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Abstract
Pharmacometrics and the application of population pharmacokinetic (PK) mod-
eling play a crucial role in clinical pharmacology. These methods, which describe 
data with well-defined equations and estimate physiologically interpretable 
parameters, have not changed substantially during the past decades. Although 
the methods have proven their usefulness, they are often resource intensive and 
require a high level of expertise. We investigated whether a method based on 
artificial neural networks (ANNs) may provide an alternative approach for the 
prediction of concentration-time curve to supplement the gold standard meth-
ods. In this work, we used simulated data to overcome the requirement for a 
large clinical training data set, implemented a pharmacologically reasonable 
network architecture to improve extrapolation to different dosing schemes, and 
used transfer learning to quickly adapt the predictions to new patient groups. 
We demonstrate that ANNs are able to learn the shape of concentration-time 
curves and make individual predictions based on a short sequence of PK meas-
urements. Furthermore, an ANN trained on simulated data was applied to real 
clinical data and was demonstrated to extrapolate to different dosing schemes. 
We also adapted the ANN trained on simulated healthy subjects to simulated he-
patic impaired patients through transfer learning. In summary, we demonstrate 
how ANNs could be leveraged in a PK workflow to efficiently make individual 
concentration-time predictions, and we discuss the current limitations and ad-
vantages of such an ANN-based method.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The current state of the art for pharmacokinetic (PK) modeling and prediction is 
based on well-defined mathematical models usually using ordinary differential 
equation (ODE)–based methods.
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INTRODUCTION

Pharmacometrics describes the field of quantitative and 
qualitative analyses of pharmacological data through 
modeling, for example, the modeling of pharmacokinetic 
(PK) data from a clinical study.1 It is an integral part in 
the approval of new pharmaceutical products through 
health authorities and a key element for personalized 
dosing. Although the state-of-the-art methods in pharma-
cometrics have proven their usefulness for many years, 
few parts of typical workflows are automated, there is a 
requirement for a high level of expertise of the modeler, 
and there is room for improvement in terms of efficiency.

One state-of-the-art approach in pharmacometrics is pop-
ulation PK (popPK) modeling,2 where drug concentration 
data are described through a structural model with well-
defined equations including physiologically interpretable pa-
rameters. This model is developed through iteratively fitting 
a candidate structural model, assessing its goodness of fit, 
identifying possible systematic residual errors, and adjusting 
the model accordingly.3 In addition, quantitative relation-
ships between individual parameters and patients' charac-
teristics are investigated, usually through stepwise covariate 
modeling. Both the model development and the covariate 
selection require multiple rounds of parameter calibration, 
which may result in substantial development time.4,5

PopPK modeling allows pharmacometricians to inves-
tigate clinical data, find sources of variability of drug ex-
posure in a population, and describe these through popPK 
parameters and their relationships to patients' covariates.6 
One specific application of popPK modeling is to make 
concentration-time curve predictions for an individual 
patient. This enables exploration of different dose regi-
mens to find a regimen with an optimal drug exposure for 
a given patient.

With the increase in computational power and avail-
able data, artificial neural networks (ANNs) have gained 
a strong place in many fields of daily life. They are used 
for text completion in emails7 and autonomously driving 
cars8 and have even been introduced in the discovery of 
new antibiotics.9 Although ANNs have not yet been widely 
adopted in clinical pharmacology and pharmacometrics, 
multiple publications point to their potential to become an 
important tool in these subject areas as well.10–12

In this article, we introduce the concept of ANNs 
to pharmacometricians, highlight their capability for 
concentration-time curve predictions, and discuss their 
differences and limitations compared with classical 
methods.

METHODS

Work overview

In this work, we demonstrate how an ANN-based method 
predicts PK concentration-time curves for individual sub-
jects, and we show how this method could be used in a 
clinical pharmacology setting with a limited amount of 
data. Figure  1 illustrates the workflow followed in this 
study. First, we used a physiologically based PK (PBPK) 
model to simulate concentration-time profiles. We sam-
pled from these simulated profiles at regular intervals to 
generate a training data set for the ANN model, and the 
trained ANN was then tested for its ability to capture the  
training data set. Second, the ANN was tested against 
the actual measured clinical PK data before we further 
investigated its ability to extrapolate to different dosing 
regimens. Finally, we used the PBPK model to generate 
data for an hepatically impaired patient population and 

