinate effectiveness kNN 16 2 18 0.68 0.34 0.71 0.74 0.64 0.67 0.33 0.72 0.5 0.83
MLQ-Subordinate satisfaction kNN 26 12 38 0.8 0.57 0.81 0.81 0.76 0.91 0.81 0.97 1 0.8

The number of variables used by each model is divided according to their source (i.e., eye-tracking, or behavioural data). The values shown per metric in the validation set are the mean values of the cross-validation iterations. TPR and TNR stand for true positive rate and true negative rate, respectively.