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Abstract

Transfer learning from supervised ImageNet models has been frequently used in medical image 

analysis. Yet, no large-scale evaluation has been conducted to benchmark the efficacy of newly-

developed pre-training techniques for medical image analysis, leaving several important questions 

unanswered. As the first step in this direction, we conduct a systematic study on the transferability 

of models pre-trained on iNat2021, the most recent large-scale fine-grained dataset, and 14 top 

self-supervised ImageNet models on 7 diverse medical tasks in comparison with the supervised 

ImageNet model. Furthermore, we present a practical approach to bridge the domain gap 

between natural and medical images by continually (pre-)training supervised ImageNet models 

on medical images. Our comprehensive evaluation yields new insights: (1) pre-trained models 

on fine-grained data yield distinctive local representations that are more suitable for medical 

segmentation tasks, (2) self-supervised ImageNet models learn holistic features more effectively 

than supervised ImageNet models, and (3) continual pre-training can bridge the domain gap 

between natural and medical images. We hope that this large-scale open evaluation of transfer 

learning can direct the future research of deep learning for medical imaging. As open science, 

all codes and pre-trained models are available on our GitHub page https://github.com/JLiangLab/

BenchmarkTransferLearning.
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1 Introduction

To circumvent the challenge of annotation dearth in medical imaging, fine-tuning supervised 

ImageNet models (i.e., models trained on ImageNet via supervised learning with the 

human labels) has become the standard practice [18,35,34,44,17]. As evidenced by [44], 

nearly all top-performing models in a wide range of representative medical applications, 

including classifying the common thoracic diseases, detecting pulmonary embolism (PE), 

identifying skin cancer, and detecting Alzheimer’s Disease, are fine-tuned from supervised 

ImageNet models. However, intuitively, achieving outstanding performance on medical 

image classification and segmentation would require fine-grained features. For instance, 

all chest radiographs (CXR) have a relatively similar appearance; therefore, identifying 

abnormal conditions and diagnosing specific disorders often rely on recognition of subtle 

image details. Furthermore, delineating organs and isolating lesions in medical images 

would demand some fine-detailed features to determine the boundary pixels. In contrast to 

ImageNet, which was created for coarse-grained object classification, iNat2021 [21], the 

most recent large-scale fine-grained dataset, has recently been created. It consists of 2.7M 

training images covering 10K species spanning the entire tree of life. As such, the first 
question this paper seeks to answer is: What advantages can supervised iNat2021 models 
offer for medical imaging in comparison with supervised ImageNet models?

In the meantime, numerous self-supervised learning (SSL) methods have been developed. In 

the afore-discussed transfer learning, models are pre-trained in a supervised manner using 

expert-provided labels. By comparison, SSL pre-trained models use machine-generated 

labels. The recent advancement in SSL has resulted in self-supervised pre-training 

techniques that surpass gold standard supervised ImageNet models in a number of computer 

vision tasks [38,12,23,43,7]. Therefore, the second question this paper seeks to answer 

is: How generalizable are the self-supervised ImageNet models to medical imaging in 
comparison with supervised ImageNet models?

More importantly, there are significant differences between natural and medical images. 

Medical images are typically monochromatic and typically contain consistent anatomical 

structures [18,17]. Recently, several moderately sized medical imaging datasets have been 

created, including NIH ChestX-Ray14 [37], which contains 112K images, and CheXpert 

[22], which contains 224K images. Naturally, the third question this paper seeks to answer 

is: Can these moderately-sized medical image datasets help bridge the domain gap between 
natural and medical images?

To answer these questions, we conduct the first extensive benchmarking study to evaluate 

the efficacy of different pre-training techniques for diverse medical imaging tasks, covering 

various diseases (e.g., PE, pulmonary nodules, tuberculosis, etc), organs (e.g., lung and 

optic fundus), and modalities (e.g., CT, X-ray, and funduscopy). Concretely, (1) we study 

the impact of pre-training data granularity on transfer learning performance by evaluating 

the fine-grained pre-trained models on iNat2021 for various medical tasks; (2) we evaluate 

the transferability of 14 state-of-the-art self-supervised ImageNet models to a diverse set 

of tasks in medical image classification and segmentation; and (3) we investigate domain-
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adaptive (continual) pre-training [15] on natural and medical datasets to tailor ImageNet 

models for target tasks on chest X-rays.

Our extensive empirical study reveals the following important insights: (1) Pre-trained 

models on fine-grained data yield distinctive local representations that are beneficial 

for medical segmentation tasks, while pre-trained models on coarser-grained data yield 

high-level features that prevail in classification target tasks (see Fig. 1). (2) For each 

target task, in terms of the mean performance, there exist at least three self-supervised 

ImageNet models that outperform the supervised ImageNet model, an observation that is 

very encouraging, as migrating from conventional supervised learning to self-supervised 

learning will dramatically reduce annotation efforts (see Fig. 2). (3) Continual (pre-)training 

of supervised ImageNet models on medical images can bridge the gap between the natural 

and medical domains, providing more powerful pre-trained models for medical tasks (see 

Table 2).

2 Transfer Learning Setup

Tasks and datasets:

Table 1 summarizes the tasks and datasets, with more additional details provided in 

Appendix A. We considered a diverse suite of 7 common but challenging medical imaging 

tasks encompassing various diseases, organs, and modalities. These tasks span many 

common properties of medical imaging tasks, such as imbalanced classes, limited data, 

and small-scanning areas for pathology of interest. We use official data split of these datasets 

if available; otherwise, we randomly divide the data into 80%/20% for training/testing.

