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Stripe and spot selection in cusp 
patterning of mammalian molar 
formation
Wataru Morita1*, Naoki Morimoto2, Keishi Otsu3 & Takashi Miura4

Tooth development is governed largely by epithelial–mesenchymal interactions and is mediated by 
numerous signaling pathways. This type of morphogenetic processes has been explained by reaction–
diffusion systems, especially in the framework of a Turing model. Here we focus on morphological 
and developmental differences between upper and lower molars in mice by modeling 2D pattern 
formation in a Turing system. Stripe vs. spot patterns are the primary types of variation in a Turing 
model. We show that the complexity of the cusp cross-sections can distinguish between stripe vs. 
spot patterns, and mice have stripe-like upper and spot-like lower molar morphologies. Additionally, 
our computational modeling that incorporates empirical data on tooth germ growth traces the order 
of cusp formation and relative position of the cusps in upper and lower molars in mice. We further 
propose a hypothetical framework of developmental mechanism that could help us understand the 
evolution of the highly variable nature of mammalian molars associated with the acquisition of the 
hypocone and the increase of lophedness.

Phenotypic variation should be related to variation in developmental processes, ranging from epigenetic response 
to environmental stimuli to complex spontaneous pattern formation. Many genes and gene networks involved 
in developmental processes have been increasingly characterized1,2. However, it remains to be determined how 
gene networks and resulting interactions among signaling molecules elaborate complex pattern formation. In 
1952, the British mathematician Alan Turing proposed a theory in which the interaction of two hypothetical 
molecules can serve as a system of spontaneous periodic pattern formation3. In this model, he assumed that two 
hypothetical molecules interact with each other and diffuse passively, whereby periodic patterns arise spontane-
ously. In higher dimensions, the system exhibits various interesting patterns depending on the reverse symmetry 
of the system4,5. This model was later rediscovered by Meinhardt and Gierer, and it was applied to many biological 
pattern formation systems6. The role of this model in the actual developmental processes has been controversial, 
but recent studies have shown that various developmental processes indeed utilize a similar mechanism, includ-
ing animal coat markings7, feather buds distribution8,9, left–right asymmetry10, limb skeletogenesis11, and tooth 
morphogenesis12–16.

It has been proposed that a reaction–diffusion system can explain tooth morphogenesis at different levels. 
At a relatively global level, regulation of inter-molar size can be explained by an inhibitory cascade model. At a 
relatively local level, cusp formation within a single tooth can be explained by a patterning cascade model17,18. 
The individual tooth is considered to be highly self-regulated. The number and spatial patterning of cusps are 
determined by the iterative activation of secondary enamel knots that are epithelial signaling centers providing 
positional information, and by inductive interaction between the epithelium and the underlying mesenchymal 
cells19,20. The development of the tooth crown proceeds through various stages defined by the morphology of the 
epithelium (bud, cap, and bell stages). The transition from the bud to the cap stage is critical since morphological 
features are already determined at this stage. During the cap and bell stages, the size and shape of the tooth crown 
become apparent21. It has been proposed that this self-regulated process of cusp pattern formation is governed 
by the reiterative use of the same signaling pathways from a global to local level20,22,23.

While the molecular circuit that controls tooth morphology has been well studied, it remains unclear how 
exactly the variation in tooth morphology develops. One of the fundamental questions is unknown how dif-
ferences between upper vs. lower molars (UM vs. LM) are specified during development. In many mammalian 
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species, the UM and LM morphologies differ from each other24 even though they are assumed to be under the 
same genetic control and similar selective pressures. Mammals have acquired various evolutionary novelties 
that separate them from other vertebrates, including homeothermy, viviparity, pelage, auditory ossicles, and 
large brains; the diversification of tooth-type is another important feature25,26. In particular, the emergence of a 
multi-cusped tooth led to improved occlusal efficiency and the subsequent adaptive radiation27, which raises the 
question as to how each cusp is distributed in the tooth crown. In addition to the emergence of the multi-cusped 
tooth, mammal species evolved different morphology between upper and lower teeth.