WHAT QUESTION DID THIS STUDY ADDRESS?
This work investigates whether artificial neural networks (ANNs) can be used to 
make PK predictions similar to ODE-based methods.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We demonstrate that ANNs are able to make PK concentration predictions for 
which ODE-based methods are usually used. Their ability to explore dose regi-
mens they were not trained on showcases their possible application in precision 
dosing. Also, the possibility to retrain an ANN on small data sets to transfer from 
one patient group to another shows a beneficial property of ANNs in precision 
dosing.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
ANNs provide an efficient and easy-to-use supplementary method to state-of-the-
art population PK modeling approaches and can help increase efficiency for cer-
tain applications in pharmacometrics.
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applied transfer learning to retrain the ANN for this dif-
ferent patient group.

Artificial neural networks

ANNs belong to the family of the supervised machine-
learning (ML) methods. ANNs are able to approximate 
linear and nonlinear functions by creating a network of 
calculation steps and calibrating the model parameters of 
this network to data.13 For consistency, hereafter when 
connected to ANN, model calibration and parameters are 
referred to as training and weights/biases, respectively. 
The architecture of an ANN is structured in input, hid-
den, and output layers. The input layer defines which in-
formation is provided to the ANN, which in mathematical 
terminology corresponds to the independent variables. 
Pharmacometric variables that may form the input layer 
might include patient characteristics, measured concen-
trations, or combinations of different data types. The out-
put layer represents the dependent variable, which may 
be a predicted outcome or the concentration at the next 
time step. The hidden layers define the calculation steps 
that lead from the input to the output layer. For differ-
ent calculations and data types, different types of hidden 
layers can be used. Two common layer types are densely 
connected layers and long short-term memory14 (LSTM) 
layers. Although dense layers are used to handle static 
data points, LSTM layers are specifically tailored to tem-
poral sequences of data points.

Although very simple ANNs with, for example, one 
hidden layer and only a few weights may be expressed as 
an explicit function (which is equivalent to a nonlinear 

regression), the strength of ANNs lies in the possibility to 
largely increase their complexity through increasing the 
number of hidden layers. With this, ANNs can approxi-
mate highly complex functions at the expense of losing 
comprehensibility, which is the reason why they are often 
referred to as a “black box” method. Although weights 
mathematically represent the parameters of an ANN, it is 
important to note that the weights and biases of a neural 
network do not represent physiologically or pharmacoki-
netically meaningful parameters but, rather, are compara-
ble with parameters from a regression model.

ANN training

A training data set can be used to calibrate the weights 
of an ANN.15 This training data set requires output data 
for each input data. To make useful predictions, the train-
ing data should be representative for the setting in which 
an ANN is applied. The weights of an ANN are adjusted 
during training, usually using a gradient-based method, 
to minimize a loss/objective function assessing the dif-
ference between predicted and observed outputs. With 
an increasing number of hidden layers and parameters 
to calibrate, an increased training data set is required to 
manage the risk of overfitting.

Transfer learning

If the available data set for a specific problem is not large 
enough, the concept of transfer learning can be used.16 
An ANN previously trained on a similar but not identical 

F I G U R E  1   The flowchart illustrates the workflow followed in this study. A developed PBPK model is used to generate a training data 
set to train the ANN. The trained ANN is first tested with simulated data, followed by testing on real clinical data. In the next step, dose 
regimen extrapolation ability is investigated. Furthermore, the ANN is retrained on 20 hepatically impaired patients generated by the PBPK 
model and whether the ANN was able to retrain with a data set of this size was tested. ANN, artificial neural network; PBPK, physiologically 
based pharmacokinetic



748  |      BRÄM et al.

problem can be retrained on a new data set. Because the 
previously trained ANN already learned to accomplish a 
similar task, some of the weights do not need to be ad-
justed and can be fixed for the retraining. The reduced 
number of adjustable weights requires a smaller data set 
for the retraining compared with the initial training.

ANN architecture

In PK models, dosing events manifest in abrupt changes 
of the system dynamics (e.g., steps in plasma profiles for 
intravenous dosing or discontinuous first derivatives of 
plasma profiles for oral dosing). The ANN we illustrate 
in this work predicts concentration-time profiles at times 
with and without dosing events. Therefore, we structured 
the network architecture into two subnetworks. One sub-
network, later referred to as the curve network, is used to 
describe the concentration at a timepoint when no dose is 
administered. The other subnetwork, the dose network, 
is used to describe the concentration increase following a 
dosing event.