Evaluations:

We evaluate various models pre-trained with different methods and datasets. Therefore, we 

control other influencing factors such as preprocessing, network architecture, and transfer 

hyperparameters. In all experiments, (1) for the classification target tasks, the standard 

ResNet-50 backbone [20] followed by a task-specific classification head is used, (2) for 

the segmentation target tasks, a U-Net network with a ResNet-50 encoder is used, where 

the encoder is initialized with the pre-trained models, (3) all target model parameters are 

fine-tuned, (4) AUC (area under the ROC curve) and Dice coefficient are used for evaluating 

classification and segmentation target tasks, respectively, (5) mean and standard deviation 

of performance metrics over ten runs are reported, and (6) statistical analyses based on 

independent two-sample t-test are presented. More implementation details are in Appendix 

B and project’s GitHub page.

Pre-trained models:

We benchmark transfer learning from two large-scale natural datasets, ImageNet and 

iNat2021, and two in-domain medical datasets, CheXpert [22] and ChestX-Ray14 [37]. We 

pre-train supervised in-domain models which are either initialized randomly or fine-tuned 

from the ImageNet model. For all other supervised and self-supervised methods, we use 
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existing official and ready-to-use pre-trained models, ensuring that their configurations have 

been meticulously assembled to achieve the best results in target tasks.

3 Transfer Learning Benchmarking and Analysis

1) Pre-trained models on fine-grained data are better suited for segmentation tasks, while 
pre-trained models on coarse-grained data prevail on classification tasks.

Medical imaging literature mostly has focused on the pre-training with coarse-grained 
natural image datasets, such as ImageNet [28,39,35,30]. In contrast to previous works, we 

aim to study the capability of pre-training with fine-grained datasets for transfer learning 

to medical tasks. In fine-grained datasets, visual differences between subordinate classes 

are often subtle and deeply embedded within local discriminative parts. Therefore, a model 

has to capture visual details in the local regions for solving a fine-grained recognition 

task [8,45,42]. We hypothesize that a pre-trained model on a fine-grained dataset derives 

distinctive local representations that are useful for medical tasks which usually rely upon 

small, local variations in texture to detect/segment pathologies of interest. To put this 

hypothesis to the test, we empirically validate how well pre-trained models on large-scale 

fine-grained datasets can transfer to a range of target medical applications. This study 

represents the first effort to rigorously evaluate the impact of pre-training data granularity on 

transfer learning to medical imaging tasks.

Experimental setup: We examine the applicability of iNat2021 as a pre-training source 

for medical imaging tasks. Our goal is to compare the generalization of the learned features 

from fine-grained pre-training on iNat2021 with the conventional pre-training on the 

ImageNet. Given this goal, we use existing official and ready-to-use pre-trained models on 

these two datasets, and fine-tune them for 7 diverse target tasks, encompassing multi-label 

classification, binary classification, and pixel-wise segmentation (see Table 1). To provide a 

comprehensive evaluation, we also include results for training target models from scratch.

Observations and Analysis: As evidenced in Fig. 1, fine-tuning from the iNat2021 

pre-trained model outperforms the ImageNet counterpart in semantic segmentation tasks, 

i.e., PXS, VFS, and LXS. This implies that, owing to the finer data granularity of iNat2021, 

the pre-trained model on this dataset yields a more fine-grained visual feature space, which 

captures essential pixel-level cues for medical segmentation tasks. This observation gives 

rise to a natural question of whether this improved performance can be attributed to the 

larger pre-training data of iNat2021 (2.7M images) compared to ImageNet (1.3M images). 

In answering this question, we conducted an ablation study on the iNat2021 mini dataset 

[21] with 500K images to further investigate the impact of data granularity on the learned 

representations. Our result demonstrates that even with fewer pre-training data, iNat2021 

mini pre-trained models can outperform ImageNet counterparts in segmentation tasks (see 

Appendix C). This demonstrates that recovering discriminative features from iNat2021 

dataset should be attributed to fine-grained data rather than the larger training data size.

Despite the success of iNat2021 models in segmentation tasks, fine-tuning of ImageNet 

pre-trained features outperforms iNat2021 in classification tasks, namely DXC14, DXC5, 
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TXC, and ECC (see Fig. 1). Contrary to our intuition (see Sec. 1), pre-training on a coarser 

granularity dataset, such as ImageNet, yields high-level semantic features that are more 

beneficial for classification tasks.

Summary: Fine-grained pre-trained models could be a viable alternative for transfer 

learning to fine-grained medical tasks, hoping practitioners will find this observation useful 

in migrating from standard ImageNet checkpoints to reap the benefits we’ve demonstrated. 

Regardless of – or perhaps in addition to – other advancements, visually diverse datasets 

like ImageNet can continue to play a valuable role in building performant medical imaging 

models.

2) Self-supervised ImageNet models outperform supervised ImageNet models.

A recent family of self-supervised ImageNet models has demonstrated superior 

transferability in an increasing number of computer vision tasks compared to supervised 

ImageNet models [12,43,23]. Self-supervised models, in particular, capture task-agnostic 

features that can be easily adapted to different domains [38,23], while high-level features 

of supervised pre-trained models may be extraneous when the source and target data 

distributions are far apart [43]. We hypothesize this phenomenon is more pronounced in 

the medical domain, where there is a remarkable domain shift [12] compared to ImageNet. 

To test this hypothesis, we dissect the effectiveness of a wide range of recent self-supervised 

methods, encompassing contrastive learning, clustering, and redundancy-reduction methods, 

on the broadest benchmark yet of various modalities spanning X-ray, CT, and fundus 

images. This work represents the first effort to rigorously benchmark SSL techniques to 

a broader range of medical imaging problems.