In this study, we utilize the Turing model to elucidate the mechanism of cusp patterning in tooth morphogen-
esis. Specifically, we focus on differences between the UM and LM morphology in mice. In mice, the UM − LM 
difference is characterized by the difference in the number and relative position of the cusps, as in other mammal 
species. While the UM shows a clear cusp-cum-loph form where each cusp is connected by ridges, the cusps 
of LM are independent of each other. In addition, the inter-cusp ridges are less developed in LM than in UM. 
While tooth morphogenesis is a complex process, it can be modeled under the reaction–diffusion system. In two-
dimensional (2D) pattern formation, the dynamics of the two morphogens yield either stripe or spot patterns28. 
The difference between UM and LM morphology may involve the generation of such a 2D structure that is 
repeated periodically in space. We thus hypothesized that the UM vs. LM difference in mice can be explained 
principally as stripe vs. spot patterns within the framework of a Turing system. In the case of tooth development, 
it has been proposed that bone morphogenetic proteins (BMP) act as activators, and fibroblast growth factors 
(FGF) and sonic hedgehog (SHH) act as inhibitors12.

Here, we test this hypothesis by taking two approaches. In the first “static” approach, we quantify the shape 
of the UM and LM using cross-sections at the middle height of the cusp. The second “developmentally dynamic” 
approach consists of constructing a computational Turing model to reproduce tooth development that corre-
sponds to the morphogenetic stages. Specifically, the primary features of tooth development, such as the number 
and relative position of cusps, should be reproducible in models with parameter settings for stripe (UM) and 
spot (LM). While we use mice as a test model, this question is of special relevance for understanding the devel-
opmental mechanisms that produce the great diversity in molar morphology across a wide range of mammals.

Results
Morphometric analysis in fully formed teeth.  We reconstructed a 3D enamel–dentine junction (EDJ) 
model of each UM and LM mouse specimen, which we transformed into a circular 2D image using height from 
the cervical plane by a morphometric mapping method (Fig. 1). The difference between stripe and spot patterns 
was quantified by the average ratio of area to the squared perimeter for each object in a binary image. This stripe-
like pattern should be smaller than that of the spot-like pattern, as the perimeter of each object in a stripe pattern 
is longer than that of the circular spotted pattern object. To detect a 2D pattern difference, we compared UM to 
LM while changing the threshold for binarization to within 40–60% of total cusp height. This pattern indicator 
for UM was significantly smaller than LM, suggesting that UM tends to have a stripe-like pattern, but LM has 
a spot-like cusp pattern.

Mathematical analysis of mode doubling in a region growing system.  To understand the pattern 
formation mechanism, we utilize the Turing model, which is widely used to model tooth development12. Before 
generating complex 2D models, we utilized a simple 1D model with a growing domain to understand the pattern 
of mode doubling29. The pattern of mode doubling can be classified into three categories: insertion (formation 
of a de novo peak between two peaks), splitting (formation of new peaks by division of preexisting peak), and 
mode tripling (splitting and insertion take place simultaneously). At first, we tried uniform domain growth with 
zero flux boundary conditions. We observed that new peaks always are generated from both edges of the region, 
which differs from the way pattern formation occurs in vivo (Fig. 2a). This is because the whole system is sym-
metric, and a zero flux boundary condition can induce deviations from ideal patterns, which makes the region 
become susceptible to the collapse of the pattern induced by growth29. Insertion and splitting both occur at the 
edges (Fig. 2b).

We then introduced the asymmetry of growth patterns into the model. When only one side of the region 
grows, new peaks always are generated near the growing boundary (Fig. 2c). We use reaction terms that have 
reverse symmetry in this case. Consequently, it remains difficult to see whether a new pattern is generated due 
to the splitting of a preexisting peak or by the insertion of new peaks between two peaks. The 2D simulation of 
the same reaction term without domain growth results in a stripe pattern (Fig. 2d).

