
Articles
https://doi.org/10.1038/s41588-022-01066-3

1Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK. 2Open Targets, Wellcome Genome Campus, Cambridge, UK. 3GSK, R&D, 
Stevenage, UK. 4R&D Translational Biology, Biogen, Cambridge, MA, USA. 5These authors contributed equally: Blagoje Soskic, Eddie Cano-Gamez.  
✉e-mail: gosia@sanger.ac.uk

Translating variants from genome-wide association studies 
(GWASs) to function provides insights into disease biology and 
improves treatment options1. Disease-associated variants from 

GWASs are enriched within active chromatin regions2,3, implicating 
regulation of gene expression. These effects can be discovered using 
expression quantitative trait loci (eQTLs), which link variants to gene 
expression changes4. However, most currently available eQTL maps 
use bulk tissues and thus fail to capture gene expression dynamics, 
such as changes associated with a developmental stage5,6 or external 
stimulus7,8 in a given cell type9,10. Mapping dynamic gene expression 
changes at a single-cell level could overcome these limitations and 
provide insights into the molecular mechanisms underlying disease.

Variants associated with immune-mediated diseases are 
enriched in enhancers and promoters whose activity is upregulated 
upon CD4+ T cell activation11,12. However, CD4+ T cells comprise 
naive cells, which have not yet encountered an antigen, and memory 
cells, which have previously undergone activation, both of which 
respond differently to activation13–15. Furthermore, memory cells 
consist of several subpopulations such as central memory (TCM), 
effector memory (TEM), and effector memory cells re-expressing 
CD45RA (TEMRA), which differ in proliferative capacity and effector 
potential16–18. Additionally, regulatory T cells (Treg), a subset of CD4+ 
T cells, control T cell activation and prevent excessive inflamma-
tion. Transcriptionally, these subpopulations form a continuum of 
phenotypes19. This cellular heterogeneity further complicates inter-
pretation of immune disease-associated variants.

Given the dynamic nature of T cell activation and the heteroge-
neity of CD4+ T cells, we mapped gene expression regulation using 
single-cell transcriptomes spanning four time points of CD4+ T cell 
activation. We reconstructed activation trajectories for naive and 
memory CD4+ T cells and identified eQTL effects manifesting at 

different time points and across different subpopulations of cells. 
We identified 127 genes with colocalizing eQTL and GWAS signals 
for immune-mediated diseases. Colocalizing genes were enriched 
in time-dependent eQTLs. Our data suggest that dysregulation of 
gene expression during T cell activation could underlie immune 
disease and emphasize the importance of context-specific gene 
expression regulation.

Results
Single-cell response of CD4+ T cells to activation. We isolated and 
stimulated naive and memory CD4+ T cells from 119 individuals 
and performed single-cell RNA sequencing (scRNA-seq)20 (Fig. 1a, 
Supplementary Tables 1 and 2 and Supplementary Fig. 1a,b). We 
profiled cells in resting state, before dividing (16 h), after the first 
cell division (40 h) and after acquiring effector functions (5 d)19. This 
process resulted in high-quality data for 655,349 cells (Methods and 
Supplementary Fig. 1c–g).

We performed dimensionality reduction and embedding using 
uniform manifold approximation (UMAP) (ref. 21) (Methods) and 
observed that cells separated by time point of stimulation, forming 
a gradual progression from resting to the most activated cell state 
(cells collected at 5 d) (Fig. 1b). This progression was accompanied 
by changes in activation markers. For example, an early activation 
marker, CD69, was upregulated at 16 h but downregulated at later 
time points, whereas expression of IL2RA, a marker of late activa-
tion, peaked at 40 h, remaining present at 5 d (Fig. 1c). A population 
of cells localized at the intermediate point between resting and 16 
h-stimulated cells (Fig. 1b), and was composed of cells from the 16 h 
(74%) and 40 h (26%) time points. We hypothesized that this inter-
mediate group represented an early activation state. By analyzing 
cells from these two time points independently, we observed that 
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Fig. 1 | A single-cell transcriptional map of CD4+ T cell activation. a, Schematic of the study design. b, UMAP embedding of scRNA-seq data for 
unstimulated CD4+ T cells and at three time points after activation. Colors represent cell types (blue, naive T cell (TN); red, memory T cell (TM)), and 
shades of colors indicate time points (lighter shades for early time points and darker shades for late time points). Right panel represents the five broad 
cell states. c, Dot plot of highly variable gene expression throughout T cell activation. Shades of blue represent average expression in each cell population, 
and dot sizes represent the proportion of cells expressing the gene. d, Separate UMAP embeddings for the five broad cell states. Colors represent cell 
populations derived from unsupervised clustering. e, Proportion of different cluster groups present at each time point. Cell populations defined from 
clustering were classified into one of ten families, represented in different colors. ER, endoplasmic reticulum; HLA, human leukocyte antigen; HSP, heat 
shock protein; NF-κB, nuclear factor κB; nTreg, natural (i.e. thymus-derived) regulatory T cells.
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at each of these time points cells separated into two clear groups, 
one corresponding to the early activation state (Supplementary 
Fig. 3). Cells in the early activation group expressed fourfold fewer 
genes compared to other cells at their respective activation time 
points and showed lower expression of T cell activation markers19 
(Supplementary Fig. 3). Furthermore, they showed a unique profile 
characterized by high expression of STAT1, IFIT3 and GBP1 (Fig. 
1c). Therefore, these cells represent a distinct, early activation state, 
and we refer to them as lowly active.

Next, we performed unsupervised clustering of cells through-
out the activation time course. This revealed a total of 51 cell clus-
ters, which were merged into 38 cell populations based on their 
correlated patterns of gene expression (Supplementary Fig. 4 and 
Methods). This included 25 stable subpopulations consistently 
detected at multiple time points and 13 transient cell states only 
detected at specific time points (Fig. 1d and Supplementary Table 
3). Stable subpopulations belonged to one of five phenotypes: naive 
(TN), TCM, TEM, TEMRA and Treg CD4+ T cells (Fig. 1d,e). The memory 
pool consisted on average of 60% TCM, 30% TEM, 5% Treg and 5% TEMRA 
(Supplementary Fig. 6a). The percentage of TEM cells decreased, 
whereas TCM and TEMRA increased with age (Supplementary Fig. 6b). 
We observed no significant differences in subpopulations between 
sexes (Supplementary Fig. 6c).