Experimental setup: We evaluate the transferability of 14 popular SSL methods with 

officially released models, which have been expertly optimized, including contrastive 

learning (CL) based on instance discrimination (i.e., InsDis [40], MoCo-v1 [19], MoCo-v2 

[11], SimCLR-v1 [9], SimCLR-v2 [10], and BYOL [14]), CL based on JigSaw shuffling 

(PIRL [27]), clustering (DeepCluster-v2 [7] and SeLa-v2 [7]), clustering bridging CL (PCL-

v1 [26], PCL-v2 [26], and SwAV [7]), mutual information reduction (InfoMin [36]), and 

redundancy reduction (Barlow Twins [41]), on 7 diverse medical tasks. All methods are 

pre-trained on the ImageNet and use ResNet-50 architecture. Details of SSL methods can 

be found in Appendix F. As the baseline, we consider the standard supervised pre-trained 

model on ImageNet with a ResNet-50 backbone.

Observations and Analysis: According to Fig. 2, for each target task, there are at 

least three self-supervised ImageNet models that outperform the supervised ImageNet model 

on average. Moreover, the top self-supervised ImageNet models remarkably accelerate the 

training process of target models in comparison with supervised counterpart (see Appendix 

E). Intuitively, supervised pre-training labels encourage the model to retain more domain-

specific high-level information, causing the learned representation to be biased toward 

the pre-training task/dataset’s idiosyncrasies. Self-supervised learners, however, capture 
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low/mid level features that are not attuned to domain-relevant semantics, generalizing better 

to diverse sorts of target tasks with low-data regimes.

Comparing the classification (DXC14, DXC5, TXC, and ECC) and segmentation tasks (PXS, 

VFS, and LXS) in Fig. 2, in the latter, a larger number of SSL methods results in better 

transfer performance, while supervised pre-training falls short. This suggests that when 

there are larger domain shifts, self-supervised models can provide more precise localization 

than supervised models. This is because supervised pre-trained models primarily focus on 

the smaller discriminative regions of the images, whereas SSL methods attune to larger 

regions [12,43], which empowers them with deriving richer visual information from the 

entire image.

Summary: SSL can learn holistic features more effectively than supervised pre-training, 

resulting in higher transferability to a variety of medical tasks. It’s worth noting that no 

single SSL method dominates in all tasks, implying that universal pre-training remains a 

mystery. We hope that the results of this benchmarking, resonating with recent studies in the 

natural image domain [12,43,23], will lead to more effective transfer learning for medical 

image analysis.

3) Domain-adaptive pre-training bridges the gap between the natural and medical 
imaging domains.

Pre-trained ImageNet models are the predominant standard for transfer learning as they are 

free, open-source models which can be used for a variety of tasks [28,4,17,39]. Despite 

the prevailing use of ImageNet models, the remarkable covariate shift between natural 

and medical images restrain transfer learning [30]. This constraint motivates us to present 

a practical approach that tailors ImageNet models to medical applications. Towards this 

end, we investigate domain-adaptive pre-training on natural and medical datasets to tune 

ImageNet models for medical tasks.

Experimental Setup: The domain-adaptive paradigm originated from natural language 

processing [15]. This is a sequential pre-training approach in which a model is first pre-

trained on a massive general dataset, such as ImageNet, and then pre-trained on domain-

specific datasets, resulting in domain-adapted pre-trained models. For the first pre-training 

step, we used the supervised ImageNet model. For the second pre-training step, we created 

two new models that were initialized through the ImageNet model followed by supervised 

pre-training on CheXpert (ImageNet→CheXpert) and ChestX-ray14 (ImageNet→ChestX-

ray14). We compare the domain-adapted models with (1) the ImageNet model, and (2) 

two supervised pre-trained models on CheXpert and ChestX-ray14, which are randomly 

initialized. In contrast to previous work [4] which is limited to two classification tasks, 

we evaluate domain-adapted models on a broader range of five target tasks on chest X-ray 

scans; these tasks span classification and segmentation, ascertaining the generality of our 

findings.

Observations and Analysis: We draw the following observations from Table 2. (1) 

Both ChestX-ray14 and CheXpert models consistently outperform the ImageNet model 
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in all cases. This observation implies that in-domain medical transfer learning, whenever 

possible, is preferred over ImageNet transfer learning. Our conclusion is opposite to [39], 

where in-domain pre-trained models outperform ImageNet models in controlled setups 

but lag far behind the real-world ImageNet models. (2) The overall trend showcases 

the advantage of domain-adaptive pre-training. Specifically, for DXC14, fine-tuning the 

ImageNet→CheXpert model surpasses both ImageNet and CheXpert models. Furthermore, 

the dominance of domain-adapted models (ImageNet→CheXpert and ImageNet→ChestX-

ray14) over ImageNet and corresponding in-domain models (CheXpert and ChestX-ray14) 

is conserved at LXS, TXC, and PXS. This suggests that domain-adapted models leverage the 

learning experience of the ImageNet model and further refine it with domain-relevant data, 

resulting in more pronounced representation. (3) In DXC5, the domain-adapted performance 

decreases relative to corresponding ImageNet and in-domain models. This is most likely due 

to the lesser number of images in the in-domain pre-training dataset than the target dataset 

(75K vs. 200K), suggesting that in-domain pre-training data should be larger than the target 

data [15,33].

Summary: Continual pre-training can bridge the domain gap between natural and medical 

images. Concretely, we leverage the readily conducted annotation efforts to produce more 

performant medical imaging models and reduce future annotation burdens. We hope our 

findings posit new research directions for developing specialized pre-trained models in 

medical imaging. Our pre-trained models, in-domain (CheXpert and ChestX-ray14) as 

well as domain-adapted (ImageNet→CheXpert and ImageNet→ChestX-ray14), are publicly 

available on our GitHub page.