To represent the difference in UM and LM morphology, we introduce reverse asymmetry into the system by 
adding a quadratic term qu2 . It has been shown that the pattern formation process can be classified into splitting, 
insertion, and mode tripling depending on the reverse symmetry of the system29. We observed that the insertion 
pattern becomes dominant when a positive q term is introduced (Fig. 2e,f).

In all cases, the number of peaks is proportional to the domain size at a specific time. Therefore, we expect 
that the longer axis should have more peaks in a 2D system.

Computational modeling of molar morphogenesis.  To obtain data about how tooth germ size 
increases, we measured the length of the long and short tooth germ axes. We carefully isolated the UM and 
LM from the gnathic bones between embryonic day 14.5 (E14.5) and E18.5. During this period, the secondary 
enamel knots appear sequentially and regulate cusp patterning30. The long and short axes of the tooth germ were 
measured at various time points (number of samples, n = 4). To model the growth rates of tooth germs, growth 
was fit to a sigmoid curve [Eq. (1); Fig. 3].
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We simulated spatial pattern formation of UM and LM development in mice as the concentration of the 
activator in a Turing model [Eq. (3)].

Our simulation was constructed under the following framework;

•	 The calculation of the elliptical domain is expanded by the growth function.
•	 Prepare two parameter settings that realize stripe and spot patterns.
•	 Morphogenesis of the UM and LM was simulated using parameter sets of stripe and spot patterns, respec-

tively.

As a starting point, the model includes the concentration of an activator that is located in the center of the 
domain. This initial condition corresponds to the primary enamel knot that appears in the cap stage of develop-
ment (Fig. 4). The model for UM indicates that the first activator concentration appears on the mesiobuccal side, 
which then progresses in the mesiolingual and distal direction, where it finally results in three wave-like struc-
tures (S1 Video). In the LM simulation, the first activator concentration appeared on the mesial side and then 
shifted toward the lingual direction (S2 Video). Another concentration then emerged on the distal side and split 
from the lingual to the buccal side, at which point the final concentration was added distally. These simulations 
of molar morphogenesis are consistent with earlier reports that described the order of molar emergence in UM31 
and LM22,32, respectively. The Turing model involved in a region growing system based on empirical data showed 
that UM and LM could be described by a parameter set that yields stripe and spot patterns, respectively. Our 
model successfully reproduces both UM and LM cusp patterns, as well as the actual process of tooth development.

Discussion
In this study, we tested the hypothesis that differences in UM and LM morphologies are explained by stripe and 
spot patterns using mice as a model. First, we tested the hypothesis with a “static” analysis of tooth shape. Results 
show that UM exhibits smaller index values (area/perimeter), which indicates a more complicated shape pattern 
compared to LM. Second, we tested the hypothesis with a “developmentally dynamic” analysis using the Turing 
model as a framework. The model revealed that the parameter settings for stripe vs. spot patterns matched the 
UM vs. LM morphologies. Furthermore, our tooth model reproduced the relative location of cusps as well as 
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Figure 1.   Scheme for 2D pattern extraction. (a) The 3D models of enamel–dentine junction. The three-
dimensional surface models derived from µCT data were visualized by an in-house program, ForMATit, 
developed by N.M. [MATLAB-based (MathWorks, Version R2021b, https://​www.​mathw​orks.​com/​produ​cts/​
matlab.​html)]. (b) Morphometric maps of the height from the cervical plane in UM and LM. (c) Binarized 
image at 50% of total height. White regions are above the threshold. Top and bottom panels show UM and 
LM, respectively. m mesial, d distal, b buccal, l lingual. (d) A dimensionless index calculated as area/squared 
perimeter is used to distinguish between stripe and spot patterns. Significant differences between UM and LM 
were detected (the number of samples, n = 10 for each of UM and LM; the probability of null hypothesis by 
Kruskal–Wallis test, p < 0.001) at 40–60% of the total height from the cervical plane. The mean and standard 
deviation at each threshold level are indicated with a polygonal line and whisker, respectively. The asterisk 
indicates the threshold at the 50% level where binarized images of (d) are derived. The black line indicates a 
constant in the case of circle (1/4π).

https://www.mathworks.com/products/matlab.html
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the sequence of cusp formation in UM and LM. Thus, both analyses supported the hypothesis that UM vs. LM 
morphologies have developed via stripe and spot patterns.