Additionally, we observed transient cell states that were only 
detected at specific activation time points (Fig. 1d,e), such as a pop-
ulation of cells expressing high levels of interferon (IFN)-induced 
genes (e.g., IFI6, IFIT3, ISG15 and MX1) during early activation 
(Supplementary Fig. 5). Another subpopulation expressed high 
levels of nuclear factor κB response genes (e.g., NFKBID, REL and 
BCL2A1) (Supplementary Fig. 5) and was dominant at midstages of 
activation. Additionally, during late activation, we observed a popu-
lation of mitotic cells and a group of cells expressing high levels of 
heat shock protein family members (for example HSPA1A, HSPA1B 
and DNAJB1; Supplementary Fig. 5). Notably, heat shock proteins 
have been implicated in controlling T cell responses to fever22. We 
also observed a subset of TEM cells that upregulated HLA molecules 
(e.g., HLA-DRA, HLA-DPA1 and HLA-DRB1) during late activation 
(Supplementary Fig. 5). Importantly, all individuals contributed 
uniformly to each cluster, with more variability observed in TEMRA, 
as previously described17,23 (Supplementary Fig. 5f).

A temporal eQTL map of CD4+ T cell activation. To study the 
genetic regulation of gene expression throughout T cell activation, 
we performed cis-eQTL mapping. For each time point, we recon-
structed average transcriptional profiles per cell type and individual 
(i.e., pseudobulk transcriptomes) corresponding to TN and TM CD4+ 

T cells (Methods). We detected 1,545–3,006 genes with significant 
cis-eQTL effects (eGenes) at different activation time points (Fig. 
2a), of which 210–640 eGenes were only detected in individual cell 
states (Fig. 2b). For example, the kinase gene NME4 and the puri-
noceptor gene P2RX4 only showed effects in TM at 16 h and 40 h of 
activation, respectively (Fig. 2c). The multivariate adaptive shrink-
age (mashR) method24 revealed a higher level of eQTL sharing 
across cell types within the same time point (Supplementary Fig. 7a) 
than across different time points, suggesting that eQTL effect sizes 
change throughout activation. We also observed a high replicability 
(0.67–0.75) of our results with publicly available CD4+ T cell eQTLs 
from bulk RNA sequencing25,26 (Supplementary Fig. 7c). However, 
eQTL sharing was reduced when taking into account both the direc-
tion and the magnitude of eQTL effects (0.28–0.34) (Supplementary 
Fig. 7c), suggesting that effect sizes might differ between different 
transcriptomic profiling strategies, naive and memory cells and 
across T cell activation time points.

To gain a more granular view of gene expression regulation 
throughout T cell activation, we mapped eQTLs in the 38 cell popu-
lations (Fig. 1). As expected, we observed a high overlap between 
eGenes detected in different subpopulations (Fig. 2d). Nevertheless, 
TEM and cells expressing HLA genes (TEM HLA+) had a higher num-
ber of specific eGenes (62%–97%) compared to other populations, 
suggesting that they are more transcriptionally different than other 
subsets. Small subpopulations, such as TEMRA, yielded a low num-
ber of eGenes (3–23), which suggested that the statistical power to 
detect eGenes correlates with the number of cells profiled (R2 = 0.82, 
P = 4.8 × 10−10) (Fig. 2e). Indeed, when we subsampled different 
numbers of TCM cells and repeatedly performed eQTL mapping, 
we observed that eGene discovery increased proportionally to the 
number of cells analyzed (Supplementary Fig. 7b). Despite this, we 
identified subpopulation-specific eGenes absent from the whole TN 
or TM populations. For example, 56–153 eGenes (10%–16%) were 
found in the subpopulation of naive cells characterized by expres-
sion of high levels of IFN-induced genes, but these effects were 
absent from the whole activated TN cells (Fig. 2f). Similarly, 47–528 
(13%–31%) eGenes were detected in either of the two largest TM 
subpopulations (TCM and TEM), but not in the whole TM popula-
tion (Fig. 2g). For example, GNPDA1 was an eGene in TCM, but 
not in TEM or in whole memory cells (Fig. 2g). These genes were 
only detected as eQTLs in specific cell clusters, and we observed 
that many were not detected in the Database of Immune Cell 
eQTLs (DICE) data set, which includes different subsets of CD4+ 
T cells in resting and stimulated states26. For example, VAMP8 and 
AIMP1 eQTLs (TCM-specific Padj = 5 × 10−4 and Padj = 1.04 × 10−4, 
respectively) and RNF168 (specific to IFN-expressing cell cluster 

Fig. 2 | eQTL mapping in resting and activated CD4+ T cells. a, Number of significant eGenes detected at each activation time point. Colors represent 
cell types (blue, TN; red, TM). b, Number of significant eGenes shared between cells sampled at each time point. c, Example of T memory cell-specific 
eQTLs detected at 16 h and 40 h. Box plots show mean expression value of the gene in each sample (Z-scored), stratified by genotype at the genomic 
position of the lead eQTL variant (X axis). Each dot represents a measurement from a separate individual. Central lines indicate the median, with boxes 
extending from the 25th to the 75th percentiles. Whiskers further extend by ±1.5 times the interquartile range from the limits of each box. N of biologically 
independent samples: TN NME4: 99, TM NME4: 96, TN P2RX4: 89, TM P2RX4: 89. P values were derived using tensorQTL and corrected as described in 
Methods. d, Pairwise comparison of eGenes shared between cell subpopulation. Only subpopulations with >100 eGenes were analyzed. e, Scatter plot 
showing the correlation between number of cells per donor and number of detected eGenes in each cluster. f, Subpopulation-specific eQTLs detected in 
IFN-responsive clusters. Bar plot (top) indicates the number of eGenes detected in the IFN-responsive subpopulation that are shared with naive T cells as 
a whole. Boxplots (bottom) show an example eQTL specific to this subpopulation. Each dot represents a measurement from a separate individual. Central 
lines indicate the median, with boxes extending from the 25th to the 75th percentiles. Whiskers further extend by ±1.5 times the interquartile range from 
the limits of each box. N of biologically independent samples: TN IFN FBXL18: 96, TN FBXL18: 87, P values were derived using tensorQTL and corrected as 
described in Methods. g, Number of subpopulation-specific eQTLs detected in TCM and TEM cells. Bar plots (top) indicate numbers of eGenes detected in 
TCM and TEM subpopulations that are shared with memory T cells as a whole. Boxplots (bottom) show an example eQTL specific to the TCM subpopulation. 
Each dot represents a measurement obtained from a separate individual. Central lines indicate the median, with boxes extending from the 25th to the 75th 
percentiles. Whiskers further extend by ±1.5 times the interquartile range from the limits of each box. N of biologically independent samples: TCM GNPDA1: 
100, TEM GNPDA1: 103, TM GNPDA1: 97. P values were derived using tensorQTL and corrected as described in Methods. ER, endoplasmic reticulum; nTreg, 
natural regulatory T cells.
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Padj = 6.2 ×10−3) were not detected in any of the T cell populations 
in DICE. Therefore, as more studies emerge, the power to detect 
cluster-specific eQTLs will increase, uncovering eQTLs that were 
previously undetected in bulk tissues.