4 Conclusion and Future Work

We provide the first fine-grained and up-to-date study on the transferability of various 

brand-new pre-training techniques for medical imaging tasks, answering central and timely 

questions on transfer learning in medical image analysis. Our empirical evaluation suggests 

that: (1) what truly matters for the segmentation tasks is fine-grained representation rather 

than high-level semantic features, (2) top self-supervised ImageNet models outperform the 

supervised ImageNet model, offering a new transfer learning standard for medical imaging, 

and (3) ImageNet models can be strengthened with continual in-domain pre-training.

Future work:

In this work, we have considered transfer learning from the supervised ImageNet model 

as the baseline, on which all our evaluations are benchmarked. To compute p-values for 

statistical analysis, 14 SSL, 5 supervised, and 2 domain-adaptive pre-trained models were 

run 10 times each on a set of 7 target tasks— leading to a large number of experiments 

(1,420). Nevertheless, our self-supervised models were all pre-trained on ImageNet with 

ResNet50 as the backbone. While ImageNet is generally regarded as a strong source for pre-

training [21,39], pre-training modern self-supervised models with iNat2021 and in-domain 

medical image data on various architectures may offer even deeper insights into transfer 

learning for medical imaging.
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Appendix

A Datasets

iNat2021 [21]:

The iNaturalist2021 dataset (iNat2021) is a recent large-scale, fine-grained species dataset 

with 2.7M training images covering 10k species. This dataset facilitates fine-grained visual 

classification problems. Compared to the more widely used dataset, ImageNet, iNat2021 

contains a greater number of these fine-grained images but a narrower range of visual 

diversity.

iNat2021 mini [21]:

In addition to the full sized dataset, Horn et al. [21] created a smaller version of iNat2021, 

named iNat2021 mini, that contains 50 training images per species, sampled from the full 

train split. In total, iNat2021 mini includes 500K training images covering 10k species.

ChestX-ray14 [37]:

This hospital-scale chest X-ray dataset contains 112K frontal-view X-ray images taken from 

a sample of 30K unique patients. ChestX-ray14 provides an official patient-wise split for 

training (86K images) and test sets (25K images). In this dataset, 51K images have at least 

one of the 14 thorax diseases. We use the official data split and report the mean AUC score 

over 14 diseases for the multi-label chest X-ray classification task.

CheXpert [22]:

This large-scale publicly available dataset contains 224K high-quality chest X-ray images 

taken from a sample of 65K patients. The training images were annotated by a labeler 

to automatically detect the presence of 14 thorax diseases in radiology reports, capturing 

uncertainties inherent in radiograph interpretation. The test set consists of 234 images 

from 200 patients. The test images were manually annotated by board-certified radiologists 

for 5 selected diseases, i.e., Cardiomegaly, Edema, Consolidation, Atelectasis, and Pleural 

Effusion. We use the official data split and report the mean AUC score over 5 test diseases.

SIIM-ACR Pneumothorax Segmentation [1]:

The Society for Imaging Informatics in Medicine (SIIM) and American College of 

Radiology provided the SIIM-ACR Pneumothorax Segmentation dataset, consisting of 10K 

chest X-ray images and the segmentation masks for Pneumothorax disease. We randomly 
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divided the dataset into training (80%) and testing (20%), and the segmentation performance 

was evaluated by using the Dice coefficient score.

RSNA PE Detection [2]:

This dataset is the largest publicly available annotated Pulmonary Embolism (PE) dataset, 

comprised of more than 7K CT scans with a varying number of images in each scan. Each 

image has been annotated for the presence or absence of the PE. Also, each scan has been 

labeled for additional nine patient-level labels. We randomly split the data at patient-level to 

training (6K) and testing (1K) sets, respectively. Correspondingly, there are 1.5M and 248K 

images in the training and testing sets, respectively. We report the AUC score for the PE 

detection task.

NIH Shenzhen CXR [24]:

The dataset contains 662 frontal-view chest X-rays, of which 326 are normal cases and 336 

are cases with manifestations of Tuberculosis (TB), including pediatric X-rays (AP). We 

randomly divide the dataset into a training set (80%) and a test set (20%). We report the 

AUC score for the Tuberculosis detection task.

NIH Montgomery [24]:

The dataset contains 138 frontal-view chest X-rays from Montgomery County’s 

Tuberculosis screening program, of which 80 are normal cases and 58 are cases with 

manifestations of TB. The segmentation masks for left and right lungs are provided. We 

randomly divided the dataset into a training set (80%) and a test set (20%) and report the 

mean Dice score for the lung segmentation task.

DRIVE [5]:

The dataset contains 40 retinal images, separated by its providers into a training set (20 

images) and a test set (20 images). For all images, manual segmentation of the vasculature is 

provided. We use the official data split and report the mean Dice score for the segmentation 

of blood vessels.

B Implementation

We evaluate popular publicly available representations that have been pre-trained with 

various methods and datasets across a variety of target tasks. Therefore, we control 

other influencing factors such as pre-processing, network architecture, and transfer 

hyperparameters. We run each method ten times on all of the target tasks and report the 

average, standard deviation, and further present statistical analysis based on an independent 

two-sample t-test.

Architecture:

We fix the network architecture in all experiments since we seek to understand the 

competitiveness of representations rather than benefits from architecture. Therefore, all 

the pre-trained models leverage the same ResNet-50 backbone. For transfer learning to 
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the classification target tasks, we take the pre-trained ResNet-50 models and append a task-

specific classification head. For the segmentation target tasks, we utilize a U-Net4 network 

with a ResNet50 encoder, where the encoder is initialized with the pre-trained models. We 

have evaluated the transfer learning performance of all pre-trained models by fine-tuning all 

layers in the downstream networks.