Turing patterns with domain growth have not been well studied until recently because the growth of material 
is not a common phenomenon in physical or chemical systems. In 1995, Kondo and Asai7 described that the 
stripe pattern in angelfish could change due to the growth of the fish, which invoked interest in pattern formation 
in growing domains. Pattern formation in a growing domain has been analyzed theoretically in one-dimensional 
systems29. In particular, they begin by numerically implementing the Turing model on a growing domain and 
observe the increase of activator peaks due to the domain growth, which is called mode doubling. The steady-
state solution of the Turing pattern on a growing domain was analyzed using a piecewise linear approximation 
of the reaction term, and the condition for the distinction of these three dynamics turned out to be correlated 
to the reverse symmetry of the system29. Intriguingly the reverse symmetry of the system also is important for 
stripe–spot selection (in this study, we use the term ‘selection’ to refer to the choice between stripe and spot 
patterns in the context of the Turing system but not to natural selection in evolutionary theory)4. We showed 
the relationship between stripe–spot selection and mode doubling (Fig. 2), which has not been fully elucidated 
analytically.

Previous studies have simulated tooth development using a morphodynamic mechanism in which inductive 
and morphogenetic mechanisms interact dynamically with each other12,33,34. While tooth development has been 
considered highly self-regulated, a recent study showed that external factors, such as physical interaction with 
the jawbone, is relevant for the regulation of tooth morphogenesis35. In this study, we simplified the model by not 
considering this potential external factor. Our model is implemented by two independent mechanisms: (a) global 
size regulation based on empirical data, and (b) local cusp patterning based on a Turing model. We thus call it a 
semi-morphodynamic model. While the relative position of the cusps is altered moderately, the sequence of cusp 
formation remains essentially unaffected with or without the external factor. While our model does not allow 

Figure 2.   The mode doubling pattern in one dimensional simulations and stripe-
spot selection in two dimensional simulations. (a) Pattern formation with a uniform 
domain growth with zero flux boundary conditions. The parameter set we used was: 
fu = 0.6, fv = −1, gu = 1.5, gv = −2, du = 0.0002, dv = 0.002, c = 1, q = 0 . We could observe the 
formation of new peaks restricted to the boundary. (b) The distribution of u (blue) and v (orange) at the 
timepoint of new peak formation. Splitting (arrowhead) and insertion (arrow) are observed simultaneously. 
(c) Pattern formation when growth is restricted to the right edge and the reaction term is symmetric ( q = 0 . 
Detailed explanations of q is in “Materials and methods” section). A new peak is always generated at the site 
of growth. It is not clear whether splitting or insertion occurs (circle). (d) Two dimensional pattern formation 
of the system (q = 0). The stripe pattern is formed. (e) Pattern formation with a nonzero q term (q = 0.45) when 
growth is restricted to the right edge. Insertion becomes predominant (arrows). (f) 2D pattern formation of the 
system with a nonzero q term (q = 0.45). The spot pattern is formed.
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us to evaluate the effects of external physical constraints, it does allow us to examine the reciprocal relationship 
between growth and the Turing pattern.