The input to the curve network is a concentration-
time profile (sequence), and the output is the next 
concentration in this sequence. The curve network is 
composed of two hidden LSTM layers that decompose 
a concentration sequence into parameters representing 
the shape of the sequence (Figure S1). In a subsequent 
densely connected layer, these parameters are used in a 
nonlinear combination to predict the concentration at 
the next time step. The input to the dose network is a 
concentration sequence including the peak concentra-
tion from the first dosing and the dosing sequence with 
the doses at each timepoint relative to the first dose. 
Both inputs are processed with two hidden LSTM layers 
and one densely connected layer. The vectors resulting 
from the densely connected layers were concatenated 
and processed with three additional densely connected 
layers. This architecture allows the dose network to draw 
a connection between a dose and the concentration in-
crease after a dose in individual patients. The output of 
the dose network was added to the output of the curve 
network (Figure S2).

Training data

To train the ANN, we used simulated data from a PBPK 
model published by Parrott et al.17 Single-dose simula-
tions were performed for three different dose levels and 
for multiple doses, and data were generated for subjects 
with each receiving 10 administrations of the same dose 
in a dosing interval of 24 h (for more details, see Table S1). 

Concentrations were sampled from these simulated 
concentration-time profiles every hour. To streamline the 
training of the ANN and in accordance with a usual ML 
workflow, we normalized the individual concentration se-
quences by minimum–maximum normalization.18

Curve network training

To train the curve network, we included samples from the 
single-dose and multiple-dose data and split them into se-
quences of different lengths. The multiple-dose data was 
split such that for each sequence the last dosing was at least 
10 h before the end of the sequence to avoid capturing dos-
ing effects in the curve network, which may be adjusted 
for drugs with different absorption profiles (Figure S3c). 
The number of individual sequences generated through 
this procedure was shown to cover the variability in the 
training data set. We added a normally distributed propor-
tional error with a mean of 0 and a standard deviation of 
0.1 to all sequences and used them as input for the curve 
network. As target output for the training, we used the 
concentration one step forward in time relative to the last 
concentration in the input sequence.

We used the Adam-optimizer19 for parameter optimi-
zation, a standard optimizer for training ANNs, and mean 
squared error as the loss function.

Dose network training

To train the weights of the dose network, we trained 
the overall network with the weights of the curve net-
work fixed. The multiple-dose data were split into se-
quences including samples with the last concentration 
in the sequence located in a range up to 10 data points 
after a previous dosing to capture the effect of a new dose 
(Figure S3b). These sequences served as input to the fixed 
curve network. The inputs to the dose network were the 
concentration sequence and the dosing sequence as de-
scribed in the ANN Architecture section.

Testing on simulated data

To assess the sensitivity of the ANN to different training 
data, 10 ANN variants were trained with 10 different seeds 
to assemble the random training data.

With each of these 10 ANNs, we predicted the complete 
concentration-time curve for the subjects from the train-
ing data set to test whether the neural networks are able 
to approximate the shape of PK concentration-time curves 
in general. We inspected the predicted concentrations one, 
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10, and 50 time steps ahead for the single-dose data and at 
the trough and the peak predictions of the third, fourth, 
and fifth doses for the multiple-dose data.

Testing on real clinical data

To investigate the translatability from simulated to ob-
served clinical data, we used a data set of 53 subjects with 
single-dose administration and six subjects with multiple-
dose administrations.17 Measurements from 0 to 8 h were 
initially selected as the input sequence. Because the con-
centrations in the single-dose study were only measured 
at 0, 1, 2, 4, and 8 h, the concentrations at 3, 5, 6, and 7 h 
were estimated through logarithmic interpolation.

Starting from this input sequence with nine concen-
trations per subject, the concentration-time curves up to 
312  h were predicted through iteratively predicting the 
next concentration and appending the input sequence 
with the predicted value. To determine the goodness of 
fit, the measured concentrations were compared with the 
predicted values at the corresponding timepoint.

Test for extrapolation to different dose  
regimens

One key application for the ANN in clinical pharmacol-
ogy and precision dosing is the possibility to simulate 
new dosing regimens. To test whether ANNs are able to 
extrapolate and make accurate predictions for dose regi-
mens they were not trained on, the PBPK model was used 
to simulate additional data. The dose regimens for these 
simulations included an initial dose of 20 mg followed by 
10 mg twice daily after 24 h or by 40 mg once every second 
day. The dosing scheme passed to the dose network was 
adjusted accordingly to predict the whole concentration-
time curves based on an initial concentration sequence.