Cell-type-specific coexpression gene modules. We next sought 
to understand which transcriptional programs shape the T cell 

response to activation and whether eGenes regulate T cell functions. 
We computed pairwise gene expression correlations27 of 11,130 
highly expressed and variable genes across 106 individuals and the 
38 identified cell populations (Fig. 3a, Supplementary Fig. 8 and 
Methods). We identified 12 gene modules that represent key cellular 
functions involved in T cell activation (Fig. 3b and Supplementary 
Table 4 and 5). For example, module 4 contained genes involved in 
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the regulation of cell cycle checkpoints and DNA repair and was 
highly expressed at 40 h and 5 d after activation, consistent with the 
timing of the first cell division28. Furthermore, module 11 included 
genes whose expression peaked in lowly active and 16 h-stimulated 
cells and remained high at later time points. These genes were 
involved in IFN-induced antiviral mechanisms such as OAS and 
ISG15-signaling, which are induced rapidly upon viral infection.

In addition to separating genes by temporal dynamics, the coex-
pression networks also highlighted subpopulation-specific gene 
expression modules, corresponding to effector T cell functions. 
For example, genes involved in cytokine secretion and interleukin 
signaling were highly expressed in TEM and TEMRA, but not TCM or 
TN cells (Fig. 3a,b), reflecting the potential of TEM and TEMRA cells 
to respond quickly18,19. Consistent with this observation, TEM and 
TEMRA showed high expression of T cell receptor (TCR)-induced 
genes (i.e., targets of ZAP-70 and downstream of CD3 zeta chain 
phosphorylation) at an earlier stage of activation, whereas other 

subpopulations did not express these genes until 40 h after stimula-
tion (Fig. 3a,b). Furthermore, we observed that module 12, which 
included genes important for cytotoxic function and chemokine 
signaling, was most highly expressed in TEMRA (Fig. 3a). This cyto-
toxic capacity distinguishes TEMRA from other T cell subpopulations.

Next, using a permutation strategy (Methods), we showed that 
eGenes detected in activated T cells were particularly enriched in 
modules 2 (metabolism), 3 (cell division) and 9 (immune processes) 
(Fig. 3c). In contrast, eGenes detected in resting cells showed stron-
gest enrichment in module 6 (RNA metabolism and herpes infec-
tion) (Fig. 3c). Finally, we observed that eQTL effect sizes, as well as 
log-transformed allelic fold changes29, negatively correlated with the 
centrality values of their corresponding eGenes in the coexpression  
network; that is, eGenes with larger eQTL effects were less con-
nected in the network (Fig. 3d and Supplementary Fig. 8b,c). This 
suggests that genes at the edges of the coexpression network are 
more tolerant to variation in gene expression.
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Modeling of time-dependent eQTL effects. Previous studies 
showed that eQTLs can be context specific7,30. Therefore, we assessed 
the role of genetic variation on the regulation of gene expression 
dynamics throughout T cell activation (dynamic eQTLs). We used 
trajectory inference31 (Methods) to model activation time as a con-
tinuous variable (Fig. 4a). The inferred trajectory agreed with the 
time points profiled experimentally, and T cell activation markers 
such as IL7R (reduced expression upon activation), CD69 (early 
activation) and IL2RA (early and late activation) (Fig. 4b) also fol-
lowed their expected expression patterns. In total, we identified 
5,090 genes for which expression changed as a function of pseu-
dotime (Supplementary Table 6). For example, IRF1 and TOP2A 
were respectively downregulated and upregulated at late stages of 
activation (Fig. 4b). Dynamically regulated genes were enriched in 
pathways related to T cell activation, such as DNA replication and 
regulation of cell cycle, mRNA transcription and processing, pro-
tein translation, signaling downstream of the TCR and signaling by 
interleukins (Supplementary Table 7). Finally, we observed that TM 
cells were characterized by lower pseudotime values than TN cells 
sampled at the same time points. This is a consequence of TM cells 
showing a shorter activation path, likely reflecting a faster response.

To model dynamic eQTLs, we divided the pseudotime trajec-
tory into ten bins and averaged the expression of genes per indi-
vidual in each bin (Methods). Splitting the trajectory enabled us 
to control for the numbers of cells and therefore to reliably esti-
mate mean gene expression values. We then used mixed models to 
identify eQTLs for which the effect size changed as a function of 
activation time (Fig. 4c and Methods). We identified 2,265 genes 
with dynamic eQTL effects, which comprised 34% of eGenes in our 
data set (Supplementary Table 8 and Supplementary Fig. 9a). We 
used a permutation-based strategy to validate that this method was 
well calibrated (Methods and Supplementary Fig. 9b). We applied 
both linear and quadratic models and observed that most eQTLs 
followed linear dynamics (74% and 76% in TN and TM cells, respec-
tively; Fig. 4e). However, for 502 and 495 genes in naive and memory 
cells, respectively, we detected a nonlinear interaction with activa-
tion pseudotime. For example, GBP7 and CFLAR demonstrated 
eQTL effects only upon activation, and their magnitude peaked at 
midstages of the pseudotime trajectory (Fig. 4d). In contrast, the 
magnitude of an eQTL for SERINC5 peaked at early stages of the 
trajectory and diminished throughout activation (Fig. 4d), whereas 
an eQTL for the INF-α-inducible gene IFI27L1 showed an effect size 
that linearly increased along the activation trajectory.