We tested how the overall size regulation of the tooth germ affected the morphogenesis of EDJ. The swapping 
experiments in silico between the growth function in the UM and the reaction–diffusion parameter set for LM 
(and vice versa) show that the spatiotemporal cusp patterns are not changed drastically (S3 Video and S4 Video). 
One implication of this swapping simulation is that tooth morphogenesis might be more sensitive to local 2D 
patterning than to global size regulation. This indicates that the increased body size and associated change of the 
growth pattern along the course of evolution have relatively minor effects on the pattern of cusp formation. This 
is consistent with the notion that rats and mice exhibit similar tooth morphologies despite more than two-fold 
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Figure 3.   Modeling of molar growth. The length along the long and short axes of tooth germ is measured 
every other day from E14.5 to E18.5 (n = 4 for each time point) in UMs (a) and LMs (b). The parameters for 
fitting growth rates are the following: UM long axis, α = 1.267; β = 3.337; γ = 0.5316 (r2 = 0.96). UM short axis, 
α = 0.4295; β = 3.342; c = 0.9023 (r2 = 0.91). LM long axis, α = 0.8218; β = 2.895; γ = 0.7901 (r2 = 0.95). LM short 
axis, α = 0.5811; β = 3.577; γ = 0.7851 (r2 = 0.98). The ellipse with the black dashed line indicates tooth germ, and 
red and blue lines correspond to long and short axes, respectively.
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Figure 4.   Simulation of molar morphogenesis. The parameters for UM that make stripe patterns are the 
following: (a) fu = 0.4, fv = − 1, q = 0, c = 1, gu = 0.4, gv = − 0.44, du = 0.006, dv = 0.06. The parameters for LM that 
make spot patterns are the following: (b) fu = 0.2, fv = − 0.6, q = 0.45, c = 0.6, gu = 0.2, gv = − 0.32, du = 0.006, 
dv = 0.06. The 2D images of stripe and spot patterns are formed after letting the system settle from an initially 
random configuration under the above parameter sets. Simulated concentration of activator (u) is represented in 
3D at E 14.5, E 16.5, and E. 18.5. The final plain colormaps are also shown at E 18.5. The unit of x and y axis is in 
mm. m mesial, d distal, b buccal, l lingual.
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differences in body mass. It should be noted, however, that slight modifications can occur with such swapping. 
For example, the UM model that grew by LM growth rates yielded additional distal cusps, which might also be 
consistent with the patterning cascade model, where variation in small-sized cusps should be cumulative, and 
random variation should appear easily in later-developing cusps36.

The related question is to identify the morphogens that act in the system described here. Actual candidates 
for activators and inhibitors of Turing systems have been proposed in various biological systems. In most cases, 
the molecules that fall into some of the most important categories of the signaling pathway for development, 
such as fibroblast growth factors (FGF), bone morphogenetic proteins (BMP), sonic hedgehog (SHH), and Wnt37, 
correspond to it. As we mentioned previously, in the case of tooth development, it has been proposed that BMPs 
act as activators, and FGF and SHH act as inhibitors12. These proteins also should be relevant for determining 
the morphology of EDJ. It remains unknown, however, exactly how each potential morphogen is regulated during 
the EDJ morphogenesis. Our model consisted of only two morphogens, which is clearly an oversimplification. 
Thus, it is difficult to apply this hypothetical model directly to certain molecules that function during real odon-
togenesis. Our simple model only describes the phenomenon of interest, but it may provide additional insight into 
morphological evolution, and it provides a better understanding of underlying developmental mechanisms38,39.