Retraining on new data

A further challenge in clinical pharmacology are patient 
groups with different characteristics that lead to different 
pharmacological behaviors, for example, patients with a 
decreased clearance attributed to hepatic impairment. In 
classical pharmacometric approaches, physiologically in-
terpretable parameters would be adjusted accordingly to 
represent such situations. In the ANN approaches, the pa-
rameters are not physiologically relevant, and therefore a 
new ANN must be trained for a new patient group. To min-
imize the required data, the ANN trained on the simulated 
data for common patients was used for transfer learning.16 

To demonstrate this functionality, the PBPK model was 
used to simulate a data set of patients with hepatic impair-
ment with a decreased clearance rate compared with the 
original population. This data set was split such that 20 
patients were used for the retraining and 50 patients were 
used to evaluate the retrained ANN. Because hepatic im-
pairment is expected to have no influence on the charac-
teristics of drug absorption, only the curve network was 
retrained and investigated. However, retraining the dose 
network would also be possible for other scenarios. During 
the retraining, the weights in the LSTM layers were fixed 
and only the weights in the dense layers were adjusted be-
cause we assumed that the LSTM layers can also describe 
the new curve and the main changes must be done in the 
nonlinear parameter combination part of the ANN.

The retrained ANN was used to predict the whole 
concentration-time curve for the 50 patients in the test 
data set. The predicted concentrations at 10 equally dis-
tributed timepoints over the entire prediction time were 
investigated and compared with the true simulated 
concentrations.

RESULTS

ANNs can predict PK profiles in a 
simulated setting

The predicted concentration-time curves of the ANNs for 
the simulated single-dose and multiple-dose data are in 
agreement with the simulated profiles generated using the 
PBPK model (Figure 2a,b). In the single-dose scenario, the 
exponential elimination is correctly described, whereas in 
the multiple-dose scenario, the drug accumulation and the 
steady state are adequately captured by the ANN. Thus, 
we conclude that in this setting the ANN is capable of pro-
ducing representative PK time-concentration profiles.

The single-dose predictions for the concentration one 
step ahead are very close to the simulated values (Figure 2c). 
With multiple iterations of predicting the next concentra-
tion and appending the input to the neural network with 
the prediction, the residual between the predicted value 
and the simulated value increases. This results in a decrease 
of the regression slope from 0.95 to 0.85 and 0.49 and of the 
correlation coefficient from 0.98 to 0.94 and 0.67 for one-
step ahead, 10-step ahead, and 50-step ahead predictions, 
respectively (Figure 2c–e). We observe the same trend for 
multiple doses looking at the peak and the trough predic-
tions of the third, fourth, and fifth doses (Figure  2f–h).  
Interestingly, the predicted values for different subjects lay 
in a rather narrow range, whereas the underlying simu-
lated values differ more from each other. This suggests an 
interindividual variability in the predictions that is too low.
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Translation from simulated to real  
single-dose data

For a similar analysis using observed clinical patient 
data, the range of predictions of the 10 neural networks 
covered the observed concentrations in most cases 
(Figure  3a–c). The ANNs were not only able to make 
good predictions for one part of the curve but also for 
the entire profile. The correlation between the mean 
predictions over all neural networks for each data point 
and the observed concentrations was high, with an R2 
of 0.86. In the goodness-of-fit plot, a few outliers could 
be seen where the ANNs strongly underestimated the 
concentration. In this case, the absorption was delayed, 
and the peak concentration was not reached within the 
input sequence. Because the ANNs were trained on 
PK profiles with their maximum concentration within 
the first 9 h, they were not able to predict this outlier 
correctly.

Translation from simulated to real 
multiple-dose data

The concentration-time curves were predicted for a 
multiple-dose schedule using the 10 neural networks 
(Figure 3d–f). With multiple dosing, we noted a slightly 
lower R2 of 0.75 compared with the single-dose predic-
tions. Nevertheless, the observed concentrations were 
within the prediction range of the neural networks for 
most subjects, and the ANNs were able to predict the ac-
cumulation and the steady-state concentration.