Preprocessing and data augmentation:

For target tasks on X-ray modality (DXC14, DXC5, TXC, LXS, and PXS), Fundoscopic 

modality (VFS), and CT modality (PCC), we resize the images to 224×224, 512×512, 

and 576×576, respectively. For all classification target tasks, we apply standard 

data augmentation techniques, including random cropping, horizontal flipping, and 

rotating. For segmentation tasks on X-ray modality (LXS and PXS), we employ 

RandomBrightnessContrast, RandomGamma, OpticalDistortion, elastic transformation, and 

grid distortion. For segmentation task on fundoscopic modality (VFS), we use random 

rotation, Gaussian noise, color jittering, and horizontal, vertical and diagonal flips.

Training parameters:

Since different datasets require different optimal settings, we strive to optimize each target 

task with the best performing hyperparameters. In all experiments, we use Adam optimizer 

with β1 = 0.9, β2 = 0.999. We use ReduceLROnPlateau and cosine learning rate decay 

schedulers for classification and segmentation tasks, respectively; if no improvement is seen 

in the validation set for a certain number of epochs, the learning rate is reduced. We employ 

early-stop mechanism using the 10% of the training data as the validation set to avoid 

over-fitting. For X-ray classification tasks (DXC14, DXC5, and TXC), segmentation tasks 

(VFS, LXS, and PXS), and PE detection task (ECC), we use a learning rate of 2e − 4, 1e − 

3, and 4e − 4, respectively.

Table 3.

Evaluation of iNat2021 mini dataset on segmentation medical tasks. Even with less than half 

number of pre-training samples, iNat2021 mini achieves equal or superior performance over 

ImageNet counterpart. Best performance is bolded and second best is underlined.

Pre-training task Target tasks

Dataset #training data PXS VFS LXS

ImageNet 1.3M 67.93±1.45 79.20±0.34 98.19±0.13

iNat2021 mini 500K 68.26±1.48 79.24±0.28 98.19±0.09

iNat2021 2.7M 68.43±0.92 79.33±0.18 98.25±0.07

4Segmentation Models: https://github.com/qubvel/segmentation_models.pytorch
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Table 4.

Benchmarking transfer learning from supervised iNat2021 and ImageNet models on seven 

medical tasks. Pre-trained models on iNat2021 are better suited for segmentation tasks (i.e., 

LXS, VFS, and PXS), while pre-trained models on ImageNet prevail on classification tasks 

(i.e., DXC14, DXC5, TXC, and ECC). The best model in each application is bolded.

Downstream task
Initialization

Random ImageNet iNat2021

Pneumothorax segmentation (PXS) 67.54±0.60 67.93±1.45 68.43±0.92

Lung segmentation (LXS) 97.55±0.36 98.19±0.13 98.25±0.07

Blood Vessels Segmentation (VFS) 78.27±0.40 79.20±0.34 79.33±0.18

14 thorax diseases classification (DXC14) 80.31±0.10 81.70±0.15 81.67±0.19

5 thorax disease classification (DXC5) 86.62±0.46 87.10±0.36 86.26±0.69

Tuberculosis Detection (TXC) 89.03±1.82 95.62±0.63 94.90±0.69

Pulmonary Embolism Detection (ECC) 90.37±1.32 94.73±0.12 94.44±0.23

C Ablation study on iNat2021 mini dataset

We further investigate the capability of pre-trained models on fine-grained datasets in 

capturing fine-grained details by examining iNat2021 mini dataset for segmentation tasks. 

iNat2021 mini contains 500K images, which is less than half compared to ImageNet. The 

results in Table 3 indicate that even with fewer training data, iNat2021 achieves equal or 

better performance than ImageNet counterpart. This observation suggests that the superior 

performance of iNat2021 over ImageNet pre-trained model in segmentation tasks should be 

attributed to the fine-grained nature of data rather than larger pre-training size.

Table 5.

Benchmarking transfer learning from fourteen self-supervised ImageNet pre-trained models 

on seven medical tasks. Self-supervised ImageNet models outperform supervised ImageNet 

models. The best model is bolded, and all the other models that outperform supervised 

baseline are underlined.

Pre-training
Downstream task

DXCi4 dxc5 txc ecc

Supervised 81.70±0.15 87.10±0.36 95.62±0.63 94.73±0.12

InsDis 81.09±0.17 87.21±0.36 94.81±0.73 91.16±1.12

MoCo-v1 81.33±0.10 86.98±0.11 94.54±0.42 90.29±1.92

PCL-v1 81.79±0.22 86.90±0.25 95.15±0.53 94.34±0.20

PIRL 80.60±0.13 86.79±0.35 93.34±2.72 89.17±2.62

PCL-v2 81.69±0.21 87.27±0.19 95.45±0.62 93.78±0.31

SimCLR-v1 81.22±0.07 87.66±0.14 94.45±0.76 95.45±0.11

MoCo-v2 80.46±0.54 86.94±0.20 95.57±0.90 89.20±2.92

SimCLR-v2 81.23±0.09 86.86±0.37 95.29±0.93 93.66±0.29

SeLa-v2 81.55±0.23 87.24±0.29 96.23±0.81 95.68±0.05
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Pre-training
Downstream task