We may extend the framework presented here to human molars. Fig. S1 shows the EDJ of the first UM and LM 
of humans. The sequence of cusp formation is shared in both UM and LM in humans: mesiobuccal → mesiolin-
gual → distobuccal → distolingual40. The UMs of humans exhibit a ridge, called the oblique crest, which connects 
the mesiolingual and distobuccal cusps. The grooves that separate these cusps are only weakly expressed or not 
present at all. In contrast, the LMs of humans have cusps that are delimited clearly from each other by deep 
grooves. Given these morphological differences between UM and LM in humans, we suggest that stripe–spot 
selection could also apply to human molars. While this hypothesis remains to be tested, our computational model 
could provide new insights into the morphogenesis of human molars. For example, recent studies on genetic 
disorders, such as ectodermal dysplasia, have identified genes involved in the regulation of cusp number and 
shape41,42. Currently, it is unknown whether tooth malformation is associated with changes in the sequence of 
cusp formation and/or it is related to the conversion between stripe- and spot-like patterns of cusp formation. 
Most genetic studies in mice, however, have shown reductions in the size and shape of teeth, and it is difficult to 
increase tooth complexity without modifying multiple signaling pathways14,43. However, changes in a particular 
signaling molecule, such as overexpression of Edar, can result in an increased number of spiky cusps44, which 
might be correlated with parameter changes in the Turing model. Thus, simulation-aided approaches have the 
potential to link experimental studies using model species, such as mice, with clinical research in humans, which 
might aid in the prevention and treatment of tooth malformation.

Our modeling suggests the difference between stripe-like UM and spot-like LM in cusp patterning. We 
hypothesize that stripe vs. spot patterning holds as a general rule for the evolution of mammalian teeth. For 
example, consider the proboscidean molar morphology. Between the Miocene and Holocene periods, the molars 
of ancestral ‘gomphotheres’ possessed spot-like conical cusps arranged in transverse rows on the crown, while 
recent Elephantidae exhibited more stripe-like incised ridges for shearing and cutting45. Thus, it is possible to 
detect evolutionary changes in molar morphology change utilizing 2D patterning in a Turing model, as imple-
mented in this study. This hypothesis, however, should be tested using phylogenetic analyses based on fossils, 
computational modeling, and experimental reproduction from spot-like to stripe-like teeth.

Distinct pattern formation may be associated with dietary habits. Figure 5 shows that herbivores tend to have 
stripe-like teeth that are characterized by well-developed intercusp ridges, including the lophodont, loxodont, 
and selenodont. On the other hand, carnivores have spot-like cuspidate teeth, such as the carnassial (secodont) 
or denticulate. Omnivores are in between these two extremes. Although some omnivorous species may have 
different patterns between their UM and LM, such as mice (and perhaps humans), a diverse evolutionary pattern 
appears across mammals that roughly corresponds to their dietary adaptations.

Several characteristics of dentition are of special relevance for highly diversified mammal dietary habitats, 
such as relative molar size18 and crown surface complexity46,47. It has been proposed that the taxonomic diver-
sification of mammals was associated with the gain of herbivory, which subsequently led to changes in molar 
tooth morphology. Specifically, the increase in the number of lophs led to the “complexity” of tooth morphology 
that resulted in the ability to consume fibrous plant foods48. Such “complexity” includes high-crowned teeth 
with multiple lophs and suggests that this resulted in the loss of intermediate crown types. We propose that an 
increase in lophedness through evolution could correspond to the switch from spots to stripes in cusp pattern-
ing. Along with such a switch of the developmental program, the acquisition of a hypocone could have played 
a major role. Hypocones are considered to be a key innovation associated with the taxonomic diversification of 
herbivorous mammals27. In the framework of our Turing model, this change is associated with mode doubling.

The acquisition of the hypocone has evolved more than 20 times convergently among various lineages even 
though there are several options for adding one cusp during odonotogenesis27. In terms of mode doubling, the 
subsequent cusp appears in mode tripling under the stripe pattern cusp formation, which suggests that the 
hypocone would not necessarily be derived from a certain cusp or structure, but it was acquired independently 
in the various species in a various approach15,27,49–52. Our hypothesis of switching from spot to stripe in cusp 
patterning is consistent with an increase in lophedness and the adaptive radiation of mammals with hypocones 
during the Cenozoic era.