ANNs can extrapolate to new dose  
regimens

The ANNs were also able to make predictions for dose 
regimens that were not included in the initial training 
data set (Figure 4). Provided with only the information 

F I G U R E  2   (Top) Two examples of predictions for simulated (a) single-dose and (b) multiple-dose data. An initial input sequence 
(green) was given to the 10 trained neural networks. The ranges of the artificial neural network predictions (light blue) cover the underlying 
simulated concentration-time curve (dark blue line) in both of these examples. (Middle) Predictions for 100 randomly sampled simulated 
subjects plotted against the true simulated concentrations with the corresponding linear regression. Decreasing precision in terms of 
decreasing regression slope and correlation coefficients R2 was observed from (c) one-step-ahead predictions to (d) 10-step-ahead predictions 
and (e) 50-step-ahead predictions. (Bottom) Regression slope and R2 of the peak (blue triangles) and the trough predictions (orange squares) 
decrease from the (f) third to the (g) fourth and (h) fifth doses



      |  751INTRODUCTION OF ANNS TO PHARMACOMETRICS

on the dosing regimen, the ANN was able to capture 
the expected PK behavior in line with the PBPK sim-
ulations. In the high-frequency and low-dose regi-
men, we observed a smaller difference between the 
peak and trough concentrations, whereas in the low-
frequency and high-dose regimen, these differences 
were larger compared with the original dose sched-
ule. Also, the biphasic behavior of the high-dose regi-
men was observed. There, a larger mismatch between 
the predicted and the underlying simulated data was 
observed.

ANNs can be used to predict new data 
without requiring a large data set

After the transfer learning with a small data set of 20 he-
patically impaired patients, the ANNs clearly showed dif-
ferent predictions. ANN-generated profiles after retraining 
were much closer to the concentration-time curve of the 
hepatically impaired patients than the profiles prior to re-
training (Figure 5). The mean over the predictions from 10 
trained ANNs was close to the true simulated concentra-
tion, and the mean squared error decreased from 0.16 to 

F I G U R E  3   With the input sequence (green), the range in which the predictions of the 10 artificial neural networks lay (light blue) cover 
the majority of the observed concentrations (black dots) for two exemplary subjects with (a, b) single-dose data and (d, e) multiple does data. 
The goodness-of-fit plots, linear regression, and correlation coefficient show a good correlation between the observed values on the x-axis 
and the mean predicted values on the y-axis for (c) single-dose and (f) multiple-dose predictions

F I G U R E  4   The similar input sequence (green) with the prediction range of the artificial neural networks (light blue) and the profile 
simulated by a physiologically based pharmacokinetic model (dark blue) for a dosing scheme with (a) a higher dosing frequency but lower 
doses and (b) a lower dosing frequency but higher doses show the ability of the artificial neural networks to extrapolate to different dosing 
schemes
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0.01. However, some of the individual ANNs performed 
less well, and the range of the predictions was larger com-
pared with that for the nonimpaired subjects (broad range 
of the blue shaded area in Figure 5b).

Training and predicting efficiency

The training of the ANN was performed within 1 h on a 
conventional laptop (specification of computational hard-
ware in Table  S3). A prediction of a concentration-time 
profile with 300 prediction steps takes <30 s. Predictions 
for multiple subjects can be made in parallel.

DISCUSSION

Key outcomes

The results of our study demonstrate that ANNs are able 
to make reasonable PK concentration-time curve predic-
tions without any predefined PK model. Although this 
study is a preliminary evaluation of this approach and ex-
tensive further evaluation is required, we consider these 
outcomes to be encouraging and to open further possibili-
ties. The ANN-based predictions shown here cannot be 
compared directly with the predictions of conventional 
population PK modeling because many of the conven-
tional diagnostic metrics and plots are not applicable 
(more information in Table  S2). Also, the aim and ap-
plication of the two methods would not be the same. The 
conventional approach delivers interpretable predictions 
and PK parameters that allow the influence of covariates 
to be explored. This capability is key for individualized as 
well as population-level predictions and is an established 
method, which is expected in support of the approval of 
a new drug. However, these strengths come at the cost of 
the required expertise and model development time. In 

contrast, ANN-based predictions require only a few hours 
of unsupervised training. However, in the form presented 
here, they do not provide any rationale for the predictions 
and cannot be linked to PK processes or patient covari-
ates. Although this limitation may be addressed through, 
for example, including patient characteristics in the input 
to the ANN, the current implementation might be more 
applicable for tasks such as the fast exploration of new 
data and simple extrapolations to novel dose regimens. 
Furthermore, the predicted concentration-time curves 
could allow derivation of secondary PK parameters, such 
as concentration trough levels (Figure  S4) or the area 
under the curve to have guidance for decisions. As a fur-
ther key outcome of this study, we demonstrated the pos-
sibility to train an ANN on a large amount of simulated 
data and then retrain it on a small set of measured clinical 
data, thus overcoming the requirement for large clinical 
training data sets. This invalidates the common percep-
tion that ML methods are not available to areas of drug 
development where data sets are relatively small.