DXCi4 dxc5 txc ecc

InfoMin 80.66±0.35 86.67±0.10 95.02±1.40 90.36±1.84

BYOL 81.58±0.11 87.09±0.40 94.69±0.78 95.63±0.05

DeepCluster-v2 81.57±0.38 87.01±0.19 96.09±0.68 95.68±0.06

SwAV 81.93±0.18 87.06±0.50 95.72±0.50 95.63±0.10

Barlow Twins 81.77±0.25 87.25±0.27 94.50±0.88 95.66±0.07

PXS LXS VFS

Supervised 67.93±1.45 98.19±0.13 79.20±0.34

InsDis 67.84±0.55 98.25±0.03 79.03±0.34

MoCo-v1 67.88±0.95 98.08±0.14 78.98±0.45

PCL-v1 68.60±0.78 98.25±0.05 78.99±0.21

PIRL 66.20±4.24 98.02±0.11 79.24±0.42

PCL-v2 68.62±0.92 98.26±0.06 79.06±0.19

SimCLR-v1 70.52±0.69 98.19±0.10 79.00±0.18

MoCo-v2 67.01±1.28 97.79±0.50 79.23±0.19

SimCLR-v2 68.26±1.39 98.16±0.20 78.72±0.37

SeLa-v2 70.52±0.17 98.28±0.04 79.65±0.19

InfoMin 67.34±2.28 97.94±0.16 79.63±0.30

BYOL 70.04±0.62 98.20±0.08 79.39±0.22

DeepCluster-v2 70.59±0.55 98.24±0.05 79.66±0.21

SwAV 70.44±0.75 98.28±0.05 79.65±0.14

Barlow Twins 70.42±0.15 98.23±0.05 79.48±0.16

D Tabular results

In this section, tabulated results of different experiments are reported. The results of Fig. 1 

and Fig. 2 in the main paper are presented in Table 4 and Table 5, respectively.

E Convergence Time Analysis

Transfer learning attracts great attention since it improves the target performance and 

accelerates the model convergence when compared to training from scratch. In that respect, 

a good pre-trained model should yield better target performance with less training time. 

Therefore, we further evaluate the pre-trained models in terms of accelerating the training 

process of various medical tasks. In the following, we provide the training time results for 

each of the three groups of experiments in the main paper. We used the early-stop technique 

in all target tasks, and report the average number of training epochs over ten runs for each 

model.
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Table 6.

Fine-tuning from iNat2021 model provides higher performance in all segmentation tasks and 

considerably accelerates the training process in two out of three tasks in comparison to the 

ImageNet counterpart. The average performance and number of training epochs over ten 

runs is reported for each model in each target task. The best performance in each task is 

bolded.

Initialization
PXS VFS LXS

Dice(↑) #Epochs(↓) Dice(↑) #Epochs(↓) Dice(↑) #Epochs(↓)

Random 67.54±0.60 46.0±13.87 78.27±0.40 100.0±0.0 97.55±0.36 92.6±51.38

ImageNet 67.93±1.45 45.9±28.25 79.20±0.34 71±18.29 98.19±0.13 84.9±27.55

iNat2021 68.43±0.92 41.8±17.98 79.33±0.18 59.3±5.58 98.25±0.07 98.9±26.41

Table 7.

Fine-tuning from the best self-supervised models provide significantly better or equivalent 

performance and accelerate the training process in comparison to the supervised counterpart. 

The average performance and number of training epochs over ten runs is reported for each 

model in each target task. The best performance in each task is bolded.

Initialization
DXC14 PXS VFS

AUC(↑) #Epochs(↓) Dice(↑) #Epochs(↓) Dice(↑) #Epochs(↓)

Random 80.40±0.05 68.2±5.07 67.54±0.60 46.0±13.87 78.27±0.40 100.0±0.0

Supervised 81.70±0.15 34.2±4.32 67.93±1.45 45.9±28.25 79.20±0.34 71±18.29

SeLa-v2 81.55±0.23 10.0±0.71 70.52±0.17 39.40±8.99 79.65±0.19 45±10.27

DeepCluster-v2 81.57±0.38 8.80±1.92 70.59±0.55 37.0±17.46 79.66±0.21 43.6±3.58

SwAV 81.93±0.18 13.0±2.55 70.44±0.75 44.8±18.31 79.65±0.14 44.4±5.27

Barlow Twins 81.77±0.25 12.4±2.61 70.42±0.15 55.8±24.32 79.48±0.16 47.6±4.72

1) Supervised ImageNet model vs. supervised iNat2021 model.

We provide the training time of the segmentation tasks in which the iNat2021 model 

outperforms its ImageNet counterpart. The results in Table 6 indicate that fine-tuning from 

the iNat2021 model provides higher performance in all segmentation tasks and considerably 

accelerates the training process in two out of three tasks in comparison to the ImageNet 

counterpart.

2) Supervised ImageNet model vs. self-supervised ImageNet models.

We compare the training time of the top four self-supervised ImageNet models (based on 

the overall performances in different target tasks) to the supervised ImageNet model in 

three target tasks, including classification and segmentation. To provide a comprehensive 

evaluation, we also include results for training target models from scratch.

Our results in Table 7 demonstrate that fine-tuning from the best self-supervised models 

in each target task provide significantly better or equivalent performance and remarkably 
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accelerate the training process in comparison to the supervised counterpart. Specifically, 

in DXC14 task, SwAV and Barlow Twins achieve superior performance with significantly 

less number of training epochs compared to supervised ImageNet model. Similarly, in PXS 

task, SeLa-v2, DeepCluster-v2, and SwAV outperform supervised ImageNet model in terms 

of both performance and training time. Furthermore, in VFS task, all the self-supervised 

models yield higher performance with less training time compared to supervised ImageNet 

model.

Table 8.

Fine-tuning from the domain-adapted pre-trained models provides higher performance in all 

tasks and speeds up the training process compared to the corresponding ImageNet models 

in most cases. The average performance and number of training epochs over ten runs is 

reported for each model in each target task. The best performance in each task is bolded. 

“CXR14” denotes the ChestX-ray14 dataset. When pre-training and target tasks are the 

same, transfer learning is not applicable, denoted by “-”.