Although the UM and LM of an individual are under identical genetic control with a common developmental 
architecture, most mammals have distinct morphological patterns, which suggests that the algorithm applied to 
UM and LM is different. Our computational modeling implies that final molar morphology could be linked to 
2D pattern formation attained only by slight changes in model parameters. This suggests that the evolution of 
disparate morphologies may not require extensive modification of the developmental process and permits the 
diversification of molar morphology in mammals.
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Materials and methods
Micro‑CT data and 3D reconstructions.  Unworn molars were obtained from the ICR mice. The first 
UM and LM were extracted at a postnatal age of two weeks. A total of 20 molars (n = 10 for each of UM and 
LM) were scanned using a µCT scanner (ELE SCAN, Nittetsu Elex, Japan; housed at Niigata University) with 
the following parameters: tube voltage: 72 kV and tube current: 11 µA. This resulted in an isotropic voxel resolu-
tion of 5 µm. Since the enamel–dentine junction (EDJ) in the fully formed tooth can be used as a proxy for the 
final configuration of the inner enamel epithelium that resulted from the patterning phase of development53, we 
selectively reconstructed EDJ for the analysis. Tooth segmentations were made between enamel and dentine, and 
reconstruction of the 3D model was performed with Amira (FEI Visualization Science Group).

2D pattern extraction and analyses.  We evaluated the difference in cusp shape between UM and LM by 
extracting their 2D patterns. To normalize the different shapes of UM and LM, we projected the 3D surface to a 
normalized circular image. A 3D surface model of EDJ is transformed into a 2D circular image by means of mor-
phometric mapping54,55. Before mapping, each tooth was aligned horizontally at its cervical line and centered 
using the centroid of the cervical line. The height from the cervical plane was used as a morphometric dataset 
for the analysis, which was sampled over the entire EDJ surface. To extract the 2D patterning, the morphomet-
ric map was binarized by using different values of thresholds. We used thresholds ranging from 40 to 60% of 
total EDJ height from the cervical plane because this threshold should be sensitive to pattern identification. For 
example, higher thresholds would only represent information on cusp tips, while lower thresholds represent the 
shape of the basement. Using the binarized image, we then calculated a dimensionless index of the area divided 
by the squared perimeter for each object, which allowed us to detect the 2D pattern difference between stripes 
and spots. If the pattern is spot-like, this variable should be close to that of a circle (1/4π). On the other hand, the 
stripe-like pattern should have smaller values because each object exhibits a complicated shape whose perimeter 
is relatively larger than its area.

Measurements of tooth germ growth rates.  All animal experiments were conducted in compliance 
with ARRIVE guidelines. The protocol for experimentation was approved by the Institutional Animal Care and 
Use Committee (Approval no. 27-044) of Iwate Medical University, and all methods were performed in accord-
ance with relevant guidelines and regulations. The development of UM and LM was observed from embryonic 
day 14.5 (E14.5), when it starts the invagination of the epithelium and condensing mesenchyme to form its 
cap, until stage E18.5, when the crown cusp pattern is settled21. Although most cusps develop during the early 
bell stage, tooth mineralization has not begun. At noon of the day, when the vaginal plug was observed was 
considered E0.5. The UM and LM were excised from ddy mice (Japan SLC, Shizuoka, Japan) and fixed in 4% 
paraformaldehyde. Assuming the tooth germ is an ellipse, the long and short axis was measured every other day 
(Fig. 3). The Gompertz double exponential model was fitted to mean values of growth along the long and short 
axis from E14.5 as follows:

Stripe/Spot

Omnivore CarnivoreHerbivore

Stripe Spot

Mouse Human

Moose

Mammoth

Leopard

Wolf

20mm

10mm

10mm

40mm

0.5mm

0.5mm 5mm

5mm

x

y

x

y

-0.2 0.3 0.8-0.2 0 0.3

Figure 5.   The proposed relationship between patterning and dietary habits. Tooth images of mammoth, moose, 
wolf, and leopard were obtained from MorphoSource.org (Media IDs: 8705, 8288, 7773, and 7779, respectively). 
The three-dimensional surface models derived from µCT data were visualized by an in-house program, 
ForMATit, developed by N.M. [MATLAB-based (MathWorks, Version R2021b, https://​www.​mathw​orks.​com/​
produ​cts/​matlab.​html)].