General discussion

In this section, the results of the study are discussed in 
more detail. Considering the full time-course predic-
tions, decreasing accuracy (lower R2 and regression 
slope) was observed for predictions multiple time steps 
ahead (Figure  2c–h). On one hand, this is probably the 
result of error propagation occurring when appending 
the input sequence with the next predicted concentra-
tion. Furthermore, the current implementation only al-
lows training of the neural network on one-step-ahead 
predictions and therefore may be insensitive to effects of 
the one-step-ahead prediction on later timepoints. One 
potential solution to overcome this current limitation is 
to implement an alternative network architecture that 
would allow direct prediction of a concentration multiple 

F I G U R E  5   A randomly chosen patient with the input sequence (green), the range in which the predictions of the 10 artificial neural 
networks lay (light blue), and the mean of the predictions (dark blue) are much closer to the true simulated values (black points) after the 
retraining (b) compared with before the retraining (a). Also, the goodness-of-fit plot (c) and the corresponding mean squared errors (MSEs) 
show the improvement from without retraining (orange) compared to with retraining (blue)
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timepoints ahead. A different approach that uses ANNs 
for similar predictions are neural ordinary differential 
equations (ODEs)20 as also investigated by Lu et al.21 The 
neural ODE method combines an ANN with an ODE 
solver that allows predictions on an unrestricted contin-
uous time scale. As well as these benefits, neural ODEs 
have some drawbacks, and the choice of method may de-
pend on the purpose and the application.

On the other hand, the decreasing accuracy may in-
dicate underestimation of the interindividual variabil-
ity in the predictions (decreasing regression slope in 
Figure  2c–e and f–h). This could be addressed by bas-
ing the predictions on a combination of a concentra-
tion input sequence and some patients’ characteristics 
to increase the information about an individual patient 
provided to the ANN, which we plan to pursue in future 
work.

One key limitation of the current approach is the dis-
cretization of time steps as hourly sampling is not a com-
mon clinical practice. The main purpose of this densely 
measured input sequence is to provide information of an 
individual patient to the ANN. Similar information could 
also be given by patients’ characteristics. Providing these 
characteristics as an additional input to the ANN would 
allow for a shorter input sequence and reduce the need for 
a long, densely measured input sequence. Using neural 
ODEs as mentioned previously may be another approach 
to address this problem.

Another limitation is that the current curve network 
is averaging across dose levels and therefore does not 
allow adjustments for dose effects such as solubility ef-
fects or saturable absorptions. This limitation could be 
overcome by providing the dose as input to the curve 
network.

The results of the predictions for real data demonstrate 
the feasibility of training a neural network on simulated 
PK data and applying it to real clinical data. In this ex-
ample, we used a PBPK model that had previously been 
shown to successfully simulate observed clinical data, and 
as a result the transition from simulated to observed data 
was feasible without any additional refinements of the 
ANN. PBPK models are often developed preclinically prior 
to clinical studies and could therefore be used to train a 
preliminary ANN before retraining with the first clinical 
data. There is even the prospect that a generic ANN could 
be trained on a large data set containing simulated data 
from multiple generic PK models capturing generic PK 
behaviors, before retraining with drug-specific data. Such 
speculations will require further investigation of transfer 
learning,16 which was used in this study to adjust the ANN 
to a different patient group but might also provide solu-
tions for different challenges.

Possible applications

To illustrate possible applications of this approach, we 
present the following hypothetical scenario: prior to the 
first clinical study with a new molecular entity, the clini-
cal pharmacologist (CP) needs to design phase I studies 
for single-ascending and multiple-ascending doses. A 
PBPK model exists that leverages all preclinical data and 
allows predictions of PK profiles; however, this requires 
a specialized PBPK modeler to run simulations to pro-
ject exposures for the starting dose for single-ascending 
dose studies and likely maximum dose. With a previously 
trained ANN, the CP could perform this task indepen-
dently. Then when first clinical PK are measured after 
single doses, an ANN that was previously trained on PBPK 
data could be retrained on the clinical data to refine the 
multiple-ascending dose study doses. By simply uploading 
the new data, the CP could apply the ANN to this task on 
their own within a short time frame.
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