Finally, linear eQTLs were enriched in metabolic pathways, 
whereas nonlinear eQTLs were enriched in both metabolic and 
immune processes (e.g., T cell proliferation and leukocyte degranu-
lation) (Fig. 4f). This suggests that for many immune genes, genetic 
regulation is only evident during specific stages of T cell activation.

Colocalization at GWAS loci identifies immune disease genes. 
We obtained summary statistics for 13 immune-mediated dis-
eases available in the GWAS catalog32 (Methods) and tested for  

colocalization33,34 (Methods) with the eQTLs mapped to TN, TM 
and the subpopulations. We identified 471 unique colocaliza-
tions (PP4 > 0.8), corresponding to 247 GWAS loci for 11 diseases 
and 314 SNP–gene pairs (Supplementary Tables 9 and 10). This 
enabled us to prioritize 127 candidate disease-causal genes (Fig. 5a). 
Importantly, 77 (60%) colocalizing genes were detected upon acti-
vation and would have been missed by profiling only steady state 
ex vivo cells. Out of those, 47 (37%) were captured specifically in 
later time points of activation (40 h + 5 d) (Fig. 5b). This finding is 
important, as previous eQTL studies have relied on either resting 
cells or a single, usually early activation time point2,26.

Generally, we observed more colocalizations in larger cell popu-
lations (for which we were more powered to detect eQTLs) and in 
traits with larger numbers of reported GWAS signals (Fig. 5a). The 
traits with the highest number of colocalizations were Crohn’s dis-
ease and ulcerative colitis, followed by allergic diseases, in agree-
ment with their proposed T cell-driven biology11,12,35. Nevertheless, 
higher number of colocalizations was not only a consequence of 
more powered GWAS. Systemic lupus erythematosus, although 
characterized by a higher number of loci compared to type 1 dia-
betes, had a smaller proportion of colocalizing variants, in line with 
studies pointing towards B cells as drivers of systemic lupus ery-
thematosus11,36. We found that 72% of genes colocalized only with 
one trait, 14% with two traits and 14% with three or more diseases 
(Supplementary Fig. 10a). Overall, 220 disease loci (89%) regulated 
a single gene, whereas 22 (9%) and 5 (2%) loci regulated two and 
three genes in the associated regions, respectively.

Although most colocalizing genes were detectable in broad cell 
types (i.e., total TN or TM cells per time point; median per trait = 
66%), we observed between 2 and 15 genes per disease (median per 
trait = 25%) that were only detected in individual subpopulations 
(Fig. 5c). For example, an eQTL for TYK2 specifically detected in 
16 h-stimulated TEM cells colocalized with a Crohn’s disease associa-
tion (Supplementary Fig. 10b). Similarly, we identified a colocaliza-
tion between a Crohn’s disease locus and a ZMIZ1 eQTL specific to 
16 h-stimulated TCM cells (Supplementary Fig. 10c). This eQTL is 
absent in other memory T cell populations such as TEM, which leads 
to the eQTL being masked in bulk memory cells, where it is no lon-
ger detectable (Supplementary Fig. 10c). Both of these colocaliza-
tions are subpopulation and time-point specific, which highlights 
the importance of measuring gene expression regulation with cell 
type and state resolution. We observed no differences in the net-
work connectivity of colocalizing genes compared to other eGenes 
(Supplementary Fig. 10d).

Given that the majority of colocalizations were detected in 
activated T cells, we asked if these genes showed dynamic genetic  
regulation. Dynamic eQTLs were enriched in colocalizing eGenes in 
both naive and memory T cells (36/73 and 44/72 colocalizing genes 
in naive and memory cells, Fisher’s test P values 7.9 × 10−5 and 2.6 
× 10−7, respectively). The expression patterns of most colocalizing 
eGenes were similar between naive and memory cells (Fig. 5d). An 
example of a gene whose genetic regulation differs between naive 

Fig. 4 | eQTLs with dynamic effects during CD4+ T cell activation. a, Cells were ordered into a branched pseudotime trajectory using monocle3. The UMAP 
embedding shows all cells, colored by their estimated pseudotime values. Black lines indicate the inferred branched trajectory. b, Example genes that 
significantly change as a function of activation pseudotime. Each dot corresponds to a cell, and colors represent experimental time points. c, Schematic 
of the analysis approach. Cells were split into ten windows of equal cell numbers according to their estimated pseudotime values. Linear and quadratic 
mixed models were applied to each previously identified eGene to test for an interaction between genotypes and T cell activation pseudotime. d, Heatmap 
showing the expression pattern of each dynamic eGene in memory T cells. Boxplots show examples of nonlinear and linear dynamic eQTLs. The average 
expression of the gene within each pseudotime window was stratified by genotype. Central lines indicate the median, with boxes extending from the 25th 
to the 75th percentiles. Whiskers further extend by ±1.5 times the interquartile range from the limits of each box. N of biologically independent samples: 
106. P values were derived and corrected as described in Methods. e, Number of eGenes with evidence of a significant genotype–pseudotime interaction 
(i.e., dynamic eQTLs) in a linear or quadratic mixed model. f, Pathways enriched in linear and quadratic eGenes. Shades of blue represent log10-transformed 
enrichment P values. Enrichment P values were estimated using a hypergeometric test, and multiple testing correction was performed using the set counts 
and sizes (SCS) method, as implemented in gprofiler2 version 0.2.0. FDR, false discovery rate. ROBO, roundabout receptors.
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and memory cells is the gene encoding the interleukin-18 recep-
tor (IL18R1), a dynamic eQTL in memory T cells. IL18R1 is highly 
expressed during early activation of memory cells and, conversely, 
during late activation of naive cells (Fig. 5e). Another example is 

CTLA4, a dynamic eQTL in both memory and naive T cells but with 
different regulation in the two cell types (Fig. 5f); naive cells upreg-
ulated and maintained high expression of CTLA4 upon activation, 
whereas memory cells highly expressed CTLA4 only during early 
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activation. This eQTL colocalized with a type 1 diabetes-associated 
locus, and individuals carrying the disease risk allele showed lower 
expression of CTLA4. Reduced expression of CTLA4 at early stages 
of activation could result in impaired ability to suppress T cells, thus 
contributing to excessive activation in disease. Additionally, the 
same eQTL variant colocalized with association signals for rheuma-
toid arthritis and celiac disease, in agreement with the CTLA4-based 
therapies used in rheumatoid arthritis37 (Supplementary Table 9).