Initialization
dxc14 PXS LXS

AUC(↑) #Epochs(↓) Dice(↑) #Epochs(↓) Dice(↑) #Epochs(↓)

Random 80.31±0.10 68.2±5.07 67.54±0.60 46.0±13.87 97.55±0.36 92.6±51.38

ImageNet 81.70±0.15 34.2±4.32 67.93±1.45 45.9±28.25 98.19±0.13 84.9±27.55

CXR14 - - 68.92±0.98 49.0±35.48 98.18±0.06 66.2±20.58

CheXpert 81.99±0.08 15.8±4.32 69.30± 0.50 42.2±22.85 98.25±0.04 84.0±16.85

ImageNet→XR14 - - 69.52±0.38 37.6±15.49 98.27±0.03 72.6±30.92

ImageNet→heXpert 82.25±0.18 22.2±3.49 69.36±0.49 45.8±5.93 98.31±0.05 110.7±40.08

Additionally, considering the principle that a good representation should generalize to 

multiple target tasks with limited fine-tuning [13], we fine-tuned all the models for the 

same number of training epochs in DXC5 and ECC (ten and one, respectively). According 

to the results in Fig. 2 in the main paper and Table 5 in Appendix, with the same number 

of training epochs, the best self-supervised ImageNet models, such as SimCLR-v1, SeLa-v2, 

and Barlow Twins, achieve superior performance over supervised ImageNet models in both 

target tasks.

3) Supervised ImageNet model vs. domain-adapted models.

We compare the training time of the in-domain pre-trained models to ImageNet 

counterparts. According to the results in Table 8, (1) ChestX-ray14 and CheXpert 

models consistently outperform ImageNet models in terms of convergence time in most 

cases, and (2) The overall trend showcases the faster convergence of domain-adapted pre-

trained models (i.e., ImageNet→CheXpert and ImageNet→ChestX-ray14) compared to the 

corresponding ImageNet models.
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F Self-supervised Learning Methods

InsDis [40]:

InsDis treats each image as a distinct class and trains a non-parametric classifier to 

distinguish between individual classes based on noise-contrastive estimation (NCE) [16]. 

InsDis introduces a feature memory bank maintaining a large number of noise samples 

(referred to as negative samples), to avoid exhaustive feature computing.

MoCo-v1 [19] and MoCo-v2 [11]:

MoCo-v1 creates two views by applying two independent data augmentations to the same 

image X, referred to as positive samples. Like InsDis, the images other than X are defined as 

negative samples stored in a memory bank. Additionally, a momentum encoder is proposed 

to ensure the consistency of negative samples as they evolve during training. Intuitively, 

MoCo-v1 aims to increase the similarity between positive samples while decreasing the 

similarity between negative samples. Through simple modifications inspired by SimCLR-v1 

[9], such as a non-linear projection head, extra augmentations, cosine decay schedule, and a 

longer training time to MoCo-v1, MoCo-v2 establishes a stronger baseline while eliminating 

large training batches.

SimCLR-v1 [9] and SimCLR-v2 [10]:

SimCLR-v1 is proposed independently following the same intuition as MoCo. However, 

instead of using special network architectures (e.g., a momentum encoder) or a memory 

bank, SimCLR-v1 is trained in an end-to-end fashion with large batch sizes. Negative 

samples are generated within each batch during the training process. In SimCLR-v2, the 

framework is further optimized by increasing the capacity of the projection head and 

incorporating the memory mechanism from MoCo to provide more negative samples than 

SimCLR-v1.

BYOL [14]:

Conventional contrastive learning methods such as MoCo and SimCLR relies on a large 

number of negative samples. As a result, they require either a large memory bank (memory 

consuming) or a large batch size (computational consuming). On the contrary, BYOL avoids 

the use of negative pairs by leveraging two encoders, named online and target, and adding 

a predictor after the projector in the online encoder. BYOL thus maximizes the agreement 

between the prediction from the online encoder and the features computed from the target 

encoder. The target encoder is updated with the momentum mechanism to prevent the 

collapsing problem.

PIRL [27]:

Instead of using instance discrimination objectives like InsDis and MoCo, PIRL adapts 

Jigsaw and Rotation as proxy tasks. Specifically, the positive samples are generated by 

applying Jigsaw shuffling or rotating images by {0°, 90°, 180°, 270°}. PIRL defines a loss 

function based on noise-contrastive estimation (NCE) and uses a memory bank following 
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InsDis. In this paper, we only benchmark PIRL with Jigsaw shuffling, which yields better 

performance than its rotation counterpart.

DeepCluster-v2 [7]:

DeepCluster [6] learns features in two phases: (1) self-labeling, where pseudo labels are 

generated by clustering data points using the prior representation— yielding cluster indexes 

for each sample; (2) feature-learning, where the cluster index of each sample is used as 

a classification target to train a model. The two phases are performed repeatedly until 

the model converges. Rather than classifying the cluster index, DeepCluster-v2 explicitly 

minimizes the distance between each sample and the corresponding cluster centroid. 

DeepCluster-v2 finally applies stronger data augmentation, a MLP projection head, a cosine 

decay schedule, and multi-cropping to improve the representation learning.

SeLa-v2 [7]:

Similar to clustering methods, SeLa [3] requires a two-phase training (i.e., self-labeling 

and feature-learning). However, instead of clustering the image instances, SeLa formulates 

self-labeling as an optimal transport problem, which can be effectively solved by adopting 

the Sinkhorn-Knopp algorithm. Similar to DeepCluster-v2, the updated SeLa-v2 applies 

stronger data augmentation, a MLP projection head, a cosine decay schedule, and multi-

cropping to improve the representation learning.

PCL-v1 and PCL-v2 [26]:

PCL-v1 combines contrastive learning and clustering approaches to encode the semantic 

structure of the data into the embedding space. Specifically, PCL-v1 adopts the architecture 

of MoCo, and incorporates clustering in representation learning. Similar to clustering-based 

feature learning, PCL-v1 has self-labeling and feature-learning phases. In self-labeling 

phase, the features obtained from the momentum encoder are clustered, in where each 

instance is assigned to multiple prototypes (cluster centroids) with different granularity. 