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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where α is the upper limit, β defines the value at t equal to zero in conjunction with α, and γ indicates the 
inclination.

Numerical simulation of Turing pattern in a 1D growing region.  One-dimensional mockup models 
were implemented using Mathematica. The reaction–diffusion equations were a modified FitzHugh–Nagumo 
system56,57 to allow the mathematically simple switch between stripe and spot patterning with quadratic and 
cubic terms28. The equations are as follows:

where u and v are standardized activator and inhibitor concentrations, respectively. The meanings of the linear 
parameters are described in Fig. 6a. fu represents the positive feedback of the activator. fv represents the inhibition 
of activator production by the inhibitor. gu represents the promotion of inhibitor production by the activator. 
gv represents the decay of the inhibitor. du and dv are the diffusion coefficients of the activator and the inhibitor, 
respectively.

We confirmed that the parameter set gives vault-like dispersion relation �(k) (Fig. 6b), indicating that the 
system has the pattern formation capacity. c represents the saturation of the activator. Since the existence of 
positive feedback, activator concentration tends to go to infinity ( c = 0 in Fig. 6c). Therefore, we set the upper 
and lower limit of the activator concentration using this term ( c = 1 in Fig. 6c). q represents the asymmetry of 
the u reaction term. When q is positive, the equilibrium point is closer to the lower limit than the upper limit. 
This corresponds to the lower shift of the equilibrium point, which can be implemented by several situations:

1.	 Constant removal of the activator (for example, by an extracellular molecule that captures the activator).
2.	 Additional expression of pseudoreceptor of the activator.

Similarly, when q is negative, the equilibrium point is closer to the upper limit than the lower limit. This 
corresponds to the upper shift of the equilibrium point. There are several biologically plausible situations to 
implement this effect.

1.	 Constant addition of the activator from an external source (for example, from adjacent tissue).
2.	 Additional expression of constitutive active receptor of the activator.

(1)f (t) = αe−βe−γ t

(2)

∂u

∂t
= fuu+ fvv + qu2 − cu3 + du�u

∂v

∂t
= guu+ gvv + dv�v

Figure 6.   Definitions of the model parameters. (a) Schematic representation 
of the six linear parameters of the model. (b) Dispersion relation of the Eq. (2) 
( fu = 0.6, fv = − 1, gu = 1.5, gv = − 2, du = 0.0002, dv = 0.002 ). (c) Effect of two nonlinear terms c and q 
on the u dynamics.
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Both reaction and diffusion terms are implemented using an explicit Euler scheme. To implement uniform 
domain growth, we increased the number of lattices at regular intervals. Concentration values of increase were 
calculated by linear interpolation as follows:

where n is the number of lattices at time t.

Modeling pattern formation of molar morphology.  The model combines growth rates of tooth germ 
inferred from empirical data and reaction–diffusion parameters to simulate cusp patterning. Spatial cusp pat-
tern formation for UM and LM in wild-type mice was simulated with a system of reaction–diffusion equations 
[Eq. (2)] in a growing elliptic domain. The numerical simulations were undertaken with Dirichlet (i.e., fixed) 
boundary conditions. The growth was implemented as a growing ellipse that expanded into four directions: 
mesial, distal, buccal, and lingual. Given the tooth shape in adult mice, we assumed growth along the disto-
lingual direction was greater than that along the mesio-buccal direction, setting the growth rate along the disto-
lingual direction four times higher than along the mesio-buccal direction. We assumed u and v of the added 
lattices in UM to be 0 and − 0.0012, respectively, and both were 0 in LM. Under these initial conditions, the acti-
vator concentration was located at the center of the elliptic domain, which corresponded to the primary enamel 
knot that expresses during the cap stage of development.

Data availability
Correspondence and requests for materials should be addressed to W.M.
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