Finally, we asked whether immune disease loci affected specific 
cellular functions. Colocalizing genes were enriched in pathways 
involved in the regulation of T cell activation and proliferation 
(Fig. 5g). There were 26 genes driving this enrichment, including 
genes with association signals shared across two or more diseases. 
For 24 out of 26 genes, the direction of effect of the risk allele on 
gene expression was consistent between traits. Colocalizing genes 
also clustered into connected modules based on the information 
in STRING38; that is, the genes were coexpressed across tissues or 
the proteins they coded for were physically interacting (Fig. 5h). 
Furthermore, neighboring genes within these modules tended to 
be perturbed in the same direction by immune disease variants. 
For example, we observed a module of interconnected genes, 12 of 
which were involved in the regulation of T cell activation and prolif-
eration. Among these, PTPRC was directly connected to CD6, CD5, 
CTLA4 and TNFRSF14. Notably, all of these genes were downregu-
lated by risk alleles, suggesting that their reduced expression may 
increase disease risk. Our results demonstrate that immune disease 
loci colocalize with genes involved in the regulation of T cell activa-
tion and that genes with similar functions tend to be perturbed in 
the same direction by disease risk alleles.

Discussion
Dysregulation of T cell activation can result in poor response to 
infections, development of inflammatory diseases or primary 
immunodeficiencies. By using single-cell profiling across 655,349 
CD4+ T cells, our study provides an unbiased view of the T cell 
response to activation, revealing 38 distinct subpopulations. This 
single-cell resolution provides an explanation of previous results 
from bulk gene expression. For example, we recapitulated the 
up-regulation of IFN-related genes early upon CD4+ TCR engage-
ment39 and further resolved it to a specific subpopulation of naive 
cells. We also demonstrated that the previously described modu-
lation of HLA molecules upon T cell activation40 is driven by TEM 
cells. Therefore, our data provide a resource for the interpretation of 
studies of T cell function.

Often, eQTLs obtained from bulk RNA-seq mask cell-type 
specific effects41, which can be mapped with single-cell transcrip-
tomics42. Many immune cell eQTL resources25,26, including those 
capturing T cell activation39, rely on sorting cells based on surface 
markers. However, these approaches cannot capture the full cellular 
heterogeneity. Here, scRNA-seq allowed us to map eQTLs within 
clusters unbiasedly, providing insights into genetic regulation in dif-
ferent cell subsets. Our study will help infer the effects of genetic 
regulation on the development of effector T cell functions and could 
inform cell engineering approaches.

eQTLs can be context specific, including those resulting 
from responses to stimuli7,30. However, current eQTL resources 
mostly include cells in steady state. Although these resources are 
instrumental in interpreting GWAS signals, the proportion of 
GWAS-eQTL colocalizations remains low43. In contrast, our study 
captured context-specific gene expression regulation. In particular, 
had we only focused on the resting state, we would have missed 
most disease-relevant eQTLs, as only 40% of colocalizations are 
detectable in resting cells. Furthermore, colocalizing eQTLs were 
enriched for eGenes with dynamic regulation, which could explain 
why at present eQTLs have only explained a small proportion of 
GWAS associations.

Finally, our results could inform drug target discovery. For 
example, a CTLA4 eQTL colocalizes with GWAS associations for 
three immune diseases, where the disease risk alleles decrease gene 
expression. CTLA4 removes costimulatory molecules from the 
surface of antigen-presenting cells, downregulating T cell activa-
tion44. Thus, a partial reduction in CTLA4 function could impair 
immune regulation and increase the risk of autoimmunity45. This 
is supported by existing therapies in which a CTLA4 fusion pro-
tein is administered to patients with rheumatoid arthritis to help 
reduce inflammation46. Importantly, we show that the expression 
of CTLA4 is dynamically regulated, peaking during early activa-
tion. Similarly, a TYK2 eQTL detected in TEM cells colocalizes with 
a Crohn’s disease GWAS association. The TYK2 locus is associated 
with ten different immune disorders, with three independent sig-
nals reported1,47,48. One of these signals is explained by a missense 
variant, which reduces signaling downstream of several cytokine 
receptors, resulting in protection from disease1. Here, we show a 
similar effect, where individuals carrying a protective allele for 
Crohn’s disease have lower expression of TYK2 in TEM cells at 16 h 
of activation. Inhibition of TYK2 as a treatment for inflammatory 
diseases is in clinical trials49,50. These examples illustrate how colo-
calizing genes could have therapeutic value.