In the feature-learning phase, PCL-v1 extends the noise-contrastive estimation (NCE) loss 

to ProtoNCE loss which can push each sample closer to its assigned prototypes. PCL-v2 

is developed by applying the aforementioned techniques to promote the representation 

learning.

SwAV [7]:

SwAV takes advantages of both contrastive learning and clustering techniques. Similar to 

SeLa, SwAV calculates cluster assignments (codes) for each data sample with the Sinkhorn-

Knopp algorithm. However, SwAV performs online cluster assignments, i.e., at the batch 

level instead of epoch level. Compared with contrastive learning approaches such as MoCo 

and SimCLR, SwAV “swapped” predicts the codes obtained from one view using the 

other view rather than comparing their features directly. Additionally, SwAV proposes a 

multi-cropping strategy, which can be adopted by other methods to consistently improve 

their performance.
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InfoMin [36]:

InfoMin hypothesizes that good views (or positive samples) should only share label 

information w.r.t the downstream task while throwing away irrelevant factors, which means 

optimal views for contrastive representation learning are task-dependent. Following this 

hypothesis, InfoMin optimizes data augmentations by further reducing mutual information 

between views.

Barlow Twins [41]:

This method consists of two online encoders that are fed by two augmented views of 

the same image. The model is trained by making the cross-correlation matrix of two 

encoders’ outputs as close to the identity matrix as possible. As a result,(1) the similarity 

between representations of two views is maximized, which is similar to the ultimate goal of 

contrastive learning, and (2) the redundancy between the components of two representations 

is minimized.
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Fig.1. 
For segmentation (target) tasks (i.e., PXS, VFS, and LXS), fine-tuning the model pre-trained 

on iNat2021 outperforms that on ImageNet, while the model pre-trained on ImageNet 

prevails on classification (target) tasks (i.e., DXC14, DXC5, TXC, and ECC), demonstrating 

the effect of data granularity on transfer learning capability: pre-trained models on the fine-

grained data capture subtle features that empowers segmentation target tasks, and pre-trained 

models on the coarse-grained data encode high-level features that facilitate classification 

target tasks.
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Fig.2. 
For each target task, in terms of the mean performance, the supervised ImageNet model 

can be outperformed by at least three self-supervised ImageNet models, demonstrating the 

higher transferability of self-supervised representation learning. Recent approaches, SwAV 

[7], Barlow Twins [41], SeLa-v2 [7], and DeepCluster-v2 [7], stand out as consistently 

outperforming the supervised ImageNet model in most target tasks. We conduct statistical 

analysis between the supervised model and each self-supervised model in each target task, 

and show the results for the methods that significantly outperform the baseline or provide 

comparable performance. Methods are listed in numerical order from left to right.
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Table 1.

Benchmarking transfer learning for seven common medical imaging tasks, spanning over different label 

structures (binary/multi-label classification and segmentation), modalities, organs, diseases, and data size.

Code
† Application Modality Dataset

ECC Pulmonary Embolism Detection CT RSNA PE Detection [2]

DXC14 Fourteen thorax diseases classification X-ray NIH ChestX-Ray14 [37]

DXC5 Five thorax diseases classification X-ray CheXpert [22]

VFS Blood Vessels Segmentation Fundoscopic DRIVE [5]

PXS Pneumothorax Segmentation X-ray SIIM-ACR [1]

LXS Lung Segmentation X-ray NIH Montgomery [24]

TXC Tuberculosis Detection X-ray NIH Shenzhen CXR [24]

†
The first letter denotes the object of interest (“E” for embolism, “D” for thorax diseases, etc); the second letter denotes the modality (“X” for 

X-ray, “F” for Fundoscopic, etc); the last letter denotes the task (“C” for classification, “S” for segmentation).
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Table 2.

Domain-adapted pre-trained models outperform the corresponding ImageNet and in-domain models. For every 

target task, we performed the independent two sample t-test between the best (bolded) vs. others. Highlighted 

boxes in green indicate results which have no statistically significant difference at the p = 0.05 level. When 

pre-training and target tasks are the same, transfer learning is not applicable, denoted by “-”. The footnotes 

compare our results with the state-of-the-art performance for each task.

Initialization
Target tasks

DXC14
a

DXC5
b

TXC
c

PXS
d

LXS
e

Scratch 80.31±0.10 86.60±0.17 89.03±1.82 67.54±0.60 97.55±0.36

ImageNet 81.70±0.15 87.10±0.36 95.62±0.63 67.93±1.45 98.19±0.13

ChestX-ray14 [37] - 87.40±0.26 96.32±0.65 68.92±0.98 98.18±0.06

CheXpert [22] 81.99±0.08 - 97.07±0.95 69.30± 0.50 98.25±0.04

ImageNet→ChestX-ray14 - 87.09±0.44 98.47±0.26 69.52±0.38 98.27±0.03

ImageNet→CheXpert 82.25±0.18 - 97.33±0.26 69.36±0.49 98.31±0.05

a
[25] holds an AUC of 82.00% vs. 82.25%±0.18% (ours)

b
[29] holds an AUC of 89.40% w/ disease dependencies (DD) vs. 87.40%±0.26% (ours w/o DD)

c
[31] holds an AUC of 95.35% ± 1.86% vs. 98.47% ± 0.26% (ours)

d
[18] holds a Dice of 68.41% ± 0.14% vs. 69.52% ± 0.38% (ours)

e
[32] holds a Dice of 96.94% ± 2.67% vs. 98.31% ± 0.05% (ours)
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