Fig. 5 | Colocalization of CD4+ T cell eQTLs with GWAS associations for immune diseases. a, Number of significant colocalizations between an eQTL and 
a GWAS signal identified for each cell type–trait combination. Marginal bar plots represent the number of independent associations reported in the GWAS 
(x axis) and the number of eGenes detected per subpopulation (y axis). Light and dark bars indicate whole-cell populations (TN or TM cells at a specific 
time point) and subpopulations, respectively. b, Number of additional colocalizing genes detected in stimulated cells. c, Number of colocalizing genes 
observed in whole-cell populations, subpopulations or both. d, Heatmap showing the expression pattern of colocalizing eGenes in naive and memory 
T cells. The color of annotation boxes shows genes that are dynamic and static eQTLs. e, Boxplot shows IL18R1 dynamic eQTLs. The average expression 
of the gene within each pseudotime window was stratified by genotype. Central lines indicate the median, with boxes extending from the 25th to the 75th 
percentiles. Whiskers further extend by ±1.5 times the interquartile range from the limits of each box. N of biologically independent samples: 106. P values 
were derived and corrected as described in Methods. f, Boxplot shows CTLA4 dynamic eQTLs. The average expression of the gene within each pseudotime 
window was stratified by genotype. Locus plot for a colocalization between a CTLA4 dynamic eQTL and a GWAS association for type 1 diabetes. Each 
dot represents a variant, with colors indicating their linkage disequilibrium with the lead eQTL variant. Central lines indicate the median, with boxes 
extending from the 25th to the 75th percentiles. Whiskers further extend by ±1.5 times the interquartile range from the limits of each box. N of biologically 
independent samples: 106. P values were derived and corrected as described in Methods. g, Tile plot shows enriched pathways within colocalizing 
genes as well as genes driving the enrichment. Bar plots show adjusted P values from the enrichment test. Squares on left show the colocalizing disease. 
Red, disease variant increases gene expression; blue, variant decreases gene expression. h, STRING network of colocalizing genes. Red, disease variant 
increases gene expression; blue, decreases; yellow, effect on gene expression is disease dependent. Black outline highlights genes belonging to the top 
enriched pathway (GO.0050867: positive regulation of cell activation). GWAS abbreviations: AllD, allergic disease; AS, ankylosing spondylitis; Ast, 
asthma; CeD, celiac disease; CD, Crohn’s disease; MS, multiple sclerosis; PBC, primary biliary cirrhosis; RA, rheumatoid arthritis; SLE, systemic lupus 
erythematosus; T1D, type 1 diabetes; UC, ulcerative colitis.
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We note that a limitation of our study is that we profiled healthy 
individuals. Although this enabled us to identify eQTLs involved 
in disease susceptibility, we are likely missing eQTL colocalizations 
relevant for disease progression. Future studies in disease cohorts 
will be required to understand genetic regulation after disease onset.
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Methods
Cell isolation and stimulation. Blood samples were obtained from 119 healthy 
individuals of British ancestry. Of these, 67 were male (53.7%) and 52 female 
(56.3%), and the mean age of the cohort was 47 years (standard deviation = 15.61 
years) (Supplementary Fig. 1a). Human biological samples were sourced ethically, 
and their research use was in accord with the terms of informed consent under an 
institutional review board/ethics committee-approved protocol (15/NW/0282).

Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque 
PLUS (GE Healthcare) density gradient centrifugation. Naive (CD25− CD45RA+ 
CD45RO−) and memory (CD25− CD45RA− CD45RO+) CD4+ T cells were 
isolated from the PBMC fraction using EasySep naive CD4+ T cell isolation kits 
and memory CD4+ T cell enrichment kits (StemCell Technologies) according to 
the manufacturer’s instructions. Naive and memory T cells were then stimulated 
with anti-CD3/anti-CD28 human T-Activator Dynabeads (Invitrogen) at a 1:2 
beads-to-cells ratio. Cells were harvested after 16 h, 40 h and 5 d of stimulation. In 
addition, unstimulated cells kept in culture without any beads for 16 h were used as 
a negative control (i.e., 0 h of activation).

scRNA-seq. Upon harvesting, cells were resuspended in RPMI media to 
obtain a single-cell suspension. Next, cells were stained with the live/dead dye 
4,6-diamidino-2-phenylindole, and dead cells were removed from the suspension 
using fluorescence-activated cell sorting. Live cells were resuspended in 
phosphate-buffered saline, at which point cells obtained from different individuals 
but belonging to the same experimental condition were mixed together at equal 
ratios to form a single-cell suspension (i.e., pool). Each pool corresponded to a 
mix of cells from four to six different individuals (median = 6), and we processed a 
total of 172 pools.

Cells were next processed for scRNA-seq using the 10x Genomics 3’ v2 
kit20, as specified by the manufacturer’s instructions. Namely, 1 × 104 cells were 
loaded into each inlet of a 10x Genomics Chromium controller to create Gel 
Bead-in-emulsions (GEMs). Each experimental condition was loaded in a separate 
inlet. The targeted recovery was 6,000 cells per pool. Reverse transcription was 
performed on the emulsion, after which cDNA was purified, amplified and used 
to construct RNA-sequencing libraries. These libraries were sequenced using the 
Illumina HiSeq 4000 platform, with 75-bp paired-end reads and one cell pool 
per sequencing lane.

Genotyping. Genomic DNA was isolated from a suspension of 1 × 106 PBMCs 
from each individual in the study using a DNA isolation kit (Qiagen). Genotyping 
was then performed using the Infinium CoreExome-24 (v1.3) chip (Illumina). 
Genotype data were analyzed as detailed in Supplementary Notes.

scRNA-seq data analysis. Data processing and quality controls. Raw scRNA-seq 
data were processed using the Cell Ranger Single-Cell Software Suite20 (v3.0.0, 
10x Genomics). In brief, reads were first assigned to cells and then aligned to 
the human genome using STAR51, with the hg38 build of the human genome 
(GRCh38) as a reference for alignment. Ensembl (v93) was used as a reference for 
gene annotation, and gene expression was quantified using reads assigned to cells 
and confidently mapped to the genome.

Results from RNA quantification in Cell Ranger were imported into Python 
(v3.8.1) and analyzed using scanpy (v1.4.4) (ref. 52). Samples with less than 70% of 
reads mapping to cells were discarded. This resulted in 142 (82%) cell pools and 
106 (89%) individuals being kept after quality filters. In addition, any cells with 
fewer than 200 detected genes, an unusually high number of genes (defined as over 
four standard deviations above the mean number of detected genes), or more than 
10% of reads mapping to mitochondrial genes, were removed from the data set. 
Finally, any genes detected in fewer than ten cells were discarded. This resulted in 
713,403 cells (96.77% of total) and 23,360 genes passing quality filters.

Deconvolution of single cells by genotype. Each scRNA-seq sample comprised a mix 
of cells from unrelated individuals. Thus, natural genetic variation was used to 
assign cells to their respective individuals. First, a list of common exonic variants 
was compiled from the 1000 Genomes Project phase 3 exome-sequencing data53. 
This list included any variants with a minor allele frequency of at least 5% in the 
European population. Next, cellSNP (v0.99) (ref. 54) was used to generate pileups 
at the genomic location of these variants. These pileups, in combination with the 
variants called from genotyping in each individual, were used as an input for Vireo 
(v1) (ref. 54). Vireo uses a Bayesian approach to infer which cells belong to the same 
individual based on the genetic variants detected within scRNA-seq reads. Any 
cells labelled as ‘unassigned’ (less than 0.9 posterior probability of belonging to any 
individual) or ‘doublets’ (containing mixed genotypes) by Vireo were discarded. 
On average, 92% of the cells in each pool were unambiguously assigned to a single 
individual in the cohort (Supplementary Fig. 2).

Cell cycle scoring. After quality control, the number of unique molecular identifiers 
(UMIs) mapping to each gene in each single cell were normalized for library size 
and log-transformed using scanpy’s default normalization parameters52. Next, a 
publicly available list of cell cycle genes55 was used in combination with scanpy to 
perform cell cycle scoring and assign cells to their respective stage of the cell cycle.

Exploratory data analysis and removal of cellular contaminations. We performed 
exploratory analysis at each experimental time point independently. Cells 
collected at the same time point were first loaded into scanpy, where normalized 
log-transformed UMI counts were used to identify highly variable genes. Between 
701 and 1,668 highly variable genes were detected at each time point (mean = 
1,301). Only highly variable genes were used as a basis for the remaining analyses 
in this section.

Technical covariates (cell culture batch) and unwanted sources of biological 
variation (i.e., number of UMIs per cell, proportion of reads mapping to 
mitochondrial genes, cell cycle scores and reported sex) were regressed out using 
scanpy’s regress_out() function. Next, log-UMI counts were scaled (setting 10 
as the maximum value) and used as an input for principal-component analysis 
(PCA). The first 40 principal components were used to build a k-nearest neighbors 
(kNN) graph (with k = 15), which was used as an input for embedding and 
visualization with the UMAP algorithm21. This kNN graph was further used for 
unsupervised clustering using the Leiden algorithm56.

At this stage, cell clustering revealed a low proportion of three contaminating 
cell types that were consistently detected at each time point: B cells, CD8+ 
T cells and antigen-presenting cells. Furthermore, two additional sources of 
contamination (SOX4+ precursor cells and cells expressing hallmarks of cell 
culture stress) were detected at 0 h of activation (Supplementary Fig. 3). Cell 
contaminations were removed from the data set, resulting in 655,349 (91.86% of 
total) high-quality cells kept and successfully annotated as CD4+ T cells.

Identification of a lowly active T cell subpopulation. Having removed cellular 
contaminations, highly variable genes were recalculated and the analysis described 
in the previous section (i.e., batch regression, scaling, PCA, graph construction, 
embedding and clustering) was repeated using CD4+ T cells only. Cells sampled at 
16 h and 40 h showed a clear separation into two groups, one of which expressed 
a significantly lower number of genes and showed comparatively lower levels of 
previously described T cell activation markers19 (Supplementary Fig. 4a). This 
population of lowly active cells was separated from its original time point and 
treated as an independent group for clustering.

Clustering and cluster annotation. Unsupervised clustering was applied 
independently to the five cell groups of cells identified in the study (resting, lowly 
active, 16 h, 40 h and 5 d) based on their respective kNN graphs and using the 
Leiden algorithm56. This method resulted in 51 cell clusters. The similarity of these 
clusters to each other was assessed by performing PCA on the full data set (i.e., all 
cells) and estimating the Euclidean distance between pairs of clusters (from cluster 
center to cluster center) based on the first 100 principal components. Clusters 
with high levels of similarity or overlapping biological characteristics were merged 
together (Supplementary Fig. 5b). This method resulted in 38 distinct groups of 
cells. Gene markers for each of these groups were identified using scanpy’s built-in 
function for gene ranking, which uses a t-test to compare the average expression 
of a gene in a cluster versus its expression outside the cluster. Each cell group was 
annotated by comparing its inferred marker genes with known cell-type markers 
reported in the literature.

Ordering of cells in a pseudotime trajectory. To perform trajectory inference, raw 
gene expression measurements for all CD4+ T cells in the study (i.e., 655,349 
cells spanning all time points) were imported into R (v3.6.1) and analyzed using 
monocle3 (v0.2.0) (ref. 31). As opposed to other analyses, where cells from each 
time point were treated independently, here, some unwanted sources of variation 
such as cell cycle scores correlated with the biological process of interest (i.e., T cell 
activation). Thus, we implemented a hierarchical batch regression approach, where 
cell cycle scores were first regressed within each time point, followed by batch 
regression in the full data set. In brief, PCA was performed based on all cells using 
monocle3’s PCA implementation. Next, a matrix containing the first 100 principal 
component coordinates for each cell was split by time point. Cell cycle effects were 
then regressed from each submatrix independently using limma’s lmFit function57. 
Finally, these cell cycle-corrected matrices were merged back into a full PCA 
matrix, and cell culture batch effects were regressed based on the full data set using 
the mutual nearest neighbors algorithm58.

After batch correction, the first 100 principal components were used to build 
a kNN graph, and this graph was embedded into a two-dimensional space using 
UMAP. Finally, UMAP coordinates were used to infer a branched pseudotime 
trajectory using monocle3’s learn_graph function. To identify genes that changed 
as a function of pseudotime, monocle3’s graph test was applied to all genes. 
This test assesses whether cells adjacent in the trajectory show more correlated 
expression of a gene than cells which are far apart (i.e., autocorrelation). Correction 
for multiple testing was performed using the q value procedure59. A gene was 
considered as significantly associated with pseudotime if it had a q value ≤ 0.05 
and a Moran’s I (a measurement of the magnitude of autocorrelation) larger than 
0.05 (ref. 60).

Coexpression network analysis. Coexpression networks were created using the 
weighted gene coexpression network analysis package (v1.69). For more details, 
please see the Supplementary Notes.
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Mapping of eQTLs. For each gene, we calculated mean expression per cluster 
per donor. To ensure the high-quality eQTL mapping, we only kept genes with 
non-zero expression in at least 10% of donors and mean count per million higher 
than one. We retained between 8,940 and 11,516 genes. To identify cis-eQTLs, we 
used tensorQTL (v1.0.3) (ref. 61) to run a linear regression for each SNP–gene pair, 
using a 500-kb window within the transcription start site of each gene (i.e., cis_
nominal mode). We regressed the first 15 gene expression principal components 
from this analysis so as to capture the confounders within our data set. To correct 
for the number of association tests performed per gene, we used a cis permutation 
pass per gene with 1,000 permutations. Finally, to correct for the number of genes 
tested and identify significant eGenes, we performed a q-value correction62 for the 
top associated SNP–gene pair, setting a q-value threshold of 0.1.

Analysis of eQTL sharing across cell types. To assess the sharing between  
eQTLs, we performed a meta-analysis across cell types and cell states using the 
multivariate adaptive shrinkage (mashR) method24. Please see the Supplementary 
Notes for details.

Modeling eQTL effect sizes as a function of network centrality. The effect size of 
each gene’s lead eQTL variant was modeled as a function of the gene’s centrality 
value in the coexpression network described above. This was first done assuming 
a linear relationship. However, substantial heteroskedasticity was observed, 
which suggested a nonlinear relationship, as confirmed using a Breusch–Pagan 
heteroskedasticity test63. Thus, we log-transformed the eQTL effect sizes, which 
resulted in homoskedastic data and a strong linear relationship between the 
variables. All linear models were built and tested using base R’s lm() function.

Allelic fold-change computation. To further verify the relationship between a gene’s 
genetic regulation and network centrality, we calculated the allelic fold change 
according to Mohammadi et al.29 using publicly available software (https://github.
com/secastel/aFC).

Modeling of dynamic pseudotime-dependent eQTL effects. To identify 
pseudotime-dependent eQTL effects, we divided the activation trajectory into 
ten windows containing roughly equal numbers of cells (i.e., pseudotime deciles) 
and averaged the expression of each gene per individual within each window. To 
facilitate the interpretation of coefficients, pseudotime windows were scaled from 0 
to 1 before this analysis. To account for the higher correlation in expression values 
derived from the same individual at multiple pseudotime windows, we applied 
linear (1) and quadratic (2) mixed models, with individuals modeled as random 
intercepts. We used these models to test for a significant interaction between 
genotypes (i.e., the genetic dosage carried by each individual at the lead eQTL 
variant for that gene) and pseudotime as follows:

Z_score ∼ genotype + pseudotime + cell_culture_batch

+sex + age + genotype ∗ pseudotime + (1|donor)
(1)

Z_score ∼ genotype + pseudotime + pseudotime2

+cell_culture_batch + sex + age

+genotype ∗ pseudotime + genotype ∗ pseudotime2 + (1|donor)

(2)

In both cases, the null model was computed using the same parameters while 
excluding the genotype*pseudotime and genotype*pseudotime2 terms. P values 
were calculated by comparing each model to its respective null model using 
analysis of variance. All models were implemented in R using the lmer() function. 
To reduce the burden imposed by multiple testing, we only applied this approach 
to variants previously identified as significant lead eQTL variants for a gene by 
tensorQTL in at least one time point. This was done separately for naive and 
memory T cells.

To ensure that the method is robust, we permuted the pseudotime windows per 
donor and tested for an interaction between genotype and pseudotime. A similar 
permutation has previously been used to test for an interaction effect between a 
drug and an eQTL64. Briefly, as the genotypes remain fixed, this strategy maintains 
eQTL effects while disrupting the interaction between genotype and pseudotime. 
By permuting the pseudotime windows 100 times (this generates a random 
distribution of pseudotime windows), we tested how often a dynamic eQTL would 
be detected in each permutation. If a test was well calibrated, then one would not 
expect to observe a large proportion of significant effects in the permuted data. 
Of the 7,105 and 6,304 significant static gene–SNP pairs from naive and memory 
T cells, respectively, we observed on average 92 and 90 significant dynamic eQTLs 
per each permutation round. In contrast, the number of detected dynamic eGenes 
in our analysis was 1,475 in naive and 1,551 in memory T cells.

Estimation of pairwise linkage disequilibrium (LD). We performed LD 
calculations based on the individual-level genotype information for the individuals 
in this study obtained from genotyping. Please see the Supplementary Notes  
for details.

Integration of eQTLs with GWAS signals. Preprocessing of GWAS summary 
statistics. Full summary statistics files from previous GWAS studies were 
downloaded from the GWAS catalogue65–77. The GWAS were processed as 
described in Supplementary Notes.

Colocalization analysis. Genomic loci of interest were identified by intersecting 
eQTL signals in each cell type with GWAS loci for 13 immune-mediated 
diseases. For each trait–cell type pair, we applied colocalization to any locus 
where a lead variant for a significant eQTL (q value < 0.1) was located within 
100 kb and in high LD (r2 > 0.5) with a significant GWAS variant (i.e., any GWAS 
variant with nominal P value < 1 ×10−5, which enabled us to capture suggestive 
association signals). In addition, we required at least 50 variants to be available 
for testing at each candidate locus. At each of these loci, coloc (v4.0.4) was used 
to test for colocalization between the eQTL and the GWAS signals. Importantly, 
these analyses were based on the recently developed masking approach, which 
relaxes coloc’s previous assumption of a single causal variant per locus34. This 
process is similar to performing conditional analyses at each locus. In brief, 
we defined a 500-kb window centered on the lead eQTL variant and tested for 
colocalization using all common variants located in the window and present 
in both the eQTL and the GWAS summary statistics. We used the pairwise LD 
calculations from our cohort as a basis for masking, setting an r2 threshold of 
0.01 to separate independent signals. coloc’s prior parameters were set to their 
recommended values in the most recent publication34 (p1 = 1 × 10−4, p2 = 1 
× 10−4 and p12 = 5 × 10−6). Significant colocalizations were defined as any 
instances where the estimated posterior probability of a shared causal variant 
(PP4) was ≥0.8. To discard potential false positives due to noisy association 
signals, we only kept for further analysis traits with more than one significant 
colocalization (11 out of 13 traits).

To infer the relationship between gene expression and disease risk at each 
locus, we estimated the GWAS and eQTL effect sizes (i.e., loge of odds ratio and 
gene expression Z score) for the GWAS variant in highest LD with the lead eQTL 
variant at the locus. We concluded that a variant increased disease risk via an 
increase in gene expression if the variant had the same direction of effects in both 
studies. In the opposite case, we concluded that the variant increased disease risk 
via a decrease in gene expression. If the same variant had different estimates of 
eQTL effect size in different T cell populations, then we required that all effect sizes 
had the same direction.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw scRNA-seq data study have been deposited in the European 
Genome-phenome Archive with accession number EGAD00001008197. 
Genotypes have been deposited in the European Genome-phenome Archive with 
accession number EGAD00010002291. Processed single-cell data and summary 
statistics are available at https://trynkalab.sanger.ac.uk